diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/00_utils/loss_functions.html b/00_utils/loss_functions.html new file mode 100644 index 0000000..521a17e --- /dev/null +++ b/00_utils/loss_functions.html @@ -0,0 +1,987 @@ + + + + + + + + + + +Loss functions – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Loss functions

+
+ +
+
+ Numpy-based loss functans that can be used by environments or non-pytorch models. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

pinball_loss

+
+
 pinball_loss (Y_true:numpy.ndarray, Y_pred:numpy.ndarray,
+               underage_cost:ddopai.utils.Parameter|numpy.ndarray,
+               overage_cost:ddopai.utils.Parameter|numpy.ndarray)
+
+

Pinball loss calculating the cost of underestimating and overestimating the target value based on specific underage and overage costs. Used to evaulate the Newsvendor cost.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
Y_truendarray
Y_predndarray
underage_costddopai.utils.Parameter | numpy.ndarray
overage_costddopai.utils.Parameter | numpy.ndarray
Returnsndarrayreturns the cost per observation
+
+

source

+
+
+

quantile_loss

+
+
 quantile_loss (Y_true:numpy.ndarray, Y_pred:numpy.ndarray,
+                quantile:Union[float,ddopai.utils.Parameter])
+
+

Similar evaluation function to the pinball loss, but with the quantile of range [0, 1] as a parameter instead of SKU-specific cost levels for underage and overage.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
Y_truendarray
Y_predndarray
quantileUnion
Returnsndarrayreturns the cost per observation
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/00_utils/torch_loss_functions.html b/00_utils/torch_loss_functions.html new file mode 100644 index 0000000..30608c4 --- /dev/null +++ b/00_utils/torch_loss_functions.html @@ -0,0 +1,1080 @@ + + + + + + + + + + +Torch loss functions – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Torch loss functions

+
+ +
+
+ Loss functions that are implemented in PyTorch +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

quantile_loss

+
+
 quantile_loss (input:torch.Tensor, target:torch.Tensor,
+                quantile:torch.Tensor, reduction:str='mean')
+
+
+

source

+
+
+

TorchQuantileLoss

+
+
 TorchQuantileLoss (reduction:str='mean')
+
+

Implmentation of the quantile loss in Pytorch. Unlike the Numpy-based implementation [`quantile_loss`](https://opimwue.github.io/ddopai/00_utils/torch_loss_functions.html#quantile_loss) in the loss_functions module, this implementation this implementation reduces the results to a scalar value using the specified reduction method. This class is used to train Pytorch models using the quantile loss.

+ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
reductionstrmean
ReturnsNone
+
+

source

+
+

TorchQuantileLoss.forward

+
+
 TorchQuantileLoss.forward (input:torch.Tensor, target:torch.Tensor,
+                            quantile:ddopai.utils.Parameter|numpy.ndarray)
+
+

Forward pass of the quantile loss function.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
inputTensor
targetTensor
quantileddopai.utils.Parameter | numpy.ndarray
ReturnsTensor
+
+

source

+
+
+

pinball_loss

+
+
 pinball_loss (input:torch.Tensor, target:torch.Tensor,
+               underage:torch.Tensor, overage:torch.Tensor,
+               reduction:str='mean')
+
+
+

source

+
+
+
+

TorchPinballLoss

+
+
 TorchPinballLoss (reduction:str='mean')
+
+

Implmentation of the pinball loss in Pytorch using specific overage and underage cost. For the pinball loss based on quantiles directly, use the TorchQuantileLoss class. Unlike the Numpy-based implementation [`pinball_loss`](https://opimwue.github.io/ddopai/00_utils/torch_loss_functions.html#pinball_loss) in the loss_functions module, this implementation this implementation reduces the results to a scalar value using the specified reduction method. This class is used to train Pytorch models using the pinball loss.

+ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
reductionstrmean
ReturnsNone
+
+

source

+
+

TorchPinballLoss.forward

+
+
 TorchPinballLoss.forward (input:torch.Tensor, target:torch.Tensor,
+                           underage:ddopai.utils.Parameter|numpy.ndarray,
+                           overage:ddopai.utils.Parameter|numpy.ndarray)
+
+

Forward pass of the pinball loss function.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
inputTensor
targetTensor
underageddopai.utils.Parameter | numpy.ndarray
overageddopai.utils.Parameter | numpy.ndarray
ReturnsTensor
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/00_utils/utils.html b/00_utils/utils.html new file mode 100644 index 0000000..c10ea4a --- /dev/null +++ b/00_utils/utils.html @@ -0,0 +1,1263 @@ + + + + + + + + + + +General utils – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

General utils

+
+ +
+
+ Some general utility functions that are used throughout the package. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

check_parameter_types

+
+
 check_parameter_types (*args, parameter_type=<class 'numpy.ndarray'>)
+
+

Checks if each argument in args is of the specified type, defaulting to np.ndarray.

+

Example usage for the check_parameter_types function.

+
+
a = np.array([1, 2, 3])
+b = [1, 2, 3]
+
+try:
+    check_parameter_types(a, b)
+except TypeError as e:
+    print(e)
+
+
Argument 2 of 2 is of type list, expected ndarray
+
+
+
+

source

+
+
+

Parameter

+
+
 Parameter ()
+
+

Legacy, not used in the current implementation.

+
+

source

+
+
+

MDPInfo

+
+
 MDPInfo (observation_space:gymnasium.spaces.space.Space,
+          action_space:gymnasium.spaces.space.Space, gamma:float,
+          horizon:int, dt:float=0.1, backend:Literal['numpy']='numpy')
+
+

*This class is used to store the information of the environment. It is based on MushroomRL (https://github.com/MushroomRL). It can be accessed by agents that need the information of the environment, such as the state and action spaces.

+

Key difference with MushroomRL is that the state and action spaces are gymnasium spaces.*

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
observation_spaceSpace
action_spaceSpace
gammafloat
horizonint
dtfloat0.1
backendLiteralnumpyCurrently only numpy is supported
ReturnsNone
+
+

source

+
+

MDPInfo.size

+
+
 MDPInfo.size ()
+
+

Returns: The sum of the number of discrete states and discrete actions. Only works for discrete spaces.

+
+

source

+
+
+

MDPInfo.shape

+
+
 MDPInfo.shape ()
+
+

Returns: The concatenation of the shape tuple of the state and action spaces.

+
+

source

+
+
+
+

DatasetWrapper

+
+
 DatasetWrapper (dataloader:ddopai.dataloaders.base.BaseDataLoader,
+                 obsprocessors:List=None)
+
+

This class is used to wrap a Pytorch Dataset around the ddopai dataloader to enable the usage of the Pytorch Dataloader during training. This way, agents that are trained using Pytorch without interacting with the environment can directly train on the data generated by the dataloader.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataloaderBaseDataLoaderAny dataloader that inherits from BaseDataLoader
obsprocessorsListNoneprocessors (to mimic the environment processors)
+
+

source

+
+

DatasetWrapper.__getitem__

+
+
 DatasetWrapper.__getitem__ (idx)
+
+

Get the item at the provided idx.

+
+

source

+
+
+

DatasetWrapper.__len__

+
+
 DatasetWrapper.__len__ ()
+
+

Returns the length of the dataset. Depends on the state of the dataloader (train, val, test).

+
+

source

+
+
+

DatasetWrapperMeta

+
+
 DatasetWrapperMeta (dataloader:ddopai.dataloaders.base.BaseDataLoader,
+                     draw_parameter_function:<built-
+                     infunctioncallable>=None, distribution:Union[Literal[
+                     'fixed','uniform'],List]='fixed',
+                     parameter_names:List[str]=None,
+                     bounds_low:Union[int,float,List]=0,
+                     bounds_high:Union[int,float,List]=1,
+                     obsprocessors:List=None)
+
+

This class is used to wrap a Pytorch Dataset around the ddopai dataloader to enable the usage of the Pytorch Dataloader during training. This way, agents that are trained using Pytorch without interacting with the environment can directly train on the data generated by the dataloader.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataloaderBaseDataLoaderAny dataloader that inherits from BaseDataLoader
draw_parameter_functioncallableNonefunction to draw parameters from distribution
distributionUnionfixeddistribution for params during training, can be List for multiple parameters
parameter_namesListNonenames of the parameters
bounds_lowUnion0lower bound for params during training, can be List for multiple parameters
bounds_highUnion1upper bound for params during training, can be List for multiple parameters
obsprocessorsListNoneprocessors (to mimic the environment processors)
+
+

source

+
+
+
+

merge_dictionaries

+
+
 merge_dictionaries (dict1, dict2)
+
+

Merge two dictionaries. If a key is found in both dictionaries, raise a KeyError.

+
+

source

+
+
+

set_param

+
+
 set_param (obj, name:str,
+            input:Union[__main__.Parameter,int,float,numpy.ndarray,List,No
+            neType], shape:tuple=(1,), new:bool=False)
+
+

Set a parameter for the class. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
obj
namestrname of the parameter (will become the attribute name)
inputUnioninput value of the parameter
shapetuple(1,)shape of the parameter
newboolFalsewhether to create a new parameter or update an existing one
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/10_dataloaders/base_dataloader.html b/10_dataloaders/base_dataloader.html new file mode 100644 index 0000000..486c611 --- /dev/null +++ b/10_dataloaders/base_dataloader.html @@ -0,0 +1,1078 @@ + + + + + + + + + + +Base dataloader – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Base dataloader

+
+ +
+
+ Base class for dataloaders +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseDataLoader

+
+
 BaseDataLoader ()
+
+

Base class for data loaders. The idea of the data loader is to provide all external information to the environment (including lagged data, demand etc.). Internal data influenced by past decisions (like inventory levels) is to be added from within the environment

+

Train-Val-Test split:

+
    +
  • The dataloader contains all data, including the training, validation and test sets.

  • +
  • Retrieval of the dataset types is achieved by setting the internal state to train, validation or test using appropriate functions. Then the index will automatically be adjusted to the correct dataset (see below on data retrieval).

  • +
  • During training, both the agent and experiment function may have to know the length of the dataset. Therefore, the functions len_train, len_val and len_test with decorator @property must be defined

  • +
+

Data retrieval:

+
    +
  • Data retrieval is done with the ___getitem___ function. The function takes an index and returns the data at that index, typically as and X and Y pair.

  • +
  • For non-distribution-based dataloaders, the __init__ function must have arguments val_index_start and test_index_start from which the attributes val_index_start and test_index_start and train_index_endare set. The __getitem__ function must then check the index and return the correct data based on the internal state of the dataloader.

  • +
+
+

source

+
+

BaseDataLoader.__len__

+
+
 BaseDataLoader.__len__ ()
+
+

Returns the length of the dataset. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the dataset.

+
+

source

+
+
+

BaseDataLoader.__getitem__

+
+
 BaseDataLoader.__getitem__ (idx)
+
+

Returns always a tuple of X and Y data. If no X data is available, return None.

+
+

source

+
+
+

BaseDataLoader.X_shape

+
+
 BaseDataLoader.X_shape ()
+
+

Returns the shape of the X data. It should follow the format (n_samples, n_features). If the data has a time dimension with a fixed length, the shape should be (n_samples, n_time_steps, n_features). If the data is generated from a distribtition, n_samples should be set to 1.

+
+

source

+
+
+

BaseDataLoader.Y_shape

+
+
 BaseDataLoader.Y_shape ()
+
+

Returns the shape of the Y data. It should follow the format (n_samples, n_SKUs). If the variable of interst is only a single SKU, the shape should be (n_samples, 1). If the data is generated from a distribtition, n_samples should be set to 1.

+
+

source

+
+
+

BaseDataLoader.get_all_X

+
+
 BaseDataLoader.get_all_X (dataset_type:str='train')
+
+

Returns the entire features dataset. If no X data is available, return None. Return either the train, val, test, or all data.

+ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataset_typestrtraincan be ‘train’, ‘val’, ‘test’, ‘all’
+
+

source

+
+
+

BaseDataLoader.get_all_Y

+
+
 BaseDataLoader.get_all_Y (dataset_type:str='train')
+
+

Returns the entire target dataset. If no Y data is available, return None. Return either the train, val, test, or all data.

+ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataset_typestrtraincan be ‘train’, ‘val’, ‘test’, ‘all’
+
+

source

+
+
+

BaseDataLoader.len_train

+
+
 BaseDataLoader.len_train ()
+
+

Returns the length of the training set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the training set.

+
+

source

+
+
+

BaseDataLoader.len_val

+
+
 BaseDataLoader.len_val ()
+
+

*Returns the length of the validation set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the validation set.

+

If no valiation set is defined, raise an error.*

+
+

source

+
+
+

BaseDataLoader.len_test

+
+
 BaseDataLoader.len_test ()
+
+

*Returns the length of the test set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the test set.

+

If no test set is defined, raise an error.*

+
+

source

+
+
+

BaseDataLoader.train

+
+
 BaseDataLoader.train ()
+
+

Set the internal state of the dataloader to train

+
+

source

+
+
+

BaseDataLoader.val

+
+
 BaseDataLoader.val ()
+
+

Set the internal state of the dataloader to validation

+
+

source

+
+
+

BaseDataLoader.test

+
+
 BaseDataLoader.test ()
+
+

Set the internal state of the dataloader to test

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/10_dataloaders/distribution_loaders.html b/10_dataloaders/distribution_loaders.html new file mode 100644 index 0000000..b2f30fd --- /dev/null +++ b/10_dataloaders/distribution_loaders.html @@ -0,0 +1,1014 @@ + + + + + + + + + + +Distribution-based dataloaders – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Distribution-based dataloaders

+
+ +
+
+ Dataloaders that return data by sampling from some pre-defined distributions. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseDistributionDataLoader

+
+
 BaseDistributionDataLoader ()
+
+

Base class for data loaders. The idea of the data loader is to provide all external information to the environment (including lagged data, demand etc.). Internal data influenced by past decisions (like inventory levels) is to be added from within the environment

+
+

source

+
+
+

NormalDistributionDataLoader

+
+
 NormalDistributionDataLoader (mean:float, std:float, num_units:int,
+                               truncated_low:int=0,
+                               truncated_high:int=None)
+
+

A dataloader that generates a dataset of normally distributed values.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
meanfloat
stdfloat
num_unitsint
truncated_lowint0
truncated_highintNone
+
+
dataloader = NormalDistributionDataLoader(mean=3, std=4, num_units=2)
+
+sample_X, sample_Y = dataloader[0]
+print("sample:", sample_X, sample_Y)
+print("sample shape Y:", sample_Y.shape)
+
+## The next print should give an error:
+#print("length:", len(dataloader))
+
+
sample: None [0. 0.]
+sample shape Y: (2,)
+
+
+
+
dataloader.train()
+dataloader.val()
+dataloader.test()
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/10_dataloaders/tabular_dataloaders.html b/10_dataloaders/tabular_dataloaders.html new file mode 100644 index 0000000..35a2151 --- /dev/null +++ b/10_dataloaders/tabular_dataloaders.html @@ -0,0 +1,1505 @@ + + + + + + + + + + +Tabular dataloaders – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Tabular dataloaders

+
+ +
+
+ Dataloaders for tabular data +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

XYDataLoader

+
+
 XYDataLoader (X:numpy.ndarray, Y:numpy.ndarray,
+               val_index_start:Optional[int]=None,
+               test_index_start:Optional[int]=None,
+               lag_window_params:dict=None, normalize_features:dict=None)
+
+

A class for datasets with the typicall X, Y structure. Both X and Y are numpy arrays. X may be of shape (datapoints, features) or (datapoints, sequence_length, features) if lag features are used. The prep_lag_features can be used to create those lag features. Y is of shape (datapoints, units).

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
Xndarray
Yndarray
val_index_startOptionalNone
test_index_startOptionalNone
lag_window_paramsdictNonedefault: {‘lag_window’: 0, ‘include_y’: False, ‘pre_calc’: False}
normalize_featuresdictNonedefault: {‘normalize’: True, ‘ignore_one_hot’: True}
+
+

source

+
+

XYDataLoader.prep_lag_features

+
+
 XYDataLoader.prep_lag_features (lag_window:int=0, include_y:bool=False,
+                                 pre_calc:bool=False)
+
+

Create lag feature for the dataset. If “inlcude_y” is true, then a lag-1 of of the target variable is added as a feature. If lag-window is > 0, the lag features are added as middle dimension to X. Note that this, e.g., means that with a lag window of 1, the data will include 2 time steps, the current features including lag-1 demand and the lag-1 features including lag-2 demand. If pre-calc is true, all these calculations are performed on the entire dataset reduce computation time later on at the expense of increases memory usage.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
lag_windowint0length of the lage window
include_yboolFalseif lag demand shall be included as feature
pre_calcboolFalseif all lags are pre-calculated for the entire dataset
+
+

source

+
+
+

XYDataLoader.__getitem__

+
+
 XYDataLoader.__getitem__ (idx)
+
+

get item by index, depending on the dataset type (train, val, test)

+
+

source

+
+
+

XYDataLoader.get_all_X

+
+
 XYDataLoader.get_all_X (dataset_type:str='train')
+
+

Returns the entire features dataset. Return either the train, val, test, or all data.

+ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataset_typestrtraincan be ‘train’, ‘val’, ‘test’, ‘all’
+
+

source

+
+
+

XYDataLoader.get_all_Y

+
+
 XYDataLoader.get_all_Y (dataset_type:str='train')
+
+

Returns the entire target dataset. Return either the train, val, test, or all data.

+ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataset_typestrtraincan be ‘train’, ‘val’, ‘test’, ‘all’
+

Example usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) for simple dataset:

+
+
X = np.random.standard_normal((100, 2))
+Y = np.random.standard_normal((100, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+
+dataloader = XYDataLoader(X = X, Y = Y)
+
+sample_X, sample_Y = dataloader[0]
+print("sample:", sample_X, sample_Y)
+print("sample shape Y:", sample_Y.shape)
+
+print("length:", len(dataloader))
+
+
sample: [0.19586287 1.09162108] [1.040336]
+sample shape Y: (1,)
+length: 100
+
+
+

Example usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) on how to handle train, val, and test set:

+
+
X = np.random.standard_normal((10, 2))
+Y = np.random.standard_normal((10, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+
+dataloader = XYDataLoader(X = X, Y = Y, val_index_start=6, test_index_start=8)
+
+sample_X, sample_Y = dataloader[0]
+
+print("length train:", dataloader.len_train, "length val:", dataloader.len_val, "length test:", dataloader.len_test)
+
+print("")
+print("### Data from train set ###")
+for i in range(dataloader.len_train):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.val()
+
+print("")
+print("### Data from val set ###")
+for i in range(dataloader.len_val):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.test()
+
+print("")
+print("### Data from test set ###")
+for i in range(dataloader.len_test):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.train()
+
+print("")
+print("### Data from train set again ###")
+for i in range(dataloader.len_train):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+
length train: 6 length val: 2 length test: 2
+
+### Data from train set ###
+idx: 0 data: [ 0.08854902 -1.7602724 ] [-5.34363735]
+idx: 1 data: [ 0.99129486 -1.78646157] [-0.9519102]
+idx: 2 data: [0.66334628 0.01231061] [0.95274982]
+idx: 3 data: [ 0.61796118 -0.54523986] [0.35028762]
+idx: 4 data: [1.04676734 1.75569924] [5.92952598]
+idx: 5 data: [ 0.21987025 -0.53602459] [0.66207364]
+
+### Data from val set ###
+idx: 0 data: [-1.54514703 -0.67784998] [-5.27601525]
+idx: 1 data: [ 0.935785   -1.30048604] [-2.66055254]
+
+### Data from test set ###
+idx: 0 data: [1.86740017 0.79714291] [4.61669816]
+idx: 1 data: [ 0.30325407 -0.62230244] [-2.03026803]
+
+### Data from train set again ###
+idx: 0 data: [ 0.08854902 -1.7602724 ] [-5.34363735]
+idx: 1 data: [ 0.99129486 -1.78646157] [-0.9519102]
+idx: 2 data: [0.66334628 0.01231061] [0.95274982]
+idx: 3 data: [ 0.61796118 -0.54523986] [0.35028762]
+idx: 4 data: [1.04676734 1.75569924] [5.92952598]
+idx: 5 data: [ 0.21987025 -0.53602459] [0.66207364]
+
+
+

Example usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) on how to include lag features:

+
+
X = np.random.standard_normal((10, 2))
+Y = np.random.standard_normal((10, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+
+lag_window_params = {'lag_window': 1, 'include_y': True, 'pre_calc': True}
+
+dataloader = XYDataLoader(X = X, Y = Y, val_index_start=6, test_index_start=8, lag_window_params=lag_window_params)
+
+sample_X, sample_Y = dataloader[0]
+
+print("length train:", dataloader.len_train, "length val:", dataloader.len_val, "length test:", dataloader.len_test)
+
+print("")
+print("### Data from train set ###")
+for i in range(dataloader.len_train):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.val()
+
+print("")
+print("### Data from val set ###")
+for i in range(dataloader.len_val):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.test()
+
+print("")
+print("### Data from test set ###")
+for i in range(dataloader.len_test):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+dataloader.train()
+
+print("")
+print("### Data from train set again ###")
+for i in range(dataloader.len_train):
+    sample_X, sample_Y = dataloader[i]
+    print("idx:", i, "data:", sample_X, sample_Y)
+
+
length train: 4 length val: 2 length test: 2
+
+### Data from train set ###
+idx: 0 data: [[ 0.73863651  0.6084497  -0.1193545 ]
+ [ 0.35830697 -1.87500947  2.48387723]] [-4.9460667]
+idx: 1 data: [[ 0.35830697 -1.87500947  2.48387723]
+ [-1.11068046 -0.5626968  -4.9460667 ]] [-1.24390416]
+idx: 2 data: [[-1.11068046 -0.5626968  -4.9460667 ]
+ [ 0.89828028 -2.19265635 -1.24390416]] [-5.78471176]
+idx: 3 data: [[ 0.89828028 -2.19265635 -1.24390416]
+ [-0.09191616  0.32758207 -5.78471176]] [0.35156491]
+
+### Data from val set ###
+idx: 0 data: [[-0.09191616  0.32758207 -5.78471176]
+ [ 1.51172992 -0.25329154  0.35156491]] [2.47560231]
+idx: 1 data: [[ 1.51172992 -0.25329154  0.35156491]
+ [ 0.17512356  0.93368771  2.47560231]] [1.80751149]
+
+### Data from test set ###
+idx: 0 data: [[ 0.17512356  0.93368771  2.47560231]
+ [-0.65111828 -0.13138032  1.80751149]] [-1.55867887]
+idx: 1 data: [[-0.65111828 -0.13138032  1.80751149]
+ [ 0.41587237 -1.40709561 -1.55867887]] [-3.46579185]
+
+### Data from train set again ###
+idx: 0 data: [[ 0.73863651  0.6084497  -0.1193545 ]
+ [ 0.35830697 -1.87500947  2.48387723]] [-4.9460667]
+idx: 1 data: [[ 0.35830697 -1.87500947  2.48387723]
+ [-1.11068046 -0.5626968  -4.9460667 ]] [-1.24390416]
+idx: 2 data: [[-1.11068046 -0.5626968  -4.9460667 ]
+ [ 0.89828028 -2.19265635 -1.24390416]] [-5.78471176]
+idx: 3 data: [[ 0.89828028 -2.19265635 -1.24390416]
+ [-0.09191616  0.32758207 -5.78471176]] [0.35156491]
+
+
+
+

source

+
+
+

MultiShapeLoader

+
+
 MultiShapeLoader (demand:pandas.core.frame.DataFrame,
+                   time_features:pandas.core.frame.DataFrame,
+                   time_SKU_features:pandas.core.frame.DataFrame,
+                   mask:pandas.core.frame.DataFrame=None,
+                   SKU_features:pandas.core.frame.DataFrame=None,
+                   val_index_start:Optional[int]=None,
+                   test_index_start:Optional[int]=None,
+                   in_sample_val_test_SKUs:List=None,
+                   out_of_sample_val_SKUs:List=None,
+                   out_of_sample_test_SKUs:List=None,
+                   lag_window_params:dict|None=None,
+                   normalize_features:dict|None=None,
+                   engineered_SKU_features:dict=None,
+                   use_engineered_SKU_features:bool=False,
+                   include_non_available:bool=False,
+                   train_subset:int=None, train_subset_SKUs:List=None,
+                   meta_learn_units:bool=False, lag_demand_normalization:O
+                   ptional[Literal['minmax','standard','no_normalization']
+                   ]='standard', demand_normalization:Literal['minmax','st
+                   andard','no_normalization']='no_normalization',
+                   demand_unit_size:float|None=None,
+                   provide_additional_target:bool=False,
+                   permutate_inputs:bool=False)
+
+

A class designed for comlex datasets with mutlipe feature types. The class is more memory-efficient than the XYDataLoader, as it separate the storeage of SKU-specific feature, time-specific features, and time-SKU-specific features. The class works generically as long as those feature classes are provided during pre-processing. The class is designed to handle classic learning, but able to work in a meta-learning pipeline where no SKU-dimension is present and the model needs to make prediction on SKU-time level without knowhing the specific SKU.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
demandDataFrameDemand data of shape time x SKU
time_featuresDataFrameFeatures constant over SKU of shape time x time_features
time_SKU_featuresDataFrameFeatures varying over time and SKU of shape time x (time_SKU_features*SKU) with double index
maskDataFrameNoneMask of shape time x SKU telling which SKUs are available at which time (can be used as mask during trainig or added to features)
SKU_featuresDataFrameNoneFeatures constant over time of shape SKU x SKU_features - only for algorithms learning across SKUs
val_index_startOptionalNoneValidation index start on the time dimension
test_index_startOptionalNoneTest index start on the time dimension
in_sample_val_test_SKUsListNoneSKUs in the training set to be used for validation and testing, out-of-sample w.r.t. time dimension
out_of_sample_val_SKUsListNoneSKUs to be hold-out for validation (can be same as test if no validation on out-of-sample SKUs required)
out_of_sample_test_SKUsListNoneSKUs to be hold-out for testing
lag_window_paramsdict | NoneNonedefault: {‘lag_window’: 0, ‘include_y’: False, ‘pre_calc’: True}
normalize_featuresdict | NoneNonedefault: {‘normalize’: True, ‘ignore_one_hot’: True}
engineered_SKU_featuresdictNonedefault: [“mean_demand”, “std_demand”, “kurtosis_demand”, “skewness_demand”, “percentile_10_demand”, “percentile_30_demand”, “median_demand”, “percentile_70_demand”, “percentile_90_demand”, “inter_quartile_range”]
use_engineered_SKU_featuresboolFalseif engineered features shall be used
include_non_availableboolFalseif timestep/SKU combination where the SKU was not available for sale shall be included. If included, it will be used as feature, otherwise as mask.
train_subsetintNoneif only a subset of SKUs is used for training. Will always contain in_sample_val_test_SKUs and then fills the rest with random SKUs
train_subset_SKUsListNoneif train_subset is set, specific SKUs can be provided
meta_learn_unitsboolFalseif units (SKUs) are trained in the batch dimension to meta-learn across SKUs
lag_demand_normalizationOptionalstandardminmax, standard, no_normalization or None. If None, same demand_normalization
demand_normalizationLiteralno_normalization‘standard’ or ‘minmax’
demand_unit_sizefloat | NoneNoneuse same convention as for other dataloaders and enviornments, but here only full decimal values are allowed
provide_additional_targetboolFalsefollows ICL convention by providing actual demand to token, with the last token receiving 0
permutate_inputsboolFalseif the inputs shall be permutated during training for meta-learning
+
+
run_example = False
+
+if run_example:
+    from ddopai.datasets.kaggle_m5 import KaggleM5DatasetLoader
+
+    data_path = "/Users/magnus/Documents/02_PhD/Reinforcement_Learning/general_purpose_drl/Newsvendor/kaggle_data" # For testing purposes, please specify the path to the data on your machine
+    if data_path is not None:
+        loader = KaggleM5DatasetLoader(data_path, overwrite=False, product_as_feature=False)
+        demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()
+    
+    val_index_start = len(demand)-300
+    test_index_start = len(demand)-100
+
+    out_of_sample_val_SKUs = ["HOBBIESit_1_002_CA_1", "HOBBIES_1_003_CA_1"]
+    out_of_sample_test_SKUs = ["HOBBIES_1_005_CA_1", "FOODS_3_819_WI_3"]
+
+    dataloader = MultiShapeLoader(
+        demand.copy(),
+        SKU_features.copy(),
+        time_features.copy(),
+        time_SKU_features.copy(),
+        mask.copy(),
+        val_index_start=val_index_start,
+        test_index_start=test_index_start,
+        # in_sample_val_test_SKUs=["FOODS_3_825_WI_3"],
+        out_of_sample_val_SKUs=out_of_sample_val_SKUs,
+        out_of_sample_test_SKUs=out_of_sample_test_SKUs,
+        lag_window_params = {'lag_window': 5, 'include_y': True, 'pre_calc': False},
+        # train_subset=300,
+        # train_subset_SKUs=["HOBBIES_1_001_CA_1", "HOBBIES_1_012_CA_1"],
+        SKU_as_batch = True
+        )
+
+
+
# dataloader.__getitem__(49844609) #986 with non-zero lag demand
+
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/20_base_env/base_env.html b/20_environments/20_base_env/base_env.html new file mode 100644 index 0000000..8abe492 --- /dev/null +++ b/20_environments/20_base_env/base_env.html @@ -0,0 +1,1323 @@ + + + + + + + + + + +Base Environment – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Base Environment

+
+ +
+
+ Base environment class based on Gymnasium +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseEnvironment

+
+
 BaseEnvironment (mdp_info:ddopai.utils.MDPInfo,
+                  postprocessors:list[object]|None=None, mode:str='train',
+                  return_truncation:str=True,
+                  horizon_train:int|str='use_all_data')
+
+

Base class for environments enforcing a common interface that works with MushroomRL, as well as other RL libraries.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
mdp_infoMDPInfoMDPInfo object to ensure compatibility with the agents
postprocessorslist[object] | NoneNonedefault is empty list
modestrtrainInitial mode (train, val, test) of the environment
return_truncationstrTruewhether to return a truncated condition in step function
horizon_trainint | struse_all_datahorizon of the training data
ReturnsNone
+
+

Important notes:

+

init method:

+
    +
  • When adding parameters to the environment, make sure to always add them via set_param(...). This ensures all parameters are of the correct types and shapes.

  • +
  • During the init method, any Gymnasium environment expects the action and observation space to be defined. For clarity, avoid doing it directly in the init, but rather use the functions set_action_space() and set_observation_space() and call them in the ___init___ method.

  • +
+

train, val, test, and horizon (episode length):

+
    +
  • When the __init__ method is called, the environment executes the train(), val() or test() methods. Therefore, they must be implemented in a way that they work right during set-up.

  • +
  • train(), val() and test() methods are provided in the base class, but can also be overwritten if necessary. In any case, they must set the dataloader to the correct dataset to ensure no data leakage. They also need to update mdp_info to update the horizon (episode length) of the environment

  • +
  • The horizon for validation and testing will be equal to the length of those datasets. For training, there is a parameter horizon_train that either contains a string “use_all_data” or an integer. If it is the former, the horizon will be the length of the training dataset. If it is the latter, the environment will play an episode of length horizon_train starting at a random point of the training dataset.

  • +
+

step method:

+
    +
  • The step method is the core of the environment, calculating the next state (observation) and reward given an action. Since some frameworks expect a truncation condition (standard implementation in Gymnasium now) while others (e.g., mushroom_rl), do not, the step function is implemented in the base class and handles this (via a flag in in the environment called return_truncation). DO NOT OVERWRITE the step function, but rather implement the step_(self, action) (underscore) method in the specific environment. This function shall always return a tuple of the form (observation, reward, terminated, truncated, info).

  • +
  • For clarity, the construction of the next state (we call it more general observation to include POMDPs) is done in a separate method called get_observation() that must be called inside the step function. See documentation below and the Newsvendor environment envs.inventory.NewsvendorEnv for an example.

  • +
  • The dataloader will typically return an X,Y pair (where X are some features and Y typically is demand) The X is necessary at the end of the step to construct the next observation to be returned to the agent. The Y is only relevant one step later to calculate the reward. Hence, Y is typically transferred to the next step method via an object variable like self.demand (see envs.inventory.NewsvendorEnv as an example).

  • +
+

observation pre-processors and action post-processors:

+
    +
  • Sometimes, it is necessary to process the observartion before giving it to the agent (e.g., changing shape) or to process the action before giving it to the environment (e.g., rounding). To ensure compatibility with mushroom_rl, the pre-processors (also called observationprocessors) sit with the agent (they must be added to the agent and are applied in the agent’s draw_action() method). The post-processors (also called actionprocessors) sit with the environment and are applied in the environment’s step() method.
  • +
+

reset method:

+
    +
  • The reset method may depend strongly on the environment dynamics, so it must be implemented for the specific environment. It needs to fulfill two requirements: 1) it needs to differenticate between train, val, and test mode and 2) when setting the training mode, it needs to take the horizon_train parameter into account.

  • +
  • At the end of the function, first the reset_index() method should be called (either with a specific index as integer or the flag "random"as input) and then the get_observation() method to construct the first observation.

  • +
+
+

source

+
+
+

BaseEnvironment.set_param

+
+
 BaseEnvironment.set_param (name:str, input:Union[ddopai.utils.Parameter,i
+                            nt,float,numpy.ndarray,List,NoneType],
+                            shape:tuple=(1,), new:bool=False)
+
+

Set a parameter for the environment. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
namestrname of the parameter (will become the attribute name)
inputUnioninput value of the parameter
shapetuple(1,)shape of the parameter
newboolFalsewhether to create a new parameter or update an existing one
ReturnsNone
+
+

source

+
+
+

BaseEnvironment.return_truncation_handler

+
+
 BaseEnvironment.return_truncation_handler (observation, reward,
+                                            terminated, truncated, info)
+
+

Handle the return_truncation attribute of the environment. This function is called by the step function

+
+

source

+
+
+

BaseEnvironment.step

+
+
 BaseEnvironment.step (action)
+
+

Step function of the environment. Do not overwrite this function. Instead, write the step_ function. Note that the postprocessor is applied here.

+
+

source

+
+
+

BaseEnvironment.add_postprocessor

+
+
 BaseEnvironment.add_postprocessor (postprocessor:object)
+
+

Add a postprocessor (also called actionprocessor) to the agent

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
postprocessorobjectpost-processor object that can be called via the “call” method
+
+

source

+
+
+

BaseEnvironment.step_

+
+
 BaseEnvironment.step_ (action)
+
+

Step function of the environment. This function contains the logic of the environment and must be provided. It will be called by the step function that applies the actionprocessor and handles the return_truncation attribute.

+
+

source

+
+
+

BaseEnvironment.mdp_info

+
+
 BaseEnvironment.mdp_info ()
+
+

Returns: The MDPInfo object of the environment.

