This example is used to demonstrate how to utilize LPOT builtin dataloader and metric to enabling quantization without coding effort.
-
Download the FP32 model wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/mobilenet_v1_1.0_224_frozen.pb
-
Update the root of dataset in conf.ymal The configuration will create a dataloader of Imagenet and it will do Bilinear resampling to resize the image to 224x224. And it will create a TopK metric function for evaluation.
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 20 # optional. default value is the size of whole dataset. used to set how many portions of calibration dataset is used. exclusive with iterations field.
dataloader:
batch_size: 1
dataset:
Imagenet:
root: <DATASET>/TF_imagenet/val/ # NOTE: modify to calibration dataset location if needed
transform:
ParseDecodeImagenet:
BilinearImagenet:
height: 224
width: 224
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
activation:
algorithm: minmax
weight:
granularity: per_channel
evaluation: # optional. required if user doesn't provide eval_func in lpot.Quantization.
accuracy: # optional. required if user doesn't provide eval_func in lpot.Quantization.
metric:
topk: 1 # built-in metrics are topk, map, f1, allow user to register new metric.
dataloader:
batch_size: 32
dataset:
Imagenet:
root: <DATASET>/TF_imagenet/val/ # NOTE: modify to evaluation dataset location if needed
transform:
ParseDecodeImagenet:
BilinearImagenet:
height: 224
width: 224
- Run quantizaiton We only need to add the following lines for quantization to create an int8 model.
import lpot
quantizer = lpot.Quantization('./conf.yaml')
quantized_model = quantizer('./mobilenet_v1_1.0_224_frozen.pb')
- Run quantization and evaluation:
python test.py