-
Notifications
You must be signed in to change notification settings - Fork 242
/
Copy pathplot.py
420 lines (372 loc) · 14 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import concurrent.futures
import functools
import json
import re
import warnings
import elements
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import ruamel.yaml as yaml
import tqdm
COLORS = [
'#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa',
'#001177', '#117700', '#990022', '#885500', '#553366', '#006666',
'#7777cc', '#999999', '#990099', '#888800', '#ff00aa', '#444444',
]
def load_run(filename, xkeys, ykeys, ythres=None):
try:
try:
df = pd.read_json(filename, lines=True)
except ValueError:
print('Falling back to robust JSONL reader.')
records = []
for line in filename.read_text().split('\n')[:-1]:
try:
records.append(json.loads(line))
except json.decoder.JSONDecodeError:
print(f'Skipping invalid JSONL line: {line}')
df = pd.DataFrame(records)
assert len(df), 'no timesteps in run'
xkey = [k for k in xkeys if k in df]
ykey = [k for k in ykeys if k in df]
assert xkey, (filename, df.columns, xkeys)
assert ykey, (filename, df.columns, ykeys)
xs = df[xkey[0]].to_list()
ys = df[ykey[0]].to_list()
assert isinstance(xs, list), type(xs)
assert isinstance(ys, list), type(ys)
if ythres:
ys = [1 if y > ythres else 0 for y in ys]
return xs, ys
except Exception as e:
elements.print(f'Exception loading {filename}: {e}', color='red')
return None
def load_runs(args):
indirs = [elements.Path(x) for x in args.indirs]
assert len(set(x.name for x in indirs)) == len(indirs), indirs
records, filenames = [], []
methods = re.compile(args.methods)
tasks = re.compile(args.tasks)
for indir in indirs:
found = list(indir.glob(args.pattern))
assert found, (indir, args.pattern)
for filename in found:
if args.newstyle:
_, task, method, seed = filename.parent.name.split('-')
else:
task, method, seed = str(filename).split('/')[-4: -1]
if not (methods.search(method) and tasks.search(task)):
continue
seed = f'{indir.name}_{seed}' if len(args.indirs) > 1 else seed
method = f'{indir.name}_{method}' if args.indir_prefix else method
records.append(dict(task=task, method=method, seed=seed))
filenames.append(filename)
print(f'Loading {len(records)} runs...')
load = functools.partial(
load_run, xkeys=args.xkeys, ykeys=args.ykeys, ythres=args.ythres)
if args.workers:
with concurrent.futures.ThreadPoolExecutor(args.workers) as pool:
runs = list(tqdm.tqdm(pool.map(load, filenames), total=len(filenames)))
else:
runs = list(tqdm.tqdm((load(x) for x in filenames), total=len(filenames)))
assert len(runs) > 0
records, runs = zip(*[(x, y) for x, y in zip(records, runs) if y])
for record, (xs, ys) in zip(records, runs):
record.update(xs=xs, ys=ys)
return pd.DataFrame(records)
def bin_runs(df, args):
print('Binning runs...')