+
+

source

+
+
+

BaseEnvironment.info

+
+
 BaseEnvironment.info ()
+
+

Returns: Alternative call to the method for mushroom_rl.

+
+

source

+
+
+

BaseEnvironment.mode

+
+
 BaseEnvironment.mode ()
+
+

Returns: A string with the current mode (train, test val) of the environment.

+
+

source

+
+
+

BaseEnvironment.set_action_space

+
+
 BaseEnvironment.set_action_space ()
+
+

Set the action space of the environment.

+
+

source

+
+
+

BaseEnvironment.set_observation_space

+
+
 BaseEnvironment.set_observation_space ()
+
+

Set the observation space of the environment. In general, this can be also a dict space, but the agent must have the appropriate pre-processor.

+
+

source

+
+
+

BaseEnvironment.get_observation

+
+
 BaseEnvironment.get_observation ()
+
+

Return the current observation. Typically constructed from the output of the dataloader and internal dynamics (such as inventory levels, pipeline vectors, etc.) of the environment.

+
+

source

+
+
+

BaseEnvironment.reset

+
+
 BaseEnvironment.reset ()
+
+

Reset the environment. This function must be provided, using the function self.reset_index() to handle indexing. It needs to account for the current training mode train, val, or test and handle the horizon_train param. See the reset function for the NewsvendorEnv for an example.

+
+

source

+
+
+

BaseEnvironment.set_index

+
+
 BaseEnvironment.set_index (index=None)
+
+

Handle the index of the environment.

+
+

source

+
+
+

BaseEnvironment.get_start_index

+
+
 BaseEnvironment.get_start_index (start_index:int|str=None)
+
+

Determine if the start index is random or 0, depending on the state of the environment and training process (over entire train set or in shorter episodes)

+ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
start_indexint | strNoneindex to start from
Returnsint
+
+

source

+
+
+

BaseEnvironment.reset_index

+
+
 BaseEnvironment.reset_index (start_index:Union[int,str])
+
+

Reset the index of the environment. If start_index is an integer, the index is set to this value. If start_index is “random”, the index is set to a random integer between 0 and the length of the training data.

+
+

source

+
+
+

BaseEnvironment.update_mdp_info

+
+
 BaseEnvironment.update_mdp_info (gamma=None, horizon=None)
+
+

Update the MDP info of the environment.

+
+

source

+
+
+

BaseEnvironment.train

+
+
 BaseEnvironment.train (update_mdp_info=True)
+
+

Set the environment in training mode by both setting the internal state self._train and the dataloader. If the horizon is set to “use_all_data”, the horizon is set to the length of the training data, otherwise it is set to the horizon_train attribute of the environment. Finally, the function updates the MDP info and resets with the new state.

+
+

source

+
+
+

BaseEnvironment.val

+
+
 BaseEnvironment.val (update_mdp_info=True)
+
+

Set the environment in validation mode by both setting the internal state self._val and the dataloader. The horizon of val is always set to the length of the validation data. Finally, the function updates the MDP info and resets with the new state.

+
+

source

+
+
+

BaseEnvironment.test

+
+
 BaseEnvironment.test (update_mdp_info=True)
+
+

Set the environment in testing mode by both setting the internal state self._test and the dataloader. The horizon of test is always set to the length of the test data. Finally, the function updates the MDP info and resets with the new state.

+
+

source

+
+
+

BaseEnvironment.set_return_truncation

+
+
 BaseEnvironment.set_return_truncation (return_truncation:bool)
+
+

Set the return_truncation attribute of the environment.

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
return_truncationboolwhether or not to return the truncated condition in the step function
+
+

source

+
+
+

BaseEnvironment.stop

+
+
 BaseEnvironment.stop ()
+
+

Stop the environment. This function is used to ensure compatibility with the Core of mushroom_rl.

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/21_envs_inventory/base_inventory_env.html b/20_environments/21_envs_inventory/base_inventory_env.html new file mode 100644 index 0000000..b18969a --- /dev/null +++ b/20_environments/21_envs_inventory/base_inventory_env.html @@ -0,0 +1,1161 @@ + + + + + + + + + + +Base inventory env – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Base inventory env

+
+ +
+
+ Base environment with some basic funcitons +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseInventoryEnv

+
+
 BaseInventoryEnv (mdp_info:ddopai.utils.MDPInfo,
+                   postprocessors:list[object]|None=None,
+                   mode:str='train', return_truncation:str=True,
+                   dataloader:ddopai.dataloaders.base.BaseDataLoader=None,
+                   horizon_train:int=100, underage_cost:Union[numpy.ndarra
+                   y,ddopai.utils.Parameter,int,float]=1, overage_cost:Uni
+                   on[numpy.ndarray,ddopai.utils.Parameter,int,float]=0)
+
+

Base class for inventory management environments. This class inherits from BaseEnvironment.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
mdp_infoMDPInfo
postprocessorslist[object] | NoneNonedefault is empty list
modestrtrainInitial mode (train, val, test) of the environment
return_truncationstrTruewhether to return a truncated condition in step function
dataloaderBaseDataLoaderNonedataloader for the environment
horizon_trainint100horizon for training mode
underage_costUnion1underage cost per unit
overage_costUnion0overage cost per unit (zero in most cases)
ReturnsNone
+
+

source

+
+

BaseInventoryEnv.set_observation_space

+
+
 BaseInventoryEnv.set_observation_space (shape:tuple,
+                                         low:Union[numpy.ndarray,float]=-
+                                         inf, high:Union[numpy.ndarray,flo
+                                         at]=inf,
+                                         samples_dim_included=True)
+
+

Set the observation space of the environment. This is a standard function for simple observation spaces. For more complex observation spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the observation space.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
shapetupleshape of the dataloader features
lowUnion-inflower bound of the observation space
highUnioninfupper bound of the observation space
samples_dim_includedboolTruewhether the first dimension of the shape input is the number of samples
ReturnsNone
+
+

source

+
+
+

BaseInventoryEnv.set_action_space

+
+
 BaseInventoryEnv.set_action_space (shape:tuple,
+                                    low:Union[numpy.ndarray,float]=-inf,
+                                    high:Union[numpy.ndarray,float]=inf,
+                                    samples_dim_included=True)
+
+

Set the action space of the environment. This is a standard function for simple action spaces. For more complex action spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the action space.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
shapetupleshape of the dataloader target
lowUnion-inflower bound of the observation space
highUnioninfupper bound of the observation space
samples_dim_includedboolTruewhether the first dimension of the shape input is the number of samples
ReturnsNone
+
+

source

+
+
+

BaseInventoryEnv.reset

+
+
 BaseInventoryEnv.reset (start_index:int|str=None,
+                         state:numpy.ndarray=None)
+
+

Reset function for the Newsvendor problem. It will return the first observation and demand. For val and test modes, it will by default reset to 0, while for the train mode it depends on the paramter “horizon_train” whether a random point in the training data is selected or 0

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
start_indexint | strNoneindex to start from
statendarrayNoneinitial state
ReturnsTuple
+
+

source

+
+
+

BaseInventoryEnv.get_observation

+
+
 BaseInventoryEnv.get_observation ()
+
+

Return the current observation. This function is for the simple case where the observation is only an x,y pair. For more complex observations, this function should be overwritten.

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/21_envs_inventory/inventory_utils.html b/20_environments/21_envs_inventory/inventory_utils.html new file mode 100644 index 0000000..5d02dc3 --- /dev/null +++ b/20_environments/21_envs_inventory/inventory_utils.html @@ -0,0 +1,1115 @@ + + + + + + + + + + +Inventory utils – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Inventory utils

+
+ +
+
+ Some additional classes and functions that help building inventory management environments. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

OrderPipeline

+
+
 OrderPipeline (num_units:int, lead_time_mean:Union[ddopai.utils.Parameter
+                ,numpy.ndarray,List,int,float], lead_time_stochasticity:Li
+                teral['fixed','gamma','normal_absolute','normal_relative']
+                ='fixed', lead_time_variance:Union[ddopai.utils.Parameter,
+                int,float,numpy.ndarray,List,NoneType]=None,
+                max_lead_time:list[object]|None=None,
+                min_lead_time:list[object]|None=1)
+
+

Class to handle the order pipeline in the inventory environments. It is used to keep track of the orders that are placed. It can account for fixed and variable lead times.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
num_unitsintnumber of units (SKUs)
lead_time_meanUnionmean lead time
lead_time_stochasticityLiteralfixed“fixed”, “gamma”, “normal_absolute”, “normal_relative”
lead_time_varianceUnionNonevariance of the lead time
max_lead_timelist[object] | NoneNonemaximum lead time in case of stochastic lead times
min_lead_timelist[object] | None1minimum lead time in case of stochastic lead times
ReturnsNone
+
+

source

+
+

OrderPipeline.get_pipeline

+
+
 OrderPipeline.get_pipeline ()
+
+

Get the current pipeline

+
+

source

+
+
+

OrderPipeline.reset

+
+
 OrderPipeline.reset ()
+
+

Reset the pipeline

+
+

source

+
+
+

OrderPipeline.step

+
+
 OrderPipeline.step (orders:numpy.ndarray)
+
+

Add orders to the pipeline and return the orders that are arriving

+
+

source

+
+
+

OrderPipeline.get_orders_arriving

+
+
 OrderPipeline.get_orders_arriving ()
+
+

Get the orders that are arriving in the current period

+
+

source

+
+
+

OrderPipeline.draw_lead_times

+
+
 OrderPipeline.draw_lead_times ()
+
+

Draw lead times for the orders

+
+

source

+
+
+

OrderPipeline.check_stochasticity

+
+
 OrderPipeline.check_stochasticity (max_lead_time)
+
+

Check that params for stochastic lead times are set correctly

+
+

source

+
+
+

OrderPipeline.check_max_min_mean_lt

+
+
 OrderPipeline.check_max_min_mean_lt ()
+
+
+

source

+
+
+

OrderPipeline.set_param

+
+
 OrderPipeline.set_param (name:str,
+                          input:Union[ddopai.utils.Parameter,int,float,num
+                          py.ndarray,List], shape:tuple=(1,),
+                          new:bool=False)
+
+

Set a parameter for the environment. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
namestrname of the parameter (will become the attribute name)
inputUnioninput value of the parameter
shapetuple(1,)shape of the parameter
newboolFalsewhether to create a new parameter or update an existing one
ReturnsNone
+
+

source

+
+
+

OrderPipeline.shape

+
+
 OrderPipeline.shape ()
+
+

Get the shape of the pipeline

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/21_envs_inventory/multi_period_envs.html b/20_environments/21_envs_inventory/multi_period_envs.html new file mode 100644 index 0000000..72f811f --- /dev/null +++ b/20_environments/21_envs_inventory/multi_period_envs.html @@ -0,0 +1,1261 @@ + + + + + + + + + + +Multi-Period Inventory Management – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Multi-Period Inventory Management

+
+ +
+
+ Dynamic inventory management problem with inventory carry-over. Can be used to model the Lost Sales problem (when fixed cost are set to 0), and the Multi-Period Fixed Cost problem (when fixed cost are larger than 0). +
+
+ + +
+ + + + +
+ + + +
+ + + +
+
run_test = False
+
+if run_test:
+    from sklearn.datasets import make_regression
+    from sklearn.preprocessing import MinMaxScaler
+    from ddopai.dataloaders.tabular import XYDataLoader
+
+    def run_test_loop(env):
+        truncated = False
+        while not truncated:
+            action = env.action_space.sample()
+            obs, reward, terminated, truncated, info = env.step(action)
+            print("##### STEP: ", env.index, "#####")
+            print("reward:", reward)
+            print("info:", info)
+            print("next observation:")
+            for key, value in obs.items():
+                print("     ", key, ":")
+                print(value)
+            print("truncated:", truncated)
+
+    # create a simple dataset bounded between 0 and 1.
+    # We just scale all the data, pretending that it is the demand.
+    # When using real data, one should only fit the scaler on the training data
+    X, Y = make_regression(n_samples=8, n_features=2, n_targets=1, noise=0.1, random_state=42)
+    if len(Y.shape) == 1:
+        Y = Y.reshape(-1, 1)
+    scaler = MinMaxScaler()
+    X = scaler.fit_transform(X)
+    Y = scaler.fit_transform(Y)
+
+    dataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)
+
+    env_kwargs = dict(
+
+        q_bound_low = 0, # lower bound of the order quantity
+        q_bound_high= 1, # upper bound of the order quantity
+
+        underage_cost=0.5, # underage cost per unit
+        overage_cost=0.5, # overage cost per unit (zero in most cases)
+
+        fixed_ordering_cost=[2], # fixed ordering cost
+        variable_ordering_cost=[0.5], # variable ordering cost per unit
+
+        inventory_pipeline_params = dict(
+                                            lead_time_mean=[2], 
+                                            lead_time_stochasticity="normal_relative",
+                                            lead_time_variance=[0.2],
+                                            max_lead_time=[3],
+                                            min_lead_time=[1],
+                                            ),
+    )
+
+    test_env = MultiPeriodEnv(
+                            dataloader=dataloader,
+                            horizon_train="use_all_data",
+                            **env_kwargs
+    )
+
+    obs = test_env.reset(start_index=0)
+    print("#################### RESET ####################")
+
+    print("#################### RUN IN TRAIN MODE ####################")
+    run_test_loop(test_env)
+
+    print("#################### RUN IN VAL MODE ####################")
+    test_env.val()
+    run_test_loop(test_env)
+
+    print("#################### RUN IN TEST MODE ####################")
+    test_env.test()
+    run_test_loop(test_env)
+
+    print("#################### RUN IN TRAIN MODE AGAIN ####################")
+    test_env.train()
+    run_test_loop(test_env)
+
+
+

source

+
+

MultiPeriodEnv

+
+
 MultiPeriodEnv
+                 (underage_cost:numpy.ndarray|ddopai.utils.Parameter|int|f
+                 loat=1, overage_cost:numpy.ndarray|ddopai.utils.Parameter
+                 |int|float=0, fixed_ordering_cost:numpy.ndarray|ddopai.ut
+                 ils.Parameter|int|float=0, variable_ordering_cost:numpy.n
+                 darray|ddopai.utils.Parameter|int|float=0, holding_cost:n
+                 umpy.ndarray|ddopai.utils.Parameter|int|float=1, start_in
+                 ventory:numpy.ndarray|ddopai.utils.Parameter|int|float=0,
+                 max_inventory:numpy.ndarray|ddopai.utils.Parameter|int|fl
+                 oat=inf, inventory_pipeline_params:dict|None=None, q_boun
+                 d_low:numpy.ndarray|ddopai.utils.Parameter|int|float=0, q
+                 _bound_high:numpy.ndarray|ddopai.utils.Parameter|int|floa
+                 t=inf,
+                 dataloader:ddopai.dataloaders.base.BaseDataLoader=None,
+                 num_SKUs:int|None=None, gamma:float=1,
+                 horizon_train:int|str=100,
+                 postprocessors:list[object]|None=None, mode:str='train',
+                 return_truncation:bool=True, step_info_verbosity=0)
+
+

XXX

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
underage_costnumpy.ndarray | ddopai.utils.Parameter | int | float1underage cost per unit
overage_costnumpy.ndarray | ddopai.utils.Parameter | int | float0overage cost per unit (zero in most cases)
fixed_ordering_costnumpy.ndarray | ddopai.utils.Parameter | int | float0fixed ordering cost (applies per SKU, not jointly)
variable_ordering_costnumpy.ndarray | ddopai.utils.Parameter | int | float0variable ordering cost per unit
holding_costnumpy.ndarray | ddopai.utils.Parameter | int | float1holding cost per unit
start_inventorynumpy.ndarray | ddopai.utils.Parameter | int | float0initial inventory
max_inventorynumpy.ndarray | ddopai.utils.Parameter | int | floatinfmaximum inventory
inventory_pipeline_paramsdict | NoneNoneparameters for the inventory pipeline, only lead_time_mean must be given.
q_bound_lownumpy.ndarray | ddopai.utils.Parameter | int | float0lower bound of the order quantity
q_bound_highnumpy.ndarray | ddopai.utils.Parameter | int | floatinfupper bound of the order quantity
dataloaderBaseDataLoaderNonedataloader
num_SKUsint | NoneNoneif None, it will be inferred from the DataLoader
gammafloat1discount factor
horizon_trainint | str100if “use_all_data”, then horizon is inferred from the DataLoader
postprocessorslist[object] | NoneNonedefault is an empty list
modestrtrainInitial mode (train, val, test) of the environment
return_truncationboolTruewhether to return a truncated condition in step function
step_info_verbosityint00: no info, 1: some info, 2: all info
ReturnsNone
+
+

source

+
+

MultiPeriodEnv.step_

+
+
 MultiPeriodEnv.step_ (action:numpy.ndarray)
+
+

XXX.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
actionndarrayorder quantity
ReturnsTuple
+

Example usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) with a distributional dataloader:

+
+
# from ddopai.dataloaders.distribution import NormalDistributionDataLoader
+
+# def run_test_loop(env):
+#     truncated = False
+#     while not truncated:
+#         action = env.action_space.sample()
+#         obs, reward, terminated, truncated, info = env.step(action)
+#         print("##### STEP: ", env.index, "#####")
+#         print("reward:", reward)
+#         print("info:", info)
+#         print("next observation:", obs)
+#         print("truncated:", truncated)
+
+# dataloader = NormalDistributionDataLoader(mean=[4, 3], std=[1, 2], num_units=2)
+
+# test_env = MultiPeriodEnv(underage_cost=1, overage_cost=2, dataloader=dataloader, horizon_train=3)
+
+# obs = test_env.reset(start_index=0)
+# print("##### RESET #####")
+
+# run_test_loop(test_env)
+
+

