-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
63 lines (48 loc) · 2.21 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import torch
import argparse
from utils.eval_utils import *
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device: ", device, f"({torch.cuda.get_device_name(device)})" if torch.cuda.is_available() else "")
# Folder setup
dataset = 'cifar10'
method = 'contr'
def main(model, train_path, test_path, K, savedir):
# Load the datasets
database_train_df = pd.read_pickle(train_path)
database_test_df = pd.read_pickle(test_path)
# Perform random querying
# print("Performing random querying...")
# random_query(model_str=model,\
# num_queries=10, topK=10,\
# train_df=database_train_df,\
# test_df=database_test_df,\
# save_folder=savedir,\
# device=device)
print(f'Successfully performed queries and saved images to {savedir}.')
# Draw histograms of results
print('Getting average precision statistics...')
get_metrics(model_str=model,\
train_df=database_train_df,\
test_df=database_test_df,\
K=K,\
filename=filename,\
save_folder=savedir,\
device=device)
print(f'Successfully calculated average precision statistics and saved them to {savedir}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', required=True, help='Name of the model used for feature extraction (vit_s16, swin_s, gcvit_s).')
parser.add_argument('--train', required=True, help='Path to the file with database (training) set features extracted.')
parser.add_argument('--test', required=True, help='Path to the file with query (test) set features extracted.')
parser.add_argument('--K', required=True, nargs='+', type=int, help='Path to the file with query (test) set features extracted.')
parser.add_argument('--savedir', required=True, help='Directory in which the results will be saved.')
args = parser.parse_args()
model = args.model
train_path = args.train
test_path = args.test
savedir = args.savedir
K = args.K
filename = f"{model}_{dataset}_{method}_metrics"
main(model, train_path, test_path, K, savedir)