-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm1_nimble_gen.R
138 lines (98 loc) · 3.39 KB
/
m1_nimble_gen.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
##########################################
# Model 1: site covariates for abundance #
##########################################
# and
# not assuming a rectangular survy design but rather
# using a vector of observations with indexing based on length vector
dM1_nb_vec <- nimbleFunction (
run = function (x = double(1),
b0 = double(),
b1 = double(),
pt = double(),
rt = double(),
J_i = integer(1),
R = integer(),
z = double(1),
log = logical(0, default = 0)) {
mut <- b0 + b1 * z
mu <- exp(mut)
p <- expit(pt)
r <- exp(rt)
xtot <- sum(x)
ptot <- double(R)
x_row <- integer(R)
x_miss_row <- integer(R)
for (i in 1:R) {
spots_in <- (sum(J_i[1:i]) - J_i[i] + 1):(sum(J_i[1:i]) - J_i[i] + J_i[i])
ptot[i] <- 1 - (1 - p)^J_i[i]
x_row[i] <- sum(x[spots_in])
x_miss_row[i] <- x[spots_in] %*% seq(0, J_i[i] - 1)
}
x_sumj <- sum(x_miss_row[1:R])
x_logfact <- sum(lfactorial(x))
loglik <- (-x_logfact)
for (i in 1:R) {
spots_in <- (sum(J_i[1:i]) - J_i[i] + 1):(sum(J_i[1:i]) - J_i[i] + J_i[i])
x_vec <- seq(0, J_i[i] - 1)
term1 <- sum(lgamma(r + x_row[i])) - lgamma(r)
term2 <- r * log(r) + x_row[i] * log(mu[i])
term3 <- x_row[i] * log(p) + sum(x[spots_in] * x_vec) * log(1 - p)
term4 <- -(x_row[i] + r) * log(r + mu[i] * ptot[i])
loglik <- loglik + term1 + term2 + term3 + term4
}
if (log) return(loglik)
else return(exp(loglik))
returnType(double())
})
rM1_nb_vec <- nimbleFunction(
run = function(n = integer(),
b0 = double(),
b1 = double(),
pt = double(),
rt = double(),
J_i = double(),
R = integer(),
z = double(1)) {
mut <- b0 + b1 * z
mu <- exp(mut)
p <- expit(pt)
r <- exp(rt)
J_tot <- sum(J_i)
prob <- double(J_tot + 1 * R)
retain <- logical(J_tot + 1 * R)
for (i in 1:R) {
for (j in 1:J_i[i]) {
prob[sum(J_i[1:i]) - J_i[i] + i - 1 + j] <- pow(1 - p, j - 1) * p
retain[sum(J_i[1:i]) - J_i[i] + i - 1 + j] <- TRUE
}
prob[sum(J_i[1:i]) - J_i[i] + i - 1 + j + 1] <- 1 - sum(prob[(sum(J_i[1:i]) - J_i[i] + i - 1 + 1):(sum(J_i[1:i]) - J_i[i] + i - 1 + J_i[i])])
}
ans <- integer(J_tot + 1 * R)
n <- integer(R)
for (i in 1:R) {
n[i] <- rnbinom(n = 1, size = r, mu = mu[i])
if (n[i] > 0) {
ans[(sum(J_i[1:i]) - J_i[i] + i - 1):(sum(J_i[1:i]) - J_i[i] + i - 1 + J_i[i]) + 1] <- rmulti(n = 1, size = n[i], prob = prob[(sum(J_i[1:i]) - J_i[i] + i - 1):(sum(J_i[1:i]) - J_i[i] + i - 1 + J_i[i]) + 1])
}
}
return(ans[retain])
returnType(double(1))
})
registerDistributions(list(
dM1_nb_vec = list(
BUGSdist = "dM1_nb_vec(b0, b1, pt, rt, J_i, R, z)",
Rdist = "dM1_nb_vec(b0, b1, pt, rt, J_i, R, z)",
discrete = TRUE,
types = c('value = double(1)',
'b0 = double()',
'b1 = double()',
'pt = double()',
'rt = double()',
'J_i = double(1)',
'R = integer()',
'z = double(1)'
),
mixedSizes = FALSE,
pqAvail = FALSE
)), verbose = FALSE
)