Example usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) using a fixed dataset:

+
+
# from sklearn.datasets import make_regression
+# from sklearn.preprocessing import MinMaxScaler
+
+# from ddopai.dataloaders.tabular import XYDataLoader
+
+# # create a simple dataset bounded between 0 and 1.
+# # We just scale all the data, pretending that it is the demand.
+# # When using real data, one should only fit the scaler on the training data
+# X, Y = make_regression(n_samples=8, n_features=2, n_targets=2, noise=0.1, random_state=42)
+# scaler = MinMaxScaler()
+# X = scaler.fit_transform(X)
+# Y = scaler.fit_transform(Y)
+
+# dataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)
+# test_env = NewsvendorEnv(underage_cost=Parameter(np.array([1,1]), shape = (2,)), overage_cost=Parameter(np.array([0.5,0.5]), shape = (2,)), dataloader=dataloader, horizon_train="use_all_data")
+
+# obs = test_env.reset(start_index=0)
+# print("#################### RESET ####################")
+
+# print("#################### RUN IN TRAIN MODE ####################")
+# run_test_loop(test_env)
+
+# print("#################### RUN IN VAL MODE ####################")
+# test_env.val()
+# run_test_loop(test_env)
+
+# print("#################### RUN IN TEST MODE ####################")
+# test_env.test()
+# run_test_loop(test_env)
+
+# print("#################### RUN IN TRAIN MODE AGAIN ####################")
+# test_env.train()
+# run_test_loop(test_env)
+
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/21_envs_inventory/single_period_envs.html b/20_environments/21_envs_inventory/single_period_envs.html new file mode 100644 index 0000000..082eb78 --- /dev/null +++ b/20_environments/21_envs_inventory/single_period_envs.html @@ -0,0 +1,1575 @@ + + + + + + + + + + +Single period inventory environments – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Single period inventory environments

+
+ +
+
+ Static inventory environment where a decision only affects the next period (Newsvendor problem) +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

NewsvendorEnv

+
+
 NewsvendorEnv
+                (underage_cost:Union[numpy.ndarray,ddopai.utils.Parameter,
+                int,float]=1, overage_cost:Union[numpy.ndarray,ddopai.util
+                s.Parameter,int,float]=1, q_bound_low:Union[numpy.ndarray,
+                ddopai.utils.Parameter,int,float]=0, q_bound_high:Union[nu
+                mpy.ndarray,ddopai.utils.Parameter,int,float]=inf,
+                dataloader:ddopai.dataloaders.base.BaseDataLoader=None,
+                num_SKUs:int=None, gamma:float=1,
+                horizon_train:int|str='use_all_data',
+                postprocessors:list[object]|None=None, mode:str='train',
+                return_truncation:str=True)
+
+

Class implementing the Newsvendor problem, working for the single- and multi-item case. If underage_cost and overage_cost are scalars and there are multiple SKUs, then the same cost is used for all SKUs. If underage_cost and overage_cost are arrays, then they must have the same length as the number of SKUs. Num_SKUs can be set as parameter or inferred from the DataLoader.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
underage_costUnion1underage cost per unit
overage_costUnion1overage cost per unit
q_bound_lowUnion0lower bound of the order quantity
q_bound_highUnioninfupper bound of the order quantity
dataloaderBaseDataLoaderNonedataloader
num_SKUsintNoneif None it will be inferred from the DataLoader
gammafloat1discount factor
horizon_trainint | struse_all_dataif “use_all_data” then horizon is inferred from the DataLoader
postprocessorslist[object] | NoneNonedefault is empty list
modestrtrainInitial mode (train, val, test) of the environment
return_truncationstrTruewhether to return a truncated condition in step function
ReturnsNone
+
+

source

+
+

NewsvendorEnv.step_

+
+
 NewsvendorEnv.step_ (action:numpy.ndarray)
+
+

Step function implementing the Newsvendor logic. Note that the dataloader will return an observation and a demand, which will be relevant in the next period. The observation will be returned directly, while the demand will be temporarily stored under self.demand and used in the next step.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
actionndarrayorder quantity
ReturnsTuple
+
+

source

+
+
+

NewsvendorEnv.determine_cost

+
+
 NewsvendorEnv.determine_cost (action:numpy.ndarray)
+
+

Determine the cost per SKU given the action taken. The cost is the sum of underage and overage costs.

+
+

source

+
+
+

NewsvendorEnv.update_cu_co

+
+
 NewsvendorEnv.update_cu_co (cu=None, co=None)
+
+

Example usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) with a distributional dataloader:

+
+
from ddopai.dataloaders.distribution import NormalDistributionDataLoader
+
+def run_test_loop(env):
+    truncated = False
+    while not truncated:
+        action = env.action_space.sample()
+        obs, reward, terminated, truncated, info = env.step(action)
+        print("##### STEP: ", env.index, "#####")
+        print("reward:", reward)
+        print("info:", info)
+        print("next observation:", obs)
+        print("truncated:", truncated)
+
+dataloader = NormalDistributionDataLoader(mean=[4, 3], std=[1, 2], num_units=2)
+
+test_env = NewsvendorEnv(underage_cost=1, overage_cost=2, dataloader=dataloader, horizon_train=3)
+
+obs = test_env.reset(start_index=0)
+print("##### RESET #####")
+
+run_test_loop(test_env)
+
+
##### RESET #####
+##### STEP:  1 #####
+reward: -3.308623125291409
+info: {'demand': array([3.26212136, 0.        ]), 'action': array([0.07685447, 0.06167812], dtype=float32), 'cost_per_SKU': array([3.18526689, 0.12335623])}
+next observation: None
+truncated: False
+##### STEP:  2 #####
+reward: -5.1194845977501835
+info: {'demand': array([3.07308089, 4.81774876]), 'action': array([0.38810197, 2.383243  ], dtype=float32), 'cost_per_SKU': array([2.68497893, 2.43450567])}
+next observation: None
+truncated: False
+##### STEP:  3 #####
+reward: -6.304068585907921
+info: {'demand': array([4.0327378, 2.9904675]), 'action': array([0.17957109, 0.5395656 ], dtype=float32), 'cost_per_SKU': array([3.85316671, 2.45090188])}
+next observation: None
+truncated: True
+
+
+

Example usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) using a fixed dataset:

+
+
from sklearn.datasets import make_regression
+from sklearn.preprocessing import MinMaxScaler
+
+from ddopai.dataloaders.tabular import XYDataLoader
+
+
+
# create a simple dataset bounded between 0 and 1.
+# We just scale all the data, pretending that it is the demand.
+# When using real data, one should only fit the scaler on the training data
+X, Y = make_regression(n_samples=8, n_features=2, n_targets=2, noise=0.1, random_state=42)
+scaler = MinMaxScaler()
+X = scaler.fit_transform(X)
+Y = scaler.fit_transform(Y)
+
+dataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)
+test_env = NewsvendorEnv(underage_cost=np.array([1,1]), overage_cost=np.array([0.5,0.5]), dataloader=dataloader, horizon_train="use_all_data")
+
+obs = test_env.reset(start_index=0)
+print("#################### RESET ####################")
+
+print("#################### RUN IN TRAIN MODE ####################")
+run_test_loop(test_env)
+
+print("#################### RUN IN VAL MODE ####################")
+test_env.val()
+run_test_loop(test_env)
+
+print("#################### RUN IN TEST MODE ####################")
+test_env.test()
+run_test_loop(test_env)
+
+print("#################### RUN IN TRAIN MODE AGAIN ####################")
+test_env.train()
+run_test_loop(test_env)
+
+
#################### RESET ####################
+#################### RUN IN TRAIN MODE ####################
+##### STEP:  1 #####
+reward: -0.5507963668644685
+info: {'demand': array([0.41801109, 0.41814421]), 'action': array([0.70588326, 0.01128393], dtype=float32), 'cost_per_SKU': array([0.14393609, 0.40686028])}
+next observation: [0.51654708 0.67238019]
+truncated: False
+##### STEP:  2 #####
+reward: -0.8714066300571378
+info: {'demand': array([0.61617324, 0.52211535]), 'action': array([0.180223 , 1.3930281], dtype=float32), 'cost_per_SKU': array([0.43595024, 0.43545639])}
+next observation: [0.71467365 0.37996181]
+truncated: False
+##### STEP:  3 #####
+reward: -1.6119519129489481
+info: {'demand': array([0.45242345, 0.60924132]), 'action': array([1.8277601, 2.4578085], dtype=float32), 'cost_per_SKU': array([0.68766832, 0.92428359])}
+next observation: [0.78011439 1.        ]
+truncated: True
+#################### RUN IN VAL MODE ####################
+##### STEP:  1 #####
+reward: -0.5815800605970438
+info: {'demand': array([0.        , 0.16760013]), 'action': array([0.11117006, 1.2195902 ], dtype=float32), 'cost_per_SKU': array([0.05558503, 0.52599503])}
+next observation: [0.         0.59527916]
+truncated: False
+##### STEP:  2 #####
+reward: -0.5828876160320575
+info: {'demand': array([0.33549548, 0.        ]), 'action': array([0.4501956, 1.0510751], dtype=float32), 'cost_per_SKU': array([0.05735007, 0.52553755])}
+next observation: None
+truncated: True
+#################### RUN IN TEST MODE ####################
+##### STEP:  1 #####
+reward: -0.7298214633019249
+info: {'demand': array([0.3316407 , 0.33063685]), 'action': array([0.06531169, 1.2576218 ], dtype=float32), 'cost_per_SKU': array([0.266329  , 0.46349246])}
+next observation: [1.         0.71807281]
+truncated: False
+##### STEP:  2 #####
+reward: -0.5407586979670338
+info: {'demand': array([0.8554925, 1.       ]), 'action': array([0.5619696, 1.4944715], dtype=float32), 'cost_per_SKU': array([0.29352292, 0.24723577])}
+next observation: None
+truncated: True
+#################### RUN IN TRAIN MODE AGAIN ####################
+##### STEP:  1 #####
+reward: -0.9409223786788338
+info: {'demand': array([0.41801109, 0.41814421]), 'action': array([1.3812015, 1.3367985], dtype=float32), 'cost_per_SKU': array([0.48159521, 0.45932717])}
+next observation: [0.51654708 0.67238019]
+truncated: False
+##### STEP:  2 #####
+reward: -0.7144824568212446
+info: {'demand': array([0.61617324, 0.52211535]), 'action': array([0.07493836, 0.8686105 ], dtype=float32), 'cost_per_SKU': array([0.54123488, 0.17324757])}
+next observation: [0.71467365 0.37996181]
+truncated: False
+##### STEP:  3 #####
+reward: -1.2616030231212196
+info: {'demand': array([0.45242345, 0.60924132]), 'action': array([0.84109116, 2.7437797 ], dtype=float32), 'cost_per_SKU': array([0.19433385, 1.06726917])}
+next observation: [0.78011439 1.        ]
+truncated: True
+
+
+
+
+
+

Newsvendor Env that can provide a variable service level

+
+

Static inventory environment where a decision only affects the next period (Newsvendor problem), but with a variable service level (random during training, fixed during testing)

+
+
+

source

+
+

NewsvendorEnvVariableSL

+
+
 NewsvendorEnvVariableSL
+                          (sl_bound_low:Union[numpy.ndarray,ddopai.utils.P
+                          arameter,int,float]=0.1, sl_bound_high:Union[num
+                          py.ndarray,ddopai.utils.Parameter,int,float]=0.9
+                          , sl_distribution:Literal['fixed','uniform']='fi
+                          xed', evaluation_metric:Literal['pinball_loss','
+                          quantile_loss']='quantile_loss', sl_test_val:Uni
+                          on[numpy.ndarray,ddopai.utils.Parameter,int,floa
+                          t]=None, underage_cost:Union[numpy.ndarray,ddopa
+                          i.utils.Parameter,int,float]=1, overage_cost:Uni
+                          on[numpy.ndarray,ddopai.utils.Parameter,int,floa
+                          t]=1, q_bound_low:Union[numpy.ndarray,ddopai.uti
+                          ls.Parameter,int,float]=0, q_bound_high:Union[nu
+                          mpy.ndarray,ddopai.utils.Parameter,int,float]=in
+                          f, dataloader:ddopai.dataloaders.base.BaseDataLo
+                          ader=None, num_SKUs:int=None, gamma:float=1,
+                          horizon_train:int|str='use_all_data',
+                          postprocessors:list[object]|None=None,
+                          mode:str='train', return_truncation:str=True,
+                          SKUs_in_batch_dimension:bool=True)
+
+

Class implementing the Newsvendor problem, working for the single- and multi-item case. If underage_cost and overage_cost are scalars and there are multiple SKUs, then the same cost is used for all SKUs. If underage_cost and overage_cost are arrays, then they must have the same length as the number of SKUs. Num_SKUs can be set as parameter or inferred from the DataLoader.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
sl_bound_lowUnion0.1lower bound of the service level during training
sl_bound_highUnion0.9upper bound of the service level during training
sl_distributionLiteralfixeddistribution of the random service level during training, if fixed then the service level is fixed to sl_test_val
evaluation_metricLiteralquantile_lossquantile loss is the generic quantile loss (independent of cost levels) while pinball loss uses the specific under- and overage costs
sl_test_valUnionNoneservice level during test and validation, alternatively use cu and co
underage_costUnion1underage cost per unit
overage_costUnion1overage cost per unit
q_bound_lowUnion0lower bound of the order quantity
q_bound_highUnioninfupper bound of the order quantity
dataloaderBaseDataLoaderNonedataloader
num_SKUsintNoneif None it will be inferred from the DataLoader
gammafloat1discount factor
horizon_trainint | struse_all_dataif “use_all_data” then horizon is inferred from the DataLoader
postprocessorslist[object] | NoneNonedefault is empty list
modestrtrainInitial mode (train, val, test) of the environment
return_truncationstrTruewhether to return a truncated condition in step function
SKUs_in_batch_dimensionboolTruewhether SKUs in the observation space are in the batch dimension (used for meta-learning)
ReturnsNone
+
+

source

+
+

NewsvendorEnvVariableSL.determine_cost

+
+
 NewsvendorEnvVariableSL.determine_cost (action:numpy.ndarray)
+
+

Determine the cost per SKU given the action taken. The cost is the sum of underage and overage costs.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
actionndarray
Returnsndarray
+
+

source

+
+
+

NewsvendorEnvVariableSL.set_observation_space

+
+
 NewsvendorEnvVariableSL.set_observation_space (shape:tuple,
+                                                low:Union[numpy.ndarray,fl
+                                                oat]=-inf, high:Union[nump
+                                                y.ndarray,float]=inf,
+                                                samples_dim_included=True)
+
+

Set the observation space of the environment. This is a standard function for simple observation spaces. For more complex observation spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the observation space.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
shapetupleshape of the dataloader features
lowUnion-inflower bound of the observation space
highUnioninfupper bound of the observation space
samples_dim_includedboolTruewhether the first dimension of the shape input is the number of samples
ReturnsNone
+
+

source

+
+
+

NewsvendorEnvVariableSL.draw_parameter

+
+
 NewsvendorEnvVariableSL.draw_parameter (distribution, sl_bound_low,
+                                         sl_bound_high, samples)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Details
distribution
sl_bound_low
sl_bound_high
samples
+
+

source

+
+
+

NewsvendorEnvVariableSL.get_observation

+
+
 NewsvendorEnvVariableSL.get_observation ()
+
+

Return the current observation. This function is for the simple case where the observation is only an x,y pair. For more complex observations, this function should be overwritten.

+
+

source

+
+
+

NewsvendorEnvVariableSL.check_evaluation_metric

+
+
 NewsvendorEnvVariableSL.check_evaluation_metric ()
+
+
+

source

+
+
+

NewsvendorEnvVariableSL.check_sl_distribution

+
+
 NewsvendorEnvVariableSL.check_sl_distribution ()
+
+
+

source

+
+
+

NewsvendorEnvVariableSL.set_val_test_sl

+
+
 NewsvendorEnvVariableSL.set_val_test_sl (sl_test_val)
+
+ + + + + + + + + + + + + +
Details
sl_test_val
+ + +
+
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/20_environments/actionprocessors.html b/20_environments/actionprocessors.html new file mode 100644 index 0000000..2f976c7 --- /dev/null +++ b/20_environments/actionprocessors.html @@ -0,0 +1,1127 @@ + + + + + + + + + + +Actionprocessors – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Actionprocessors

+
+ +
+
+ Postprocessors can be used to process the output of an agent before it is being passed to the environment. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

ClipAction

+
+
 ClipAction (lower:Union[float,int,numpy.ndarray,NoneType]=None,
+             upper:Union[float,numpy.ndarray,NoneType]=None)
+
+

A class to clip input values within specified bounds. If the parameters lower and upper are not specified, no clipping is performed. If the parameters are scalar values, then all elements of the input are clipped to the same bounds. If the parameters are arrays, then each element of the input is clipped to the corresponding bounds.

+ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
lowerUnionNone
upperUnionNone
+
+

source

+
+
+

ClipAction._convert_to_array

+
+
 ClipAction._convert_to_array
+                               (value:Union[float,int,list,numpy.ndarray,N
+                               oneType])
+
+

Converts a float value to a numpy array of shape (1,) if needed.

