-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm123_haines.R
108 lines (69 loc) · 1.94 KB
/
m123_haines.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# combining
##########################################
# Model 1: site covariates for abundance #
##########################################
# and
##########################################
# Model 2: site covariates for capture #
##########################################
# and
#############################################
# Model 3: removal covariates for capture #
#############################################
gM123nb <- function (param, ymat, J, R, xvec, tvecR, tvecJ) {
yrow <- as.matrix(rowSums(ymat))
ycol <- as.matrix(colSums(ymat))
ytot <- sum(sum(ymat))
jvec <- seq(0, J - 1)
ysumj <- sum(ycol * jvec)
ylogfact <- sum(sum(log(factorial(ymat))))
b0 <- (param[1])
b1 <- (param[2])
g0 <- param[3]
g1 <- param[4]
g2 <- param[5]
r <- exp(param[6])
mu <- exp(b0 + b1 * xvec)
loglik <- -ylogfact
for (i in 1:R) {
p <- expit(g0 + g1 * tvecR[i] + g2 * tvecJ)
pp <- c(0, p)
prob <- numeric(J)
for (j in 1:J) {
prob[j] <- prod(1 - pp[1:j]) * p[j]
}
ptot <- sum(prob)
term1 <- lgamma(r + yrow[i]) - lgamma(r)
term2 <- r*log(r) + yrow[i] * log(mu[i])
term3 <- sum(ymat[i,] * log(prob))
term4 <- -(yrow[i] + r) * log(r + mu[i] * ptot)
loglik <- loglik + term1 + term2 + term3 + term4
}
return(-loglik)
}
# generate with negbin
gM123nbgen <- function (param, J, R, xvec, tvecR, tvecJ) {
b0 <- param[1]
b1 <- param[2]
g0 <- param[3]
g1 <- param[4]
g2 <- param[5]
r <- exp(param[6])
mu <- exp(b0 + b1 * xvec)
ymat <- matrix(0, R, J + 1)
for(i in 1:R) {
n <- rnbinom(1, size = r, mu = mu[i])
if(n > 0) {
p <- expit(g0 + g1 * tvecR[i] + g2 * tvecJ)
pp <- c(0, p)
prob <- numeric(J + 1)
for (j in 1:J) {
prob[j] <- prod(1 - pp[1:j]) * p[j]
}
prob[J + 1] <- 1 - sum(prob[1:J])
ymat[i,] <- rmultinom(1, n, prob)
}
}
ymat <- ymat[,1:J]
return(ymat)
}