-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_model_zoo.py
executable file
·357 lines (279 loc) · 17.5 KB
/
speech_model_zoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Dropout, Input, Reshape, BatchNormalization
from tensorflow.keras.layers import Lambda, Activation,Conv2D, MaxPooling2D
from tensorflow.keras import backend as K
import numpy as np
class BaseModel:
'''
定义声学模型类型的接口基类
'''
def __init__(self):
self.input_shape = None
self.output_shape = None
def get_model(self) -> tuple:
return self.model, self.model_base
def get_train_model(self) -> Model:
return self.model
def get_eval_model(self) -> Model:
return self.model_base
def summary(self) -> None:
self.model.summary()
def get_model_name(self) -> str:
return self._model_name
def load_weights(self, filename :str) -> None:
self.model.load_weights(filename)
def save_weights(self, filename :str) -> None:
self.model.save_weights(filename + '.model.h5')
self.model_base.save_weights(filename + '.model.base.h5')
f = open('epoch_'+self._model_name+'.txt','w')
f.write(filename)
f.close()
def get_loss_function(self):
raise Exception("method not implemented")
def forward(self, x):
raise Exception("method not implemented")
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
y_pred = y_pred[:, :, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
class SpeechModel251(BaseModel):
'''
定义CNN+CTC模型,使用函数式模型
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
隐藏层:全连接层 \\
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
参数: \\
input_shape: tuple,默认值(1600, 200, 1) \\
output_shape: tuple,默认值(200, 1428)
'''
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel251'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.05)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.05)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.1)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.1)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.15)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.15)(layer_h9)
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.2)(layer_h10)
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
layer_h12 = Dropout(0.2)(layer_h12)
layer_h13 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h12) # 卷积层
layer_h13 = Dropout(0.2)(layer_h13)
layer_h14 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h13) # 卷积层
layer_h15 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h14) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h16 = Reshape((self.output_shape[0], 3200))(layer_h15) #Reshape层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h16 = Dropout(0.3)(layer_h16)
layer_h17 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h16) # 全连接层
layer_h17 = Dropout(0.3)(layer_h17)
layer_h18 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h17) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h18)
model_base = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
if(tf.__version__[0:2] == '1.'):
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
p = 0
while p < len(r1[0])-1 and r1[0][p] != -1:
p += 1
return r1[0][0:p]
class SpeechModel25(BaseModel):
'''
定义CNN+CTC模型,使用函数式模型
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
隐藏层:全连接层 \\
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
参数: \\
input_shape: tuple,默认值(1600, 200, 1) \\
output_shape: tuple,默认值(200, 1428)
'''
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel25'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.05)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.05)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.1)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.1)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.15)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.15)(layer_h9)
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.2)(layer_h10)
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h12 = Reshape((self.output_shape[0], 3200))(layer_h12) #Reshape层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h12 = Dropout(0.3)(layer_h12)
layer_h13 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h12) # 全连接层
layer_h13 = Dropout(0.3)(layer_h13)
layer_h14 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h13) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h14)
model_base = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
if(tf.__version__[0:2] == '1.'):
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
p = 0
while p < len(r1[0])-1 and r1[0][p] != -1:
p += 1
return r1[0][0:p]
class SpeechModel24(BaseModel):
'''
定义CNN+CTC模型,使用函数式模型
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
隐藏层:全连接层 \\
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
参数: \\
input_shape: tuple,默认值(1600, 200, 1) \\
output_shape: tuple,默认值(200, 1428)
'''
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel24'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.1)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.2)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.2)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.3)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.3)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h10 = Reshape((self.output_shape[0], 3200))(layer_h9) #Reshape层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h10 = Dropout(0.3)(layer_h10)
layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层
layer_h11 = Dropout(0.3)(layer_h11)
layer_h12 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h12)
model_base = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
if(tf.__version__[0:2] == '1.'):
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
p = 0
while p < len(r1[0])-1 and r1[0][p] != -1:
p += 1
return r1[0][0:p]