+
+

source

+
+
+

ClipAction.__call__

+
+
 ClipAction.__call__ (input:numpy.ndarray)
+
+

Clips the input array within the specified bounds.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
inputndarray
Returnsndarray
+
+

source

+
+
+

RoundAction

+
+
 RoundAction (unit_size:Union[float,int,numpy.ndarray])
+
+

A class to round input values to the nearest specified unit size. Unit size can be any decimal value like 10, 3, 1, 0.1, 0.03, etc.

+ + + + + + + + + + + + + + + +
TypeDetails
unit_sizeUnion
+
+

source

+
+

RoundAction._validate_unit_size

+
+
 RoundAction._validate_unit_size
+                                  (unit_size:Union[float,int,numpy.ndarray
+                                  ])
+
+

Ensures that the unit size is a positive float, int, or a numpy array of positive values.

+
+

source

+
+
+

RoundAction.__call__

+
+
 RoundAction.__call__ (input:numpy.ndarray)
+
+

Rounds the input array to the nearest specified unit size.

+

Example usage of [`RoundAction`](https://opimwue.github.io/ddopai/20_environments/actionprocessors.html#roundaction). Expected result:

+

[1. 2. 4. 5. 6.]

+

[0.1 0.4]

+

[ 0. 12. 6. 0. 0. 0. 3.]

+
+
input = np.array([1.1, 2.5, 3.5, 4.6, 5.9])
+round_action = RoundAction(1)
+print(round_action(input))
+
+input = np.array([0.12, 0.39])
+round_action = RoundAction(0.1)
+print(round_action(input))
+
+input = np.array([1.1231, 12.13, 7, 0.5, 1.4, 1.5, 1.6])
+round_action = RoundAction(3)
+print(round_action(input))
+
+
[1. 2. 4. 5. 6.]
+[0.1 0.4]
+[ 0. 12.  6.  0.  0.  0.  3.]
+
+
+
+

source

+
+
+
+

MoveBatchToProductDim

+
+
 MoveBatchToProductDim (remove_action_per_unit_dim:bool=False)
+
+

A class that moves the first dimension to the last place. Usefull for meta learners that return the predictions of various units in the batch dimension while in environment the num_unit (e.g., num_SKU) dimension is usually the last one

+ ++++++ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
remove_action_per_unit_dimboolFalseIf there is only one action per unit, the action dimension can be removed by setting this to True
+
+

source

+
+

MoveBatchToProductDim.__call__

+
+
 MoveBatchToProductDim.__call__ (input:numpy.ndarray)
+
+

Moves the first dimension to the last place.

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/40_base_agents/agent_classes.html b/30_agents/40_base_agents/agent_classes.html new file mode 100644 index 0000000..5cb97be --- /dev/null +++ b/30_agents/40_base_agents/agent_classes.html @@ -0,0 +1,892 @@ + + + + + + + + + + +Agent classes – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Agent classes

+
+ +
+
+ Dict of agent classes and (standard) agent names to allow for dynamic loading of agents. +
+
+ + +
+ + + + +
+ + + +
+ + + + + + +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/40_base_agents/base_agents.html b/30_agents/40_base_agents/base_agents.html new file mode 100644 index 0000000..497f6b9 --- /dev/null +++ b/30_agents/40_base_agents/base_agents.html @@ -0,0 +1,1209 @@ + + + + + + + + + + +Base agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Base agents

+
+ +
+
+ Base agent that all agents shall inherit from +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseAgent

+
+
 BaseAgent (environment_info:ddopai.utils.MDPInfo,
+            obsprocessors:list[object]|None=None,
+            agent_name:str|None=None, receive_batch_dim:bool=False)
+
+

Base class for all agents to enforce a common interface. See below for more detailed description of the requriements.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
obsprocessorslist[object] | NoneNonedefault is empty list
agent_namestr | NoneNone
receive_batch_dimboolFalse
+
+

Important notes:

+

Agents are, next to the environments, the core element of this library. The agents are the algorithms that take actions in the environment. They can be any type of algorithms ranging from optimization, supervised learning to reinforcement learning and any combination. Key for all the different agents to work is a common interface that allows them to interact with the environment.

+

Draw action:

+
    +
  • The draw_action function is the main interface with the environment. It receives an observation as Numpy array and returns an action as Numpy array. The function draw_action is defined in the [`BaseAgent`](https://opimwue.github.io/ddopai/30_agents/40_base_agents/base_agents.html#baseagent) and should not be overwritten as it properly applies pre- and post-processing (see below).

  • +
  • Agents always expect the observation to be of shape (batch_size, observation_dim) or (batch_size, time_dim, observation_dim) to allow batch-processing during training. Most environment do not have a batch dimension as they apply the step function to a single observation. Hence, the agent will by default add an extra dimension to the observation. If this is not desired, the agent has an attribute “receive_batch_dim” that can be set to True to tell the agent that the observation already has a batch dimension.

  • +
  • To create an agent, the function draw_action_ (note the underscore!) needs to be defined that gets the pre-processed observation and returns the action for post-processing. This function should be overwritten in the derived class.

  • +
+

observation pre-processors and action post-processors:

+
    +
  • Sometimes, it is necessary to process the observartion before giving it to the agent (e.g., changing shape) or to process the action before giving it to the environment (e.g., rounding). To ensure compatibility with mushroom_rl, the pre-processors sit with the agent (they must be added to the agent and are applied in the agent’s draw_action() method). The post-processors sit with the environment and are applied in the environment’s step() method.

  • +
  • To differenciate the pre-processors here from the pre-processors used directly inside mushroom_rl, we call them obsprocessors, short for observation pre-processors.

  • +
  • During definition, one can already add the obsprocessors as lists (to the argument obsprocessors). After instantiation, processors are to be added using the add_obsprocessor method.

  • +
  • Note that processors are applied in the order they are added.

  • +
+

Training:

+
    +
  • The [`run_experiment`](https://opimwue.github.io/ddopai/40_experiments/experiment_functions.html#run_experiment)function in this library currently supports three types of training processes: +
      +
    • train_directly: The agent is trained by calling agent.fit(X, Y) directly. In this case, the agent must have a fit function that takes the input and target data.
    • +
    • train_epochs: The agent is iteratively trained on the training data (e.g., via SGD). In this case, the function fit_epoch must be implemented. fit_epoch does not get any argument, rather the dataloader from the environment needs to be given to the agent during initialization. The agent will then call the dataloader interatively to get the training data.
    • +
    • env_interaction: The agent is trained by interacting with the environment (e.g., like all reinforcement learning agents). This case build on the Core class from MushroomRL.
    • +
  • +
+

Loading and saving:

+
    +
  • All agents must implement a save and load function that allows to save and load the agent’s parameters. See the Newsvendor ERM and (w)SAA agents for examples of different ways to save and load agents.
  • +
+

Dymamic class loading:

+
    +
  • This package allows to load agents dynamically with the [`select_agent`](https://opimwue.github.io/ddopai/40_experiments/meta_experiment_functions.html#select_agent) function that takes a string as input and returns the corresponding agent class. When creating new agents, make sure to add them to 10_AGENT_CLASSES.ipynb under the base agents folder with an appropriate name.
  • +
+
+

source

+
+
+

BaseAgent.draw_action

+
+
 BaseAgent.draw_action (observation:numpy.ndarray)
+
+

Main interfrace to the environemnt. Applies preprocessors to the observation. Internal logic of the agent to be implemented in draw_action_ method.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
observationndarray
Returnsndarray
+
+

source

+
+
+

BaseAgent.draw_action_

+
+
 BaseAgent.draw_action_ (observation:numpy.ndarray)
+
+

Generate an action based on the observation - this is the core method that needs to be implemented by all agents.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
observationndarray
Returnsndarray
+
+

source

+
+
+

BaseAgent.add_obsprocessor

+
+
 BaseAgent.add_obsprocessor (obsprocessor:object)
+
+

Add a preprocessor to the agent

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
obsprocessorobjectpre-processor object that can be called via the “call” method
+
+

source

+
+
+

BaseAgent.train

+
+
 BaseAgent.train ()
+
+

Set the internal state of the agent to train

+
+

source

+
+
+

BaseAgent.eval

+
+
 BaseAgent.eval ()
+
+

Set the internal state of the agent to eval. Note that for agents we do not differentiate between val and test modes.

+
+

source

+
+
+

BaseAgent.add_batch_dim

+
+
 BaseAgent.add_batch_dim (input:numpy.ndarray|dict[str,numpy.ndarray])
+
+

Add a batch dimension to the input array if it doesn’t already have one. This is necessary because most environments do not have a batch dimension, but agents typically expect one. If the environment does have a batch dimension, the agent can set the receive_batch_dim attribute to True to skip this step.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
inputnumpy.ndarray | dict[str, numpy.ndarray]
Returnsnumpy.ndarray | dict[str, numpy.ndarray]
+
+

source

+
+
+

BaseAgent.save

+
+
 BaseAgent.save ()
+
+

Save the agent’s parameters to a file.

+
+

source

+
+
+

BaseAgent.load

+
+
 BaseAgent.load ()
+
+

Load the agent’s parameters from a file.

+
+

source

+
+
+

BaseAgent.update_model_params

+
+
 BaseAgent.update_model_params (default_params:dict, custom_params:dict)
+
+

override default parameters with custom parameters in a dictionary

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
default_paramsdict
custom_paramsdict
Returnsdict
+
+

source

+
+
+

BaseAgent.convert_to_numpy_array

+
+
 BaseAgent.convert_to_numpy_array (input:Union[numpy.ndarray,List,float,in
+                                   t,ddopai.utils.Parameter,NoneType])
+
+

convert input to numpy array or keep as Parameter

+ + + + + + + + + + + + + + + +
TypeDetails
inputUnion
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/40_base_agents/basic_agents.html b/30_agents/40_base_agents/basic_agents.html new file mode 100644 index 0000000..d76caab --- /dev/null +++ b/30_agents/40_base_agents/basic_agents.html @@ -0,0 +1,909 @@ + + + + + + + + + + +Basic agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Basic agents

+
+ +
+
+ Simple agents that can be used as a baseline or for testing purposes. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

RandomAgent

+
+
 RandomAgent (environment_info:ddopai.utils.MDPInfo,
+              obsprocessors:list[object]|None=None,
+              agent_name:str='RandomAgent', *args, **kwargs)
+
+

A random agent that samples actions from the environment’s action space. Useful for testing and as minimal baseline.

+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/41_NV_agents/nv_erm_agents.html b/30_agents/41_NV_agents/nv_erm_agents.html new file mode 100644 index 0000000..e353891 --- /dev/null +++ b/30_agents/41_NV_agents/nv_erm_agents.html @@ -0,0 +1,2842 @@ + + + + + + + + + + +ERM agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

ERM agents

+
+ +
+
+ Newsvendor agents based on Empirical Risk Minimization (ERM) principles. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

NewsvendorXGBAgent

+
+
 NewsvendorXGBAgent (environment_info:ddopai.utils.MDPInfo,
+                     cu:float|numpy.ndarray, co:float|numpy.ndarray,
+                     obsprocessors:Optional[List[object]]=None,
+                     agent_name:str|None='XGBAgent', eta:float=0.3,
+                     gamma:float=0, max_depth:int=6,
+                     min_child_weight:float=1, max_delta_step:float=0,
+                     subsample:float=1, sampling_method:str='uniform',
+                     colsample_bytree:float=1, colsample_bylevel:float=1,
+                     colsample_bynode:float=1, lambda_:float=1,
+                     alpha:float=0, tree_method:str='auto',
+                     scale_pos_weight:float=1, refresh_leaf:int=1,
+                     grow_policy:str='depthwise', max_leaves:int=0,
+                     max_bin:int=256, num_parallel_tree:int=1,
+                     multi_strategy:str='one_output_per_tree',
+                     max_cached_hist_node:int=65536, nthread:int=1,
+                     device:str='CPU')
+
+

Agent solving the Newsvendor problem within the ERM framework (i.e., using quantile regression) using the XGBoost library.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
cufloat | numpy.ndarrayunderage cost
cofloat | numpy.ndarrayoverage cost
obsprocessorsOptionalNone
agent_namestr | NoneXGBAgent
etafloat0.3## XGB params
gammafloat0
max_depthint6
min_child_weightfloat1
max_delta_stepfloat0
subsamplefloat1
sampling_methodstruniform
colsample_bytreefloat1
colsample_bylevelfloat1
colsample_bynodefloat1
lambda_float1
alphafloat0
tree_methodstrauto
scale_pos_weightfloat1
refresh_leafint1updater will always use default
grow_policystrdepthwiseprocess type will always use default
max_leavesint0
max_binint256
num_parallel_treeint1
multi_strategystrone_output_per_tree
max_cached_hist_nodeint65536
nthreadint1## General params
devicestrCPU
+
+

source

+
+
+

SGDBaseAgent

+
+
 SGDBaseAgent (environment_info:ddopai.utils.MDPInfo,
+               dataloader:ddopai.dataloaders.base.BaseDataLoader,
+               input_shape:Tuple, output_shape:Tuple,
+               dataset_params:Optional[dict]=None,
+               dataloader_params:Optional[dict]=None,
+               optimizer_params:Optional[dict]=None,
+               learning_rate_scheduler_params:Optional[Dict]=None,
+               obsprocessors:Optional[List]=None, device:str='cpu',
+               agent_name:str|None=None, test_batch_size:int=1024,
+               receive_batch_dim:bool=False)
+
+

Base class for Agents that are trained using Stochastic Gradient Descent (SGD) on PyTorch models.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
input_shapeTuple
output_shapeTuple
dataset_paramsOptionalNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsOptionalNonedefault: {“batch_size”: 32, “shuffle”: True}
optimizer_paramsOptionalNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
learning_rate_scheduler_paramsOptionalNonedefault: None. If dict, then first key is “scheduler” and the rest are the parameters
obsprocessorsOptionalNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneNone
test_batch_sizeint1024
receive_batch_dimboolFalse
+
+

Important notes:

+

SGD-based agents are all agents that are trained via SGD such as Linear Models or Neural Networks. Some specific requirements are necessary to make them interface properly with the environment.

+

Torch perprocessors:

+
    +
  • In addition to the general Numpy-based pre-processor, we also provide pre-processors that work on tensor level within the fit_epoch method and the predict method. They can be used in addition to the numpy-based pre-processors or instead of them. It’s important to ensure that the shape of observations (after pre-processing) is the same for those from the environemnt and those from the dataloader during training.
  • +
+

Dataloader:

+
    +
  • As for normal supervised learning via Torch, we make use of the Torch dataloader to load the data. Instead of defining a custom dataset class, we provide a Wrapper that can be used around our dataloader to make its output and interface the same as a Torch dataset. The dataloader is then initialized when the agent is created such that the agent has access to the same dataloader as the environment.
  • +
+

Training process:

+
    +
  • The outper loop of the training process (epochs) is handled outside the agent by the [`run_experiment`](https://opimwue.github.io/ddopai/40_experiments/experiment_functions.html#run_experiment)functions (or can also be customized). The agent needs to have a fit_epoch method that tells the agent what to do within an epoch. This includes: +
      +
    • Getting the data from the dataloader
    • +
    • Pre-processing the data
    • +
    • Forward pass
    • +
    • Loss calculation
    • +
    • Backward pass
    • +
  • +
+
+

source

+
+
+

SGDBaseAgent.set_dataloader

+
+
 SGDBaseAgent.set_dataloader
+                              (dataloader:ddopai.dataloaders.base.BaseData
+                              Loader, dataset_params:dict,
+                              dataloader_params:dict)
+
+

Set the dataloader for the agent by wrapping it into a Torch Dataset

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
dataloaderBaseDataLoader
dataset_paramsdict
dataloader_paramsdictdict with keys: batch_size, shuffle
ReturnsNone
+
+

source

+
+
+

SGDBaseAgent.set_loss_function

+
+
 SGDBaseAgent.set_loss_function ()
+
+

Set loss function for the model

+
+

source

+
+
+

SGDBaseAgent.set_model

+
+
 SGDBaseAgent.set_model (input_shape:Tuple, output_shape:Tuple)
+
+

Set the model for the agent

+
+

source

+
+
+

SGDBaseAgent.set_optimizer

+
+
 SGDBaseAgent.set_optimizer (optimizer_params:dict)
+
+

Set the optimizer for the model

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
optimizer_paramsdictdict with keys: optimizer, lr, weight_decay
+
+

source

+
+
+

SGDBaseAgent.set_learning_rate_scheduler

+
+
 SGDBaseAgent.set_learning_rate_scheduler (learning_rate_scheduler_params)
+
+

Set learning rate scheudler (can be None)

+ + + + + + + + + + + + + +
Details
learning_rate_scheduler_params
+
+

source

+
+
+

SGDBaseAgent.fit_epoch

+
+
 SGDBaseAgent.fit_epoch ()
+
+

Fit the model for one epoch using the dataloader

+
+

source

+
+
+

SGDBaseAgent.draw_action_

+
+
 SGDBaseAgent.draw_action_ (observation:numpy.ndarray)
+
+

Draw an action based on the fitted model (see predict method)

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
observationndarray
Returnsndarray
+
+

source

+
+
+

SGDBaseAgent.predict

+
+
 SGDBaseAgent.predict (X:numpy.ndarray)
+
+

Do one forward pass of the model and return the prediction

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
Xndarray
Returnsndarray
+
+

source

+
+
+

SGDBaseAgent.train

+
+
 SGDBaseAgent.train ()
+
+

set the internal state of the agent and its model to train

+
+

source

+
+
+

SGDBaseAgent.eval

+
+
 SGDBaseAgent.eval ()
+
+

set the internal state of the agent and its model to eval

+
+

source

+
+
+

SGDBaseAgent.to

+
+
 SGDBaseAgent.to (device:str)
+
+

Move the model to the specified device

+ + + + + + + + + + + + + + + +
TypeDetails
devicestr
+
+

source

+
+
+

SGDBaseAgent.save

+
+
 SGDBaseAgent.save (path:str, overwrite:bool=True)
+
+

Save the PyTorch model to a file in the specified directory.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
pathstrThe directory where the file will be saved.
overwriteboolTrueAllow overwriting; if False, a FileExistsError will be raised if the file exists.
+
+

source

+
+
+

SGDBaseAgent.load

+
+
 SGDBaseAgent.load (path:str)
+
+

Load the PyTorch model from a file.