if args.xlim:
df['xlim'] = args.xlim
else:
xlim = df.groupby('task')['xs'].agg(lambda xs: max(max(x) for x in xs))
df = pd.merge(df, xlim.rename('xlim'), on='task', how='left')
if args.binsize:
df['xlim'] = df['xlim'].max()
df['binsize'] = args.binsize
else:
assert args.bins <= 1000, args.bins
df['binsize'] = df['xlim'].apply(lambda x: x / args.bins)
def binning(row):
bins = np.arange(0, row['xlim'] + 0.99 * row['binsize'], row['binsize'])
sums = np.histogram(row['xs'], bins=bins, weights=row['ys'])[0]
nums = np.histogram(row['xs'], bins=bins)[0]
xs = bins[1:]
ys = np.divide(sums, nums, out=np.full(len(xs), np.nan), where=(nums != 0))
return xs, ys
df['xs'], df['ys'] = zip(*df.apply(binning, axis=1))
df = df.drop(columns=['xlim', 'binsize'])
assert len(df['xs'].apply(len).unique()) == 1
return df
def comp_stat(name, df, fn, baseline=None):
df = df.copy()
if not df['xs'].apply(lambda xs: np.array_equal(xs, df['xs'][0])).all():
assert len(df['xs'].apply(len).unique()) == 1
domain = np.linspace(0, 1, len(df['xs'][0]))
df['xs'] = df['xs'].apply(lambda _: domain)
df = df.groupby(['task', 'method'])[['xs', 'ys']].agg(np.stack).reset_index()
df['xs'] = df['xs'].apply(lambda xs: nanmean(xs, axis=0))
df['ys'] = df['ys'].apply(lambda ys: nanmean(ys, axis=0))
if baseline is not None:
def normalize(row):
lo, hi = baseline[row['task']]
return (row['ys'] - lo) / (hi - lo)
df['ys'] = df.apply(normalize, axis=1)
df = df.groupby('method')[['xs', 'ys']].agg(np.stack).reset_index()
df['xs'] = df['xs'].apply(lambda xs: nanmean(xs, axis=0))
df['ys'] = df['ys'].apply(fn)
df['name'] = name
return df
def comp_count(name, df):
df = df.copy()
if not df['xs'].apply(lambda xs: np.array_equal(xs, df['xs'][0])).all():
assert len(df['xs'].apply(len).unique()) == 1
domain = np.linspace(0, 1, len(df['xs'][0]))
df['xs'] = df['xs'].apply(lambda _: domain)
df = df.groupby(['method'])[['xs', 'ys']].agg(np.stack).reset_index()
df['xs'] = df['xs'].apply(lambda xs: nanmean(xs, axis=0))
df['ys'] = df['ys'].apply(lambda ys: np.isfinite(ys).sum(0))
df['name'] = name
return df
def comp_stats(df, args):
print('Computing stats...')
refs = yaml.YAML(typ='safe').load(
(elements.Path(__file__).parent / 'baselines.yaml').read())
self_baseline = df.groupby('task')['ys'].agg(lambda ys: (
min(min(y) for y in ys), max(max(y) for y in ys))).to_dict()
stats = []
choices = list(args.stats)
choices = [x for x in choices if x != 'none']
if not choices:
return None
if 'auto' in choices:
choices.remove('auto')
if all(x.startswith('atari_') for x in df.task.unique()):
choices += ['atari_mean', 'atari_median']
if all(x.startswith('dmc_') for x in df.task.unique()):
choices += ['mean', 'median']
if all(x.startswith('dmlab_') for x in df.task.unique()):
choices += ['dmlab_mean', 'dmlab_mean_capped']
if all(x.startswith('procgen_') for x in df.task.unique()):
choices += ['procgen_mean']
ax0 = lambda fn: functools.partial(fn, axis=0)
for stat in choices:
if stat == 'runs':
x = comp_count('Runs', df)
elif stat == 'mean':
x = comp_stat('Mean', df, ax0(np.mean))
elif stat == 'median':
x = comp_stat('Median', df, ax0(np.median))
elif stat == 'self_mean':
x = comp_stat('Self Mean', df, ax0(nanmean), self_baseline)
elif stat == 'self_median':
x = comp_stat('Self Median', df, ax0(nanmedian), self_baseline)
elif stat == 'atari_mean':
x = comp_stat('Gamer Mean', df, ax0(np.mean), refs['atari57_gamer'])
elif stat == 'atari_median':
x = comp_stat('Gamer Median', df, ax0(np.median), refs['atari57_gamer'])
elif stat == 'dmlab_mean':
x = comp_stat('Capped Mean', df, ax0(np.mean), refs['dmlab30'])
elif stat == 'dmlab_mean_capped':
fn = lambda x: np.minimum(x, 1).mean(0)
x = comp_stat('Capped Mean', df, fn, refs['dmlab30'])
elif stat == 'procgen_mean':
x = comp_stat('Normalized Mean', df, ax0(np.mean), refs['procgen_hard'])
else:
raise ValueError(stat)
stats.append(x)
return pd.concat(stats)
def plot_runs(df, stats, args):
print('Plotting...')