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
pathstrOnly the path to the folder is needed, not the file itself
+
+

source

+
+
+
+

NVBaseAgent

+
+
 NVBaseAgent (environment_info:ddopai.utils.MDPInfo,
+              dataloader:ddopai.dataloaders.base.BaseDataLoader,
+              cu:numpy.ndarray|ddopai.utils.Parameter,
+              co:numpy.ndarray|ddopai.utils.Parameter, input_shape:Tuple,
+              output_shape:Tuple, optimizer_params:dict|None=None,
+              learning_rate_scheduler_params=None,
+              dataset_params:dict|None=None,
+              dataloader_params:dict|None=None,
+              obsprocessors:list|None=None, device:str='cpu',
+              agent_name:str|None=None, test_batch_size:int=1024,
+              receive_batch_dim:bool=False,
+              loss_function:Literal['quantile','pinball']='quantile')
+
+

Base agent for the Newsvendor problem implementing the loss function for the Empirical Risk Minimization (ERM) approach based on quantile loss.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
learning_rate_scheduler_paramsNoneTypeNoneTODO: add base class for learning rate scheduler for typing
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneNone
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

source

+
+

NVBaseAgent.set_loss_function

+
+
 NVBaseAgent.set_loss_function ()
+
+

Set the loss function for the model to the quantile loss. For training the model uses quantile loss and not the pinball loss with specific cu and co values to ensure similar scale of the feedback signal during training.

+
+

source

+
+
+
+

NewsvendorlERMAgent

+
+
 NewsvendorlERMAgent (environment_info:ddopai.utils.MDPInfo,
+                      dataloader:ddopai.dataloaders.base.BaseDataLoader,
+                      cu:numpy.ndarray|ddopai.utils.Parameter,
+                      co:numpy.ndarray|ddopai.utils.Parameter,
+                      input_shape:Tuple, output_shape:Tuple,
+                      optimizer_params:dict|None=None,
+                      learning_rate_scheduler_params=None,
+                      model_params:dict|None=None,
+                      dataset_params:dict|None=None,
+                      dataloader_params:dict|None=None,
+                      obsprocessors:list|None=None, device:str='cpu',
+                      agent_name:str|None='lERM',
+                      test_batch_size:int=1024,
+                      receive_batch_dim:bool=False, loss_function:Literal[
+                      'quantile','pinball']='quantile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a linear (regression) model. Note that this implementation finds the optimal regression parameters via SGD.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
learning_rate_scheduler_paramsNoneTypeNoneTODO: add base class for learning rate scheduler for typing
model_paramsdict | NoneNonedefault: {“relu_output”: False}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NonelERM
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

Further information:

+
References
+----------
+
+.. [1] Gah-Yi Ban, Cynthia Rudin, "The Big Data Newsvendor: Practical Insights
+    from Machine Learning", 2018.
+
+

source

+
+
+

NewsvendorlERMAgent.set_model

+
+
 NewsvendorlERMAgent.set_model (input_shape, output_shape)
+
+

Set the model for the agent to a linear model

+

Example usage:

+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
+
val_index_start = 800 #90_000
+test_index_start = 900 #100_000
+
+X = np.random.rand(1000, 2)
+Y = np.random.rand(1000, 1)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start)
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+)
+
+agent = NewsvendorlERMAgent(environment.mdp_info,
+                            dataloader,
+                            cu=np.array([0.42857]),
+                            co=np.array([1.0]),
+                            input_shape=(2,),
+                            output_shape=(1,),
+                            optimizer_params= {"optimizer": "Adam", "lr": 0.01, "weight_decay": 0.0}, # other optimizers: "SGD", "RMSprop"
+                            learning_rate_scheduler_params = None, # TODO add base class for learning rate scheduler for typing
+                            model_params = {"relu_output": False}, #
+                            dataloader_params={"batch_size": 32, "shuffle": True},
+                            device = "cpu", # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+run_experiment(agent, environment, 2, run_id = "test") # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
input shape (2,)
+
+
+
INFO:root:Network architecture:
+/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
+  action_fn=lambda data: sys.getsizeof(data.storage()),
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+LinearModel                              [1, 1]                    --
+├─Linear: 1-1                            [1, 1]                    3
+├─Identity: 1-2                          [1, 1]                    --
+==========================================================================================
+Total params: 3
+Trainable params: 3
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.00
+Estimated Total Size (MB): 0.00
+==========================================================================================
+
+
+
INFO:root:Starting experiment
+INFO:root:Initial evaluation: R=-29.736253318797445, J=-28.287550833928687
+INFO:root:Starting training with epochs fit
+
+
+
-23.17678889235405 -22.124720267178684
+Experiment directory: results/test
+
+
+
100%|██████████| 25/25 [00:00<00:00, 903.73it/s]
+100%|██████████| 25/25 [00:00<00:00, 1999.34it/s]
+100%|██████████| 2/2 [00:00<00:00, 35.22it/s]
+INFO:root:Finished training with epochs fit
+INFO:root:Evaluation after training: R=-15.499745268755348, J=-14.77032101771835
+
+
+
-16.54230338871762 -15.75806274718322
+
+
+
+

source

+
+
+
+

NewsvendorDLAgent

+
+
 NewsvendorDLAgent (environment_info:ddopai.utils.MDPInfo,
+                    dataloader:ddopai.dataloaders.base.BaseDataLoader,
+                    cu:numpy.ndarray|ddopai.utils.Parameter,
+                    co:numpy.ndarray|ddopai.utils.Parameter,
+                    input_shape:Tuple, output_shape:Tuple,
+                    learning_rate_scheduler_params:Optional[Dict]=None,
+                    optimizer_params:dict|None=None,
+                    model_params:dict|None=None,
+                    dataloader_params:dict|None=None,
+                    dataset_params:dict|None=None, device:str='cpu',
+                    obsprocessors:list|None=None,
+                    agent_name:str|None='DLNV', test_batch_size:int=1024,
+                    receive_batch_dim:bool=False, loss_function:Literal['q
+                    uantile','pinball']='quantile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a deep learning model.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
learning_rate_scheduler_paramsOptionalNone
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
model_paramsdict | NoneNonedefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
devicestrcpu“cuda” or “cpu”
obsprocessorslist | NoneNonedefault: []
agent_namestr | NoneDLNV
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

Further information:

+
References
+----------
+
+.. [1] Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takáˇc,
+        "Applying Deep Learning to the Newsvendor Problem", 2018.
+
+

source

+
+
+

NewsvendorDLAgent.set_model

+
+
 NewsvendorDLAgent.set_model (input_shape, output_shape)
+
+

Set the model for the agent to an MLP

+

Example usage:

+
+
dataloader = XYDataLoader(X, Y, val_index_start, test_index_start)
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+)
+
+model_params = {
+    "hidden_layers": [64, 64],
+}
+
+agent = NewsvendorDLAgent(environment.mdp_info,
+                            dataloader,
+                            cu=np.array([0.42857]),
+                            co=np.array([1.0]),
+                            input_shape=(2,),
+                            output_shape=(1,),
+                            optimizer_params= {"optimizer": "Adam", "lr": 0.01, "weight_decay": 0.0}, # other optimizers: "SGD", "RMSprop"
+                            learning_rate_scheduler_params = None, # TODO add base class for learning rate scheduler for typing
+                            model_params = model_params, #
+                            dataloader_params={"batch_size": 32, "shuffle": True},
+                            device = "cpu" # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+run_experiment(agent, environment, 2, run_id = "test") # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
INFO:root:Network architecture:
+
+
+
input shape (2,)
+==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLP                                      [1, 1]                    --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   192
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,417
+Trainable params: 4,417
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+
+
+
INFO:root:Starting experiment
+INFO:root:Initial evaluation: R=-20.030297947350757, J=-19.11491558256756
+INFO:root:Starting training with epochs fit
+
+
+
-22.66337395888819 -21.548795898866043
+Experiment directory: results/test
+
+
+
100%|██████████| 25/25 [00:00<00:00, 1212.35it/s]
+100%|██████████| 25/25 [00:00<00:00, 1277.10it/s]
+100%|██████████| 2/2 [00:00<00:00, 32.30it/s]
+INFO:root:Finished training with epochs fit
+INFO:root:Evaluation after training: R=-15.082729205825588, J=-14.380392673719802
+
+
+
-16.096224629924393 -15.338865711420437
+
+
+
+

source

+
+
+

BaseMetaAgent

+
+
 BaseMetaAgent ()
+
+

Initialize self. See help(type(self)) for accurate signature.

+
+

source

+
+
+

NewsvendorlERMMetaAgent

+
+
 NewsvendorlERMMetaAgent (environment_info:ddopai.utils.MDPInfo,
+                          dataloader:ddopai.dataloaders.base.BaseDataLoade
+                          r, cu:numpy.ndarray|ddopai.utils.Parameter,
+                          co:numpy.ndarray|ddopai.utils.Parameter,
+                          input_shape:Tuple, output_shape:Tuple,
+                          optimizer_params:dict|None=None,
+                          learning_rate_scheduler_params=None,
+                          model_params:dict|None=None,
+                          dataset_params:dict|None=None,
+                          dataloader_params:dict|None=None,
+                          obsprocessors:list|None=None, device:str='cpu',
+                          agent_name:str|None='lERMMeta',
+                          test_batch_size:int=1024,
+                          receive_batch_dim:bool=False, loss_function:Lite
+                          ral['quantile','pinball']='quantile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a linear (regression) model. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfoParameters for lERM agent
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
learning_rate_scheduler_paramsNoneTypeNoneTODO: add base class for learning rate scheduler for typing
model_paramsdict | NoneNonedefault: {“relu_output”: False}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NonelERMMeta
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

source

+
+
+

NewsvendorDLMetaAgent

+
+
 NewsvendorDLMetaAgent (environment_info:ddopai.utils.MDPInfo,
+                        dataloader:ddopai.dataloaders.base.BaseDataLoader,
+                        cu:numpy.ndarray|ddopai.utils.Parameter,
+                        co:numpy.ndarray|ddopai.utils.Parameter,
+                        input_shape:Tuple, output_shape:Tuple,
+                        learning_rate_scheduler_params=None,
+                        optimizer_params:dict|None=None,
+                        model_params:dict|None=None,
+                        dataset_params:dict|None=None,
+                        dataloader_params:dict|None=None,
+                        device:str='cpu', obsprocessors:list|None=None,
+                        agent_name:str|None='DLNV',
+                        test_batch_size:int=1024,
+                        receive_batch_dim:bool=False, loss_function:Litera
+                        l['quantile','pinball']='quantile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a Neural Network. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
learning_rate_scheduler_paramsNoneTypeNoneTODO: add base class for learning rate scheduler for typing
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
model_paramsdict | NoneNonedefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
devicestrcpu“cuda” or “cpu”
obsprocessorslist | NoneNonedefault: []
agent_namestr | NoneDLNV
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

source

+
+
+

NewsvendorDLTransformerAgent

+
+
 NewsvendorDLTransformerAgent (environment_info:ddopai.utils.MDPInfo,
+                               dataloader:ddopai.dataloaders.base.BaseData
+                               Loader,
+                               cu:numpy.ndarray|ddopai.utils.Parameter,
+                               co:numpy.ndarray|ddopai.utils.Parameter,
+                               input_shape:Tuple, output_shape:Tuple, lear
+                               ning_rate_scheduler_params:Optional[Dict]=N
+                               one, optimizer_params:dict|None=None,
+                               model_params:dict|None=None,
+                               dataset_params:dict|None=None,
+                               dataloader_params:dict|None=None,
+                               device:str='cpu',
+                               obsprocessors:list|None=None,
+                               agent_name:str|None='DLNV',
+                               test_batch_size:int=1024,
+                               receive_batch_dim:bool=False, loss_function
+                               :Literal['quantile','pinball']='quantile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a deep learning model with a Transformer architecture.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
learning_rate_scheduler_paramsOptionalNone
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
model_paramsdict | NoneNonedefault: {“max_context_length”: 128, “n_layer”: 3, “n_head”: 8, “n_embd_per_head”: 32, “rope_scaling”: None, “min_multiple”: 256, “gating”: True, “drop_prob”: 0.0, “final_activation”: “identity”}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
devicestrcpu“cuda” or “cpu”
obsprocessorslist | NoneNonedefault: []
agent_namestr | NoneDLNV
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+
+

source

+
+
+

NewsvendorDLTransformerMetaAgent

+
+
 NewsvendorDLTransformerMetaAgent (environment_info:ddopai.utils.MDPInfo,
+                                   dataloader:ddopai.dataloaders.base.Base
+                                   DataLoader, cu:numpy.ndarray|ddopai.uti
+                                   ls.Parameter, co:numpy.ndarray|ddopai.u
+                                   tils.Parameter, input_shape:Tuple,
+                                   output_shape:Tuple, learning_rate_sched
+                                   uler_params:Optional[Dict]=None,
+                                   optimizer_params:dict|None=None,
+                                   model_params:dict|None=None,
+                                   dataset_params:dict|None=None,
+                                   dataloader_params:dict|None=None,
+                                   device:str='cpu',
+                                   obsprocessors:list|None=None,
+                                   agent_name:str|None='DLNV',
+                                   test_batch_size:int=1024,
+                                   receive_batch_dim:bool=False, loss_func
+                                   tion:Literal['quantile','pinball']='qua
+                                   ntile')
+
+

Newsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a Neural Network using the attention mechanism. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
dataloaderBaseDataLoader
cunumpy.ndarray | ddopai.utils.Parameter
conumpy.ndarray | ddopai.utils.Parameter
input_shapeTuple
output_shapeTuple
learning_rate_scheduler_paramsOptionalNone
optimizer_paramsdict | NoneNonedefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}
model_paramsdict | NoneNonedefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}
dataset_paramsdict | NoneNoneparameters needed to convert the dataloader to a torch dataset
dataloader_paramsdict | NoneNonedefault: {“batch_size”: 32, “shuffle”: True}
devicestrcpu“cuda” or “cpu”
obsprocessorslist | NoneNonedefault: []
agent_namestr | NoneDLNV
test_batch_sizeint1024
receive_batch_dimboolFalse
loss_functionLiteralquantile
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/41_NV_agents/nv_saa_agents.html b/30_agents/41_NV_agents/nv_saa_agents.html new file mode 100644 index 0000000..7908308 --- /dev/null +++ b/30_agents/41_NV_agents/nv_saa_agents.html @@ -0,0 +1,1685 @@ + + + + + + + + + + +SAA based agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

SAA based agents

+
+ +
+
+ Agents based on Sample Average Approximation (SAA) or weighted Sample Average Approximation (wSAA) +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseSAAagent

+
+
 BaseSAAagent (environment_info:ddopai.utils.MDPInfo,
+               obsprocessors:Optional[List[object]]=None,
+               agent_name:str|None=None)
+
+

Base class for Sample Average Approximation Agents, implementing the main method to find the quntile of some (weighted) empirical distribution.

+
+

source

+
+

BaseSAAagent._validate_X_predict

+
+
 BaseSAAagent._validate_X_predict (X)
+
+

Validate X data before prediction

+
+

source

+
+
+

BaseSAAagent.find_weighted_quantiles

+
+
 BaseSAAagent.find_weighted_quantiles (weights, weightPosIndices, sl, y)
+
+

Find the weighted quantile of a range of data y. It assumes that all arrays are of shape (n_samples, n_outputs). Note that it has not been tested for n_outputs > 1.

+
+

source

+
+
+
+

NewsvendorSAAagent

+
+
 NewsvendorSAAagent (environment_info:ddopai.utils.MDPInfo,
+                     cu:float|numpy.ndarray, co:float|numpy.ndarray,
+                     obsprocessors:list[object]|None=None,
+                     agent_name:str='SAA')
+
+

Newsvendor agent that uses Sample Average Approximation to find the quantile of the empirical distribution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
cufloat | numpy.ndarrayunderage cost
cofloat | numpy.ndarrayoverage cost
obsprocessorslist[object] | NoneNone
agent_namestrSAA
+
+

Further information:

+

References:

+
.. [1] Levi, Retsef, Georgia Perakis, and Joline Uichanco. "The data-driven newsvendor problem: new bounds and insights."
+       Operations Research 63.6 (2015): 1294-1306.
+
+

source

+
+
+

NewsvendorSAAagent.fit

+
+
 NewsvendorSAAagent.fit (X:numpy.ndarray, Y:numpy.ndarray)
+
+

Fit the agent to the data. The agent will find the quantile of the empirical distribution of the data.

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
Xndarrayfeatures will be ignored
Yndarray
ReturnsNone
+
+

source

+
+
+

NewsvendorSAAagent.draw_action_

+
+
 NewsvendorSAAagent.draw_action_ (observation:numpy.ndarray)
+
+

Draw an action from the quantile of the empirical distribution.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
observationndarray
Returnsndarray
+
+

source

+
+
+

NewsvendorSAAagent.save

+
+
 NewsvendorSAAagent.save (path:str, overwrite:bool=True)
+
+

Save the quantiles to a file in the specified directory.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
pathstrThe directory where the file will be saved.
overwriteboolTrueAllow overwriting; if False, a FileExistsError will be raised if the file exists.
+
+

source

+
+
+

NewsvendorSAAagent.load

+
+
 NewsvendorSAAagent.load (path:str)
+
+

Load the quantiles from a file.

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
pathstrOnly the path to the folder is needed, not the file itself
+
+

source

+
+
+
+

BasewSAAagent

+
+
 BasewSAAagent (environment_info:ddopai.utils.MDPInfo,
+                cu:float|numpy.ndarray, co:float|numpy.ndarray,
+                obsprocessors:list[object]|None=None,
+                agent_name:str='wSAA')
+
+

Base class for weighted Sample Average Approximation (wSAA) Agents

+
+

source

+
+

BasewSAAagent.fit

+
+
 BasewSAAagent.fit (X:numpy.ndarray, Y:numpy.ndarray)
+
+

*Fit the agent to the data. The function will call _get_fitted_model which will train a machine learning model to determine the sample weightes (e.g., kNN, DT, RF).*

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
Xndarray
Yndarray
+
+

source

+
+
+

BaseAgent.draw_action

+
+
 BaseAgent.draw_action (observation:numpy.ndarray)
+
+

Main interfrace to the environemnt. Applies preprocessors to the observation. Internal logic of the agent to be implemented in draw_action_ method.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
observationndarray
Returnsndarray
+
+

source

+
+
+

BasewSAAagent._get_fitted_model

+
+
 BasewSAAagent._get_fitted_model (X, y)
+
+

Initialise the underlying model - depending on the underlying machine learning model

+
+

source

+
+
+

BasewSAAagent._calc_weights

+
+
 BasewSAAagent._calc_weights (sample)
+
+

Calculate the sample weights - depending on the underlying machine learning model

+
+

source

+
+
+

BasewSAAagent.predict

+
+
 BasewSAAagent.predict (X:numpy.ndarray)
+
+

Predict value for X by finding the quantiles of the empirical distribution based on the sample weights predicted by the underlying machine learning model.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
Xndarray
Returnsndarray
+
+

source

+
+
+

BasewSAAagent.save

+
+
 BasewSAAagent.save (path:str, overwrite:bool=True)
+
+

Save the scikit-learn model to a file in the specified directory.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
pathstrThe directory where the file will be saved.
overwriteboolTrueAllow overwriting; if False, a FileExistsError will be raised if the file exists.
+
+

source

+
+
+

BasewSAAagent.load

+
+
 BasewSAAagent.load (path:str)
+
+

Load the scikit-learn model from a file.

+ +++++ + + + + + + + + + + + + + + +
TypeDetails
pathstrOnly the path to the folder is needed, not the file itself
+
+

source

+
+
+
+

NewsvendorRFwSAAagent

+
+
 NewsvendorRFwSAAagent (environment_info:ddopai.utils.MDPInfo,
+                        cu:float|numpy.ndarray, co:float|numpy.ndarray,
+                        obsprocessors:list[object]|None=None,
+                        n_estimators:int=100,
+                        criterion:str='squared_error',
+                        max_depth:int|None=None, min_samples_split:int=2,
+                        min_samples_leaf:int=1,
+                        min_weight_fraction_leaf:float=0.0,
+                        max_features:int|float|str|None=1.0,
+                        max_leaf_nodes:int|None=None,
+                        min_impurity_decrease:float=0.0,
+                        bootstrap:bool=True, oob_score:bool=False,
+                        n_jobs:int|None=None, random_state:int|numpy.rando
+                        m.mtrand.RandomState|None=None, verbose:int=0,
+                        warm_start:bool=False, ccp_alpha:float=0.0,
+                        max_samples:int|float|None=None,
+                        monotonic_cst:numpy.ndarray|None=None,
+                        agent_name:str='wSAA')
+
+

Newsvendor agent that uses weighted Sample Average Approximation based on Random Forest

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
cufloat | numpy.ndarrayunderage cost
cofloat | numpy.ndarrayoverage cost
obsprocessorslist[object] | NoneNoneList of obsprocessors to apply to the observation
n_estimatorsint100The number of trees in the forest.
criterionstrsquared_errorFunction to measure the quality of a split.
max_depthint | NoneNoneMaximum depth of the tree; None means unlimited.
min_samples_splitint2Minimum samples required to split a node.
min_samples_leafint1Minimum samples required to be at a leaf node.
min_weight_fraction_leaffloat0.0Minimum weighted fraction of the total weights at a leaf node.
max_featuresint | float | str | None1.0Number of features to consider when looking for the best split.
max_leaf_nodesint | NoneNoneMaximum number of leaf nodes; None means unlimited.
min_impurity_decreasefloat0.0Minimum impurity decrease required to split a node.
bootstrapboolTrueWhether to use bootstrap samples when building trees.
oob_scoreboolFalseWhether to use out-of-bag samples to estimate R^2 on unseen data.
n_jobsint | NoneNoneNumber of jobs to run in parallel; None means 1.
random_stateint | numpy.random.mtrand.RandomState | NoneNoneControls randomness for bootstrapping and feature sampling.
verboseint0Controls the verbosity when fitting and predicting.
warm_startboolFalseIf True, reuse solution from previous fit and add more estimators.
ccp_alphafloat0.0Complexity parameter for Minimal Cost-Complexity Pruning.
max_samplesint | float | NoneNoneNumber of samples to draw when bootstrap is True.
monotonic_cstnumpy.ndarray | NoneNoneMonotonic constraints for features.
agent_namestrwSAADefault wSAA, change if it is needed to differentiate among different ML models
+
+

Further information:

+

Notes —–

+

The default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, max_features=n_features and bootstrap=False, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, random_state has to be fixed.

+

References ———-

+
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
+
+.. [2] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
+       trees", Machine Learning, 63(1), 3-42, 2006.
+
+.. [3] Bertsimas, Dimitris, and Nathan Kallus, "From predictive to prescriptive analytics."
+       arXiv preprint arXiv:1402.5481 (2014).
+
+.. [4] scikit-learn, RandomForestRegressor,
+       <https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_forest.py>
+       
+.. [5] Scornet, Erwan. "Random forests and kernel methods."
+       IEEE Transactions on Information Theory 62.3 (2016): 1485-1500.
+
+

source

+
+
+

NewsvendorRFwSAAagent._get_fitted_model

+
+
 NewsvendorRFwSAAagent._get_fitted_model (X:numpy.ndarray,
+                                          Y:numpy.ndarray)
+
+

Fit the underlying machine learning model using all X and Y data in the train set.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
Xndarray
Yndarray
+
+

source

+
+
+

NewsvendorRFwSAAagent._calc_weights

+
+
 NewsvendorRFwSAAagent._calc_weights (sample:numpy.ndarray)
+
+

Calculate the sample weights based on the Random Forest model.

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
samplendarray
Returnstuple
+

Example usage:

+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
+
val_index_start = 800 #90_000
+test_index_start = 900 #100_000
+
+X = np.random.rand(1000, 2)
+Y = np.random.rand(1000, 1)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start)
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+)
+
+agent = NewsvendorSAAagent(environment.mdp_info, cu=0.42857, co=1.0)
+agent = NewsvendorRFwSAAagent(environment.mdp_info, cu=0.42857, co=1.0)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+run_experiment(agent, environment, 100, run_id = "test", save_best=True) # fit agent via run_experiment function
+    
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
-18.01888542213257 -17.142493964355882
+
+
+
WARNING:root:Overwriting file results/test/saved_models/best/model.joblib
+
+
+
results
+-15.763567080255545 -15.022369246527656 -15.763567080255545 -15.022369246527656
+-17.334785352427232 -16.554914069406784
+
+
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/51_RL_agents/mushroom_base_agent.html b/30_agents/51_RL_agents/mushroom_base_agent.html new file mode 100644 index 0000000..0e1f2ef --- /dev/null +++ b/30_agents/51_RL_agents/mushroom_base_agent.html @@ -0,0 +1,956 @@ + + + + + + + + + + +Mushroom base agent – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Mushroom base agent

+
+ +
+
+ Base agent for the integration of mushroom_rl-based agents +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

MushroomBaseAgent

+
+
 MushroomBaseAgent (environment_info:ddopai.utils.MDPInfo,
+                    obsprocessors:Optional[List]=None, device:str='cpu',
+                    agent_name:str|None=None)
+
+

Base class for Agents that integrate MushroomRL agents.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
obsprocessorsOptionalNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneNone
+
+

XXX

+

XXX

+

XXXs:

+
    +
  • XXX
  • +
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/51_RL_agents/ppo_agents.html b/30_agents/51_RL_agents/ppo_agents.html new file mode 100644 index 0000000..71642ae --- /dev/null +++ b/30_agents/51_RL_agents/ppo_agents.html @@ -0,0 +1,1218 @@ + + + + + + + + + + +PPO agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

PPO agents

+
+ +
+
+ PPO based agent +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

PPOAgent

+
+
 PPOAgent (environment_info:ddopai.utils.MDPInfo,
+           learning_rate_actor:float=0.0003,
+           learning_rate_critic:float|None=None, batch_size:int=64,
+           hidden_layers:List=None, activation:str='relu',
+           std_0:float=0.1, n_epochs_policy:int=4, eps_ppo:float=0.2,
+           lam:float=0.95, ent_coeff:float=0.0, n_steps_per_fit=1000,
+           drop_prob:float=0.0, batch_norm:bool=False,
+           init_method:str='xavier_uniform', optimizer:str='Adam',
+           loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',
+           agent_name:str|None='SAC')
+
+

XXX

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
learning_rate_actorfloat0.0003
learning_rate_criticfloat | NoneNoneIf none, then it is set to learning_rate_actor
batch_sizeint64
hidden_layersListNoneif None, then default is [64, 64]
activationstrrelu“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”
std_0float0.1tau: float = 0.005,
n_epochs_policyint4
eps_ppofloat0.2
lamfloat0.95
ent_coefffloat0.0
n_steps_per_fitint1000
drop_probfloat0.0
batch_normboolFalse
init_methodstrxavier_uniform“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”
optimizerstrAdam“Adam” or “SGD” or “RMSprop”
lossstrMSEcurrently only MSE is supported
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneSAC
+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
+
val_index_start = 8000 #90_000
+test_index_start = 9000 #100_000
+
+X = np.random.standard_normal((10000, 2))
+Y = np.random.standard_normal((10000, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+Y = X[:,0].reshape(-1, 1)
+# truncate Y at 0:
+Y = np.maximum(Y, 0)
+# normalize Y max to 1
+Y = Y/np.max(Y)
+
+print(np.max(Y))
+
+print(X.shape, Y.shape)
+
+clip_action = ClipAction(0., 1.)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params =  {'lag_window': 0, 'include_y': False, 'pre_calc': True})
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+    q_bound_high = 1.0,
+    q_bound_low = -0.1,
+    postprocessors = [clip_action],
+)
+
+agent = PPOAgent(environment.mdp_info,
+                obsprocessors = None,      # default: []
+                device="cpu", # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+environment.train()
+agent.train()
+environment.print=False
+
+# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = "test", save_best=True, print_freq=1) # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
1.0
+(10000, 2) (10000, 1)
+
+
+
/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32
+  gym.logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
+INFO:root:Actor network:
+/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
+  action_fn=lambda data: sys.getsizeof(data.storage()),
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPActor                                 [1, 1]                    --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   192
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,417
+Trainable params: 4,417
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+
+
+
INFO:root:Critic network:
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPState                                 [1, 1]                    --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   192
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,417
+Trainable params: 4,417
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+-44.039980104932894 -28.64890791879266
+-44.039980104932894 -28.64890791879266
+
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/51_RL_agents/sac_agents.html b/30_agents/51_RL_agents/sac_agents.html new file mode 100644 index 0000000..b0333bc --- /dev/null +++ b/30_agents/51_RL_agents/sac_agents.html @@ -0,0 +1,1781 @@ + + + + + + + + + + +SAC agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

SAC agents

+
+ +
+
+ Soft Actor Critic based agent +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

SACBaseAgent

+
+
 SACBaseAgent (environment_info:ddopai.utils.MDPInfo,
+               learning_rate_actor:float=0.0003,
+               learning_rate_critic:float|None=None,
+               initial_replay_size:int=64, max_replay_size:int=50000,
+               batch_size:int=64, warmup_transitions:int=100,
+               lr_alpha:float=0.0003, tau:float=0.005,
+               log_std_min:float=-20.0, log_std_max:float=2.0,
+               use_log_alpha_loss=False, target_entropy:float|None=None,
+               drop_prob:float=0.0, batch_norm:bool=False,
+               init_method:str='xavier_uniform', optimizer:str='Adam',
+               loss:str='MSE', obsprocessors:list|None=None,
+               device:str='cpu', agent_name:str|None='SAC',
+               network_actor_mu_params:dict=None,
+               network_actor_sigma_params:dict=None,
+               network_critic_params:dict=None)
+
+

Base agent for the Soft Actor-Critic (SAC) algorithm.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
learning_rate_actorfloat0.0003
learning_rate_criticfloat | NoneNoneIf none, then it is set to learning_rate_actor
initial_replay_sizeint64
max_replay_sizeint50000
batch_sizeint64
warmup_transitionsint100
lr_alphafloat0.0003
taufloat0.005
log_std_minfloat-20.0
log_std_maxfloat2.0
use_log_alpha_lossboolFalse
target_entropyfloat | NoneNone
drop_probfloat0.0
batch_normboolFalse
init_methodstrxavier_uniform“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”
optimizerstrAdam“Adam” or “SGD” or “RMSprop”
lossstrMSEcurrently only MSE is supported
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneSAC
network_actor_mu_paramsdictNone
network_actor_sigma_paramsdictNone
network_critic_paramsdictNone
+
+

source

+
+
+

SACAgent

+
+
 SACAgent (environment_info:ddopai.utils.MDPInfo, hidden_layers:List=None,
+           activation:str='relu', learning_rate_actor:float=0.0003,
+           learning_rate_critic:float|None=None,
+           initial_replay_size:int=64, max_replay_size:int=50000,
+           batch_size:int=64, warmup_transitions:int=100,
+           lr_alpha:float=0.0003, tau:float=0.005,
+           log_std_min:float=-20.0, log_std_max:float=2.0,
+           use_log_alpha_loss=False, target_entropy:float|None=None,
+           drop_prob:float=0.0, batch_norm:bool=False,
+           init_method:str='xavier_uniform', optimizer:str='Adam',
+           loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',
+           agent_name:str|None='SAC', observation_space_shape=None,
+           action_space_shape=None)
+
+

XXX

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
hidden_layersListNoneif None, then default is [64, 64]
activationstrrelu“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”
learning_rate_actorfloat0.0003
learning_rate_criticfloat | NoneNoneIf none, then it is set to learning_rate_actor
initial_replay_sizeint64
max_replay_sizeint50000
batch_sizeint64
warmup_transitionsint100
lr_alphafloat0.0003
taufloat0.005
log_std_minfloat-20.0
log_std_maxfloat2.0
use_log_alpha_lossboolFalse
target_entropyfloat | NoneNone
drop_probfloat0.0
batch_normboolFalse
init_methodstrxavier_uniform“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”
optimizerstrAdam“Adam” or “SGD” or “RMSprop”
lossstrMSEcurrently only MSE is supported
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneSAC
observation_space_shapeNoneTypeNoneoptional when it cannot be inferred from environment_info (e.g. for dict spaces)
action_space_shapeNoneTypeNoneoptional when it cannot be inferred from environment_info (e.g. for dict spaces)
+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
INFO:numexpr.utils:Note: NumExpr detected 10 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
+INFO:numexpr.utils:NumExpr defaulting to 8 threads.
+
+
+
+
val_index_start = 8000 #90_000
+test_index_start = 9000 #100_000
+
+X = np.random.standard_normal((10000, 2))
+Y = np.random.standard_normal((10000, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+Y = X[:,0].reshape(-1, 1)
+# truncate Y at 0:
+Y = np.maximum(Y, 0)
+# normalize Y max to 1
+Y = Y/np.max(Y)
+
+# print(np.max(Y))
+# print(X.shape, Y.shape)
+
+clip_action = ClipAction(0., 1.)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params =  {'lag_window': 0, 'include_y': False, 'pre_calc': True})
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+    q_bound_high = 1.0,
+    q_bound_low = -0.1,
+    postprocessors = [clip_action],
+)
+
+agent = SACAgent(environment.mdp_info,
+                obsprocessors = None,      # default: []
+                device="cpu", # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+environment.train()
+agent.train()
+environment.print=False
+
+# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = "test", save_best=True, print_freq=1) # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32
+  gym.logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
+INFO:root:Actor network (mu network):
+/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
+  action_fn=lambda data: sys.getsizeof(data.storage()),
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPActor                                 [1, 1]                    --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   192
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,417
+Trainable params: 4,417
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+
+
+
INFO:root:################################################################################
+INFO:root:Critic network:
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPStateAction                           --                        --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   256
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,481
+Trainable params: 4,481
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+-245.3059010258002 -154.16627214771364
+-245.3059010258002 -154.16627214771364
+
+
+
+

source

+
+
+

SACRNNAgent

+
+
 SACRNNAgent (environment_info:ddopai.utils.MDPInfo,
+              hidden_layers_RNN:int=1, num_hidden_units_RNN:int=64,
+              RNN_cell:str='GRU', hidden_layers_MLP:List=None,
+              hidden_layers_input_MLP:List=None, activation:str='relu',
+              learning_rate_actor:float=0.0003,
+              learning_rate_critic:float|None=None,
+              initial_replay_size:int=64, max_replay_size:int=50000,
+              batch_size:int=64, warmup_transitions:int=100,
+              lr_alpha:float=0.0003, tau:float=0.005,
+              log_std_min:float=-20.0, log_std_max:float=2.0,
+              use_log_alpha_loss=False, target_entropy:float|None=None,
+              drop_prob:float=0.0, batch_norm:bool=False,
+              init_method:str='xavier_uniform', optimizer:str='Adam',
+              loss:str='MSE', obsprocessors:list|None=None,
+              device:str='cpu', agent_name:str|None='SAC',
+              observation_space_shape=None, action_space_shape=None)
+
+