tasks = natsort(df.task.unique())
snames = [] if stats is None else stats.name.unique()
methods = natsort(df.method.unique())
total = len(tasks) + len(snames)
cols = args.cols or (4 + (total > 24) + (total > 35) + (total > 48))
fig, axes = plots(total, cols, args.size)
grouped = df.groupby(['task', 'method'])[['xs', 'ys', 'seed']].agg(np.stack)
for task, ax in zip(tasks, axes[:len(tasks)]):
style(ax, xticks=args.xticks, yticks=args.yticks)
title = task.replace('_', ' ').replace(':', ' ').split(' ', 1)[1].title()
ax.set_title(title)
args.xlim and ax.set_xlim(0, 1.03 * args.xlim)
args.ylim and ax.set_ylim(0, 1.03 * args.ylim)
for i, method in enumerate(methods):
try:
sub = grouped.loc[task, method]
except KeyError:
print(f"Missing method '{method}' on task '{task}'")
continue
bins = sub['xs'][0]
if args.agg:
mean = nanmean(sub['ys'], 0)
std = nanstd(sub['ys'], 0)
curve(ax, bins, mean, mean - std, mean + std, method, i)
else:
for j in range(sub['xs'].shape[0]):
curve(ax, sub['xs'][j], sub['ys'][j], None, None, method, i)
if stats is not None:
grouped = stats.groupby(['name', 'method'])[['xs', 'ys']].agg(np.stack)
for sname, ax in zip(snames, axes[len(tasks):]):
style(ax, xticks=args.xticks, yticks=args.yticks, darker=True)
ax.set_title(sname)
args.xlim and ax.set_xlim(0, 1.03 * args.xlim)
for i, method in enumerate(methods):
sub = grouped.loc[sname, method]
curve(ax, sub['xs'], sub['ys'], None, None, method, i)
legend(fig, adjust=True, ncol=args.legendcols or min(4, cols, len(axes)))
outdir = elements.Path(args.outdir) / elements.Path(args.indirs[0]).stem
outdir.mkdir()
filename = outdir / 'curves.png'
fig.savefig(filename, dpi=150)
print('Saved', filename)
def plots(amount, cols=4, size=(3, 3), **kwargs):
rows = int(np.ceil(amount / cols))
cols = min(cols, amount)
kwargs['figsize'] = kwargs.get('figsize', (size[0] * cols, size[1] * rows))
fig, axes = plt.subplots(nrows=rows, ncols=cols, squeeze=False, **kwargs)
for ax in axes.flatten()[amount:]:
ax.axis('off')
ax = axes.flatten()[:amount]
return fig, ax
def style(ax, xticks=4, yticks=4, grid=(1, 1), logx=False, darker=False):
ax.tick_params(axis='x', which='major', length=2, labelsize=10, pad=3)
ax.tick_params(axis='y', which='major', length=2, labelsize=10, pad=2)
ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(xticks))
ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(yticks))
ax.xaxis.set_major_formatter(lambda x, pos: natfmt(x))
ax.yaxis.set_major_formatter(lambda x, pos: natfmt(x))
if grid:
color = '#cccccc' if darker else '#eeeeee'
ax.grid(which='both', color=color)
ax.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(grid[0]))
ax.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(grid[1]))
ax.tick_params(which='minor', length=0)
if logx:
ax.set_xscale('log')
ax.xaxis.set_major_locator(plt.LogLocator(10, numticks=3))
ax.xaxis.set_minor_locator(plt.LogLocator(10, subs='all', numticks=100))
ax.xaxis.set_minor_formatter(plt.NullFormatter())
if darker:
ax.set_facecolor((0.95, 0.95, 0.95))
def curve(
ax, xs, ys, lo=None, hi=None, label=None, order=None, color=None,
scatter=True, **kwargs):
color = color or (None if order is None else COLORS[order])
order = order or 0
kwargs['color'] = color