XXX

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
hidden_layers_RNNint1Initial RNN layers
num_hidden_units_RNNint64Initial number of hidden units in RNN layers
RNN_cellstrGRU“LSTM”, “GRU”, “RNN”
hidden_layers_MLPListNoneMLP layers behind RNN: if None, then default is [64, 64]
hidden_layers_input_MLPListNoneMLP layers for non-time features. Default is None
activationstrrelu“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”
learning_rate_actorfloat0.0003
learning_rate_criticfloat | NoneNoneIf none, then it is set to learning_rate_actor
initial_replay_sizeint64
max_replay_sizeint50000
batch_sizeint64
warmup_transitionsint100
lr_alphafloat0.0003
taufloat0.005
log_std_minfloat-20.0
log_std_maxfloat2.0
use_log_alpha_lossboolFalse
target_entropyfloat | NoneNone
drop_probfloat0.0
batch_normboolFalse
init_methodstrxavier_uniform“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”
optimizerstrAdam“Adam” or “SGD” or “RMSprop”
lossstrMSEcurrently only MSE is supported
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneSAC
observation_space_shapeNoneTypeNoneoptional when it cannot be inferred from environment_info (e.g. for dict spaces)
action_space_shapeNoneTypeNoneoptional when it cannot be inferred from environment_info (e.g. for dict spaces)
+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
+
val_index_start = 8000 #90_000
+test_index_start = 9000 #100_000
+
+X = np.random.standard_normal((10000, 2))
+Y = np.random.standard_normal((10000, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+Y = X[:,0].reshape(-1, 1)
+# truncate Y at 0:
+Y = np.maximum(Y, 0)
+# normalize Y max to 1
+Y = Y/np.max(Y)
+
+clip_action = ClipAction(0., 1.)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params =  {'lag_window': 5, 'include_y': True, 'pre_calc': True})
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+    q_bound_high = 1.0,
+    q_bound_low = -0.1,
+    postprocessors = [clip_action],
+)
+
+agent = SACRNNAgent(environment.mdp_info,
+                obsprocessors = None,      # default: []
+                device="cpu", # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+environment.train()
+agent.train()
+environment.print=False
+
+# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = "test", save_best=True, print_freq=1) # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32
+  gym.logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
+INFO:root:Actor network (mu network):
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+RNNActor                                 [1, 1]                    --
+├─RNNMLPHybrid: 1-1                      [1, 1]                    --
+│    └─Sequential: 2-1                   [1, 6, 64]                --
+│    │    └─SpecificRNNWrapper: 3-1      [1, 6, 64]                13,248
+│    │    └─ReLU: 3-2                    [1, 6, 64]                --
+│    └─Sequential: 2-2                   [1, 1]                    --
+│    │    └─Linear: 3-3                  [1, 64]                   4,160
+│    │    └─ReLU: 3-4                    [1, 64]                   --
+│    │    └─Dropout: 3-5                 [1, 64]                   --
+│    │    └─Linear: 3-6                  [1, 64]                   4,160
+│    │    └─ReLU: 3-7                    [1, 64]                   --
+│    │    └─Dropout: 3-8                 [1, 64]                   --
+│    │    └─Linear: 3-9                  [1, 1]                    65
+==========================================================================================
+Total params: 21,633
+Trainable params: 21,633
+Non-trainable params: 0
+Total mult-adds (M): 0.09
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.09
+Estimated Total Size (MB): 0.09
+==========================================================================================
+
+
+
INFO:root:################################################################################
+INFO:root:Critic network:
+
+
+
==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+RNNStateAction                           --                        --
+├─RNNMLPHybrid: 1-1                      [1, 1]                    --
+│    └─Sequential: 2-1                   [1, 6, 64]                --
+│    │    └─SpecificRNNWrapper: 3-1      [1, 6, 64]                13,248
+│    │    └─ReLU: 3-2                    [1, 6, 64]                --
+│    └─Sequential: 2-2                   [1, 1]                    --
+│    │    └─Linear: 3-3                  [1, 64]                   4,224
+│    │    └─ReLU: 3-4                    [1, 64]                   --
+│    │    └─Dropout: 3-5                 [1, 64]                   --
+│    │    └─Linear: 3-6                  [1, 64]                   4,160
+│    │    └─ReLU: 3-7                    [1, 64]                   --
+│    │    └─Dropout: 3-8                 [1, 64]                   --
+│    │    └─Linear: 3-9                  [1, 1]                    65
+==========================================================================================
+Total params: 21,697
+Trainable params: 21,697
+Non-trainable params: 0
+Total mult-adds (M): 0.09
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.09
+Estimated Total Size (MB): 0.09
+==========================================================================================
+-383.1306977574299 -243.60956423506602
+-383.1306977574299 -243.60956423506602
+
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/51_RL_agents/td3_agents.html b/30_agents/51_RL_agents/td3_agents.html new file mode 100644 index 0000000..1ef5453 --- /dev/null +++ b/30_agents/51_RL_agents/td3_agents.html @@ -0,0 +1,1427 @@ + + + + + + + + + + +TD3 agents – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

TD3 agents

+
+ +
+
+ TD3 based agent +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

TD3Agent

+
+
 TD3Agent (environment_info:ddopai.utils.MDPInfo,
+           learning_rate_actor:float=0.0003,
+           learning_rate_critic:float|None=None,
+           initial_replay_size:int=1024, max_replay_size:int=50000,
+           batch_size:int=64, hidden_layers:List=None,
+           activation:str='relu', tau:float=0.005, policy_delay:int=2,
+           noise_std:float=0.2, sigma_scale:float=0.5, theta:float=0.15,
+           dt=0.02, drop_prob:float=0.0, batch_norm:bool=False,
+           init_method:str='xavier_uniform', optimizer:str='Adam',
+           loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',
+           agent_name:str|None='SAC')
+
+

XXX

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environment_infoMDPInfo
learning_rate_actorfloat0.0003
learning_rate_criticfloat | NoneNoneIf none, then it is set to learning_rate_actor
initial_replay_sizeint1024
max_replay_sizeint50000
batch_sizeint64
hidden_layersListNoneif None, then default is [64, 64]
activationstrrelu“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”
taufloat0.005
policy_delayint2
noise_stdfloat0.2
sigma_scalefloat0.5
thetafloat0.15
dtfloat0.02
drop_probfloat0.0
batch_normboolFalse
init_methodstrxavier_uniform“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”
optimizerstrAdam“Adam” or “SGD” or “RMSprop”
lossstrMSEcurrently only MSE is supported
obsprocessorslist | NoneNonedefault: []
devicestrcpu“cuda” or “cpu”
agent_namestr | NoneSAC
+
+
# #| export
+
+# class TD3Agent():
+
+#     train_mode = "env_interaction"
+
+#     """
+#     Soft Actor Critic (SAC) agent with hybrid action, both based on Gaussian. The binary action is 
+#     0 if the output of the network is less or equal than 0, and 1 otherwise.
+
+#     Args:
+#         mdp_info (MDPInfo): Contains relevant information about the environment.
+#         learning_rate_actor (float): Learning rate for the actor.
+#         learning_rate_critic (float): Learning rate for the critic.
+#         learning_rate_alpha (float): Learning rate for the temperature parameter.
+#         initial_replay_size (int): Number of transitions to save in the replay buffer during startup.
+#         max_replay_size (int): Maximum number of transitions to save in the replay buffer.
+#         batch_size (int): Number of transitions to sample each time experience is replayed.
+#         n_features (int): Number of features for the hidden layers of the networks.
+#         lr_alpha (float): Learning rate for the temperature parameter.
+#         tau (float): Parameter for the soft update of the target networks.
+#         optimizer (torch.optim): Optimizer to use for the networks.
+#         squeeze_output (bool): Whether to squeeze the output of the actor network or not.
+#         use_cuda (bool): Whether to use CUDA or not. If True and not available, it will use CPU.
+#         agent_name (str): Name of the agent. If set to None will use some default name.
+
+#     """
+
+#     def __init__(
+#             self,
+#             environment_info: MDPInfo,
+#             learning_rate_actor = 3e-4,
+#             learning_rate_critic = None,
+#             initial_replay_size = 1024,
+#             max_replay_size = 50000,
+#             batch_size = 64,
+#             hidden_layers = [64, 64],
+#             tau = 0.005,
+#             policy_delay = 2,
+#             noise_std = 0.2,
+#             optimizer = optim.Adam,
+#             sigma_scale = 0.5,
+
+#             loss = "MSE",
+
+#             theta=0.15,
+#             dt=0.02,
+#             squeeze_output = True,
+#             device = "cuda",
+#             agent_name = None): 
+        
+#         # print("in init fubction")
+
+#         self.warmup_training_steps = initial_replay_size
+
+#         mdp_info = environment_info
+#         optimizer = optim.Adam
+        
+#         self.policy_class = OrnsteinUhlenbeckPolicy
+#         self.policy_params = dict(sigma=np.ones(1) * sigma_scale, theta=theta, dt=dt)
+
+#         if len(mdp_info.observation_space.shape) == 2:
+#             input_shape = (mdp_info.observation_space.shape[0]*mdp_info.observation_space.shape[1],)
+#         else:
+#             input_shape = mdp_info.observation_space.shape
+
+#         actor_output_shape = (mdp_info.action_space.shape[0],) 
+
+#         print(input_shape)
+
+#         use_cuda = False
+
+#         if learning_rate_critic is None:
+#             learning_rate_critic = learning_rate_actor
+
+#         actor_params = dict(network=MLPActor,
+#                                 hidden_layers=hidden_layers,
+#                                 input_shape=input_shape,
+#                                 output_shape=actor_output_shape,
+#                                 use_cuda=use_cuda)
+        
+#         # print("setting optimizer class")
+#         actor_optimizer = {'class': optimizer,
+#                     'params': {'lr': learning_rate_actor}} 
+        
+#         critic_input_shape = (input_shape[0] + actor_output_shape[0],)
+#         critic_params = dict(network=MLPStateAction,
+#                         optimizer={'class': optimizer,
+#                                 'params': {'lr': learning_rate_critic}}, 
+#                         loss=F.mse_loss,
+#                         hidden_layers=hidden_layers,
+#                         input_shape=critic_input_shape,
+#                         output_shape=(1,),
+#                         squeeze_output=squeeze_output,
+#                         use_cuda=use_cuda)
+        
+#         # print("creating agent from mushroom")
+        
+#         self.agent = TD3(mdp_info, self.policy_class, self.policy_params,
+#                     actor_params, actor_optimizer, critic_params, batch_size,
+#                     initial_replay_size, max_replay_size, tau, policy_delay, noise_std)
+                
+#         self.network_list, self.actor, self.critic = self.get_network_list(set_actor_critic_attributes=True)
+    
+#         # print("created agent from mushroom")
+
+#         if agent_name is None:
+#             self.agent.name = 'TD3_classic'
+#         else:
+#             self.agent.name = agent_name
+
+#     def __getattr__(self, attr):
+#         return getattr(self.agent, attr)
+
+#     def train(self,):
+#         self.agent.policy.train()
+    
+#     def eval(self,):
+#         self.agent.policy.eval()
+
+#     def get_network_list(self, set_actor_critic_attributes: bool = True):
+#         """ Get the list of networks in the agent for the save and load functions
+#         Get the actor for the predict function in eval mode """
+
+#         networks = []
+#         ensemble_critic = self.agent._critic_approximator._impl.model
+#         for i, model in enumerate(ensemble_critic):
+#             networks.append(model.network)
+#         networks.append(self.agent.policy._approximator._impl.model.network)
+
+#         actor = self.agent.policy._approximator._impl.model.network
+#         critic = ensemble_critic[0].network
+
+#         if set_actor_critic_attributes:
+#             return networks, actor, critic
+#         else:
+#             return networks
+        
+#     def save(self,
+#                 path: str, # The directory where the file will be saved.
+#                 overwrite: bool=True): # Allow overwriting; if False, a FileExistsError will be raised if the file exists.
+        
+#         """
+#         Save the PyTorch model to a file in the specified directory.
+
+#         """
+        
+#         if not hasattr(self, 'network_list') or self.network_list is None:
+#             raise AttributeError("Cannot find networks.")
+
+#         # Create the directory path if it does not exist
+#         os.makedirs(path, exist_ok=True)
+
+#         # Construct the file path using os.path.join for better cross-platform compatibility
+
+#         for network_number, network in enumerate(self.network_list):
+#             full_path = os.path.join(path, f"network_{network_number}.pth")
+
+#             if os.path.exists(full_path):
+#                 if not overwrite:
+#                     raise FileExistsError(f"The file {full_path} already exists and will not be overwritten.")
+#                 else:
+#                     logging.debug(f"Overwriting file {full_path}") # Only log with info as during training we will continuously overwrite the model
+            
+#             # Save the model's state_dict using torch.save
+#             torch.save(network.state_dict(), full_path)
+#         logging.debug(f"Model saved successfully to {full_path}")
+    
+#     def load(self, path: str):
+#         """
+#         Load the PyTorch models from files in the specified directory.
+#         """
+        
+#         if not hasattr(self, 'network_list') or self.network_list is None:
+#             raise AttributeError("Cannot find networks to load.")
+
+#         # Check for the presence of model files
+#         for network_number, network in enumerate(self.network_list):
+#             full_path = os.path.join(path, f"network_{network_number}.pth")
+
+#             if not os.path.exists(full_path):
+#                 raise FileNotFoundError(f"The file {full_path} does not exist.")
+            
+#             try:
+#                 # Load each network's state_dict
+#                 network.load_state_dict(torch.load(full_path))
+#                 logging.info(f"Network {network_number} loaded successfully from {full_path}")
+#             except Exception as e:
+#                 raise RuntimeError(f"An error occurred while loading network {network_number}: {e}")
+
+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.experiments.experiment_functions import run_experiment, test_agent
+
+
+
val_index_start = 8000 #90_000
+test_index_start = 9000 #100_000
+
+X = np.random.standard_normal((10000, 2))
+Y = np.random.standard_normal((10000, 1))
+Y += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)
+Y = X[:,0].reshape(-1, 1)
+# truncate Y at 0:
+Y = np.maximum(Y, 0)
+# normalize Y max to 1
+Y = Y/np.max(Y)
+
+print(np.max(Y))
+
+print(X.shape, Y.shape)
+
+clip_action = ClipAction(0., 1.)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params =  {'lag_window': 0, 'include_y': False, 'pre_calc': True})
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+    q_bound_high = 1.0,
+    q_bound_low = -0.1,
+    postprocessors = [clip_action],
+)
+
+
+
+agent = TD3Agent(environment.mdp_info,
+                obsprocessors = None,      # default: []
+                device="cpu", # "cuda" or "cpu"
+)
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+environment.train()
+agent.train()
+environment.print=False
+
+# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = "test", save_best=True, print_freq=1) # fit agent via run_experiment function
+
+environment.test()
+agent.eval()
+
+R, J = test_agent(agent, environment)
+
+print(R, J)
+
+
1.0
+(10000, 2) (10000, 1)
+
+
+
/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32
+  gym.logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
+INFO:root:Actor network:
+/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
+  action_fn=lambda data: sys.getsizeof(data.storage()),
+
+
+
Checking tuple: (2,)
+==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPActor                                 [1, 1]                    --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   192
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,417
+Trainable params: 4,417
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+
+
+
INFO:root:Critic network:
+
+
+
Checking tuple: (2,)
+Checking tuple: (1,)
+==========================================================================================
+Layer (type:depth-idx)                   Output Shape              Param #
+==========================================================================================
+MLPStateAction                           --                        --
+├─Sequential: 1-1                        [1, 1]                    --
+│    └─Linear: 2-1                       [1, 64]                   256
+│    └─ReLU: 2-2                         [1, 64]                   --
+│    └─Dropout: 2-3                      [1, 64]                   --
+│    └─Linear: 2-4                       [1, 64]                   4,160
+│    └─ReLU: 2-5                         [1, 64]                   --
+│    └─Dropout: 2-6                      [1, 64]                   --
+│    └─Linear: 2-7                       [1, 1]                    65
+│    └─Identity: 2-8                     [1, 1]                    --
+==========================================================================================
+Total params: 4,481
+Trainable params: 4,481
+Non-trainable params: 0
+Total mult-adds (M): 0.00
+==========================================================================================
+Input size (MB): 0.00
+Forward/backward pass size (MB): 0.00
+Params size (MB): 0.02
+Estimated Total Size (MB): 0.02
+==========================================================================================
+-779.2586167634846 -492.39378518242427
+-779.2586167634846 -492.39378518242427
+
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/60_approximators/approximators.html b/30_agents/60_approximators/approximators.html new file mode 100644 index 0000000..fce6196 --- /dev/null +++ b/30_agents/60_approximators/approximators.