mask = np.isfinite(ys)
ax.plot(xs[mask], ys[mask], label=label, zorder=200 - order, **kwargs)
if scatter:
ax.scatter(xs, ys, s=5, label=label, zorder=3000 - order, **kwargs)
if lo is not None:
ax.fill_between(
xs[mask], lo[mask], hi[mask],
zorder=100 - order, lw=0, **{**kwargs, 'alpha': 0.2})
def legend(fig, names=None, reverse=False, adjust=False, **kwargs):
options = dict(
fontsize=10, numpoints=1, labelspacing=0, columnspacing=1.2,
handlelength=1.5, handletextpad=0.5, ncol=4, loc='lower center')
options.update(kwargs)
entries = {}
for ax in fig.axes:
for handle, label in zip(*ax.get_legend_handles_labels()):
entries[label] = handle
if names:
entries = {name: entries[label] for label, name in names.items()}
if reverse:
entries = dict(list(reversed(list(entries.items()))))
leg = fig.legend(entries.values(), entries.keys(), **options)
leg.get_frame().set_edgecolor('white')
leg.set_zorder(2000)
[line.set_linewidth(2) for line in leg.legend_handles]
if adjust:
extent = leg.get_window_extent(fig.canvas.get_renderer())
extent = extent.transformed(fig.transFigure.inverted())
yloc, xloc = options['loc'].split()
y0 = dict(lower=extent.y1, center=0, upper=0)[yloc]
y1 = dict(lower=1, center=1, upper=extent.y0)[yloc]
x0 = dict(left=extent.x1, center=0, right=0)[xloc]
x1 = dict(left=1, center=1, right=extent.x0)[xloc]
fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=1, w_pad=1)
return leg
def silent(fn):
def wrapped(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter('ignore')
return fn(*args, **kwargs)
return wrapped
nanmean = silent(np.nanmean)
nanmedian = silent(np.nanmedian)
nanstd = silent(np.nanstd)
nanmax = silent(np.nanmax)
nanmin = silent(np.nanmin)
def natsort(sequence):
pattern = re.compile(r'([0-9]+)')
return sorted(sequence, key=lambda x: [
(int(y) if y.isdigit() else y) for y in pattern.split(x)])
def natfmt(x):
if abs(x) < 1e3:
x, suffix = x, ''
elif 1e3 <= abs(x) < 1e6:
x, suffix = x / 1e3, 'K'
elif 1e6 <= abs(x) < 1e9:
x, suffix = x / 1e6, 'M'
elif 1e9 <= abs(x):
x, suffix = x / 1e9, 'B'
if abs(x) <= 1:
return f'{x:.3f}{suffix}'
elif 1 <= abs(x) < 10:
return f'{x:.1f}{suffix}'
elif 10 <= abs(x):
return f'{x:.0f}{suffix}'
def print_summary(df):
methods = natsort(df.method.unique())
tasks = natsort(df.task.unique())
seeds = natsort(df.seed.unique())
print('-' * 79)
print(f'Methods ({len(methods)}):', ', '.join(methods))
print('-' * 79)
print(f'Tasks ({len(tasks)}):', ', '.join(tasks))
print('-' * 79)
print(f'Seeds ({len(seeds)}):', ', '.join(seeds))
print('-' * 79)
def main(args):
df = load_runs(args)
df = bin_runs(df, args)
print_summary(df)
if args.todf:
assert args.todf.endswith('.json.gz')
import ipdb; ipdb.set_trace()
df.to_json(args.todf, orient='records')
print(f'Saved {args.todf}')
stats = comp_stats(df, args)
plot_runs(df, stats, args)
if __name__ == '__main__':
main(elements.Flags(
pattern='**/scores.jsonl',
indirs=[''],
outdir='',
methods='.*',
tasks='.*',
newstyle=True,
indir_prefix=False,
workers=16,
xkeys=['xs', 'step'],
ykeys=['ys', 'episode/score'],
ythres=0.0,
xlim=0,
ylim=0,
binsize=0,
bins=30,
cols=0,
legendcols=0,
size=[3, 3],
xticks=4,
yticks=10,
stats=['runs', 'auto'],
agg=True,
todf='',
).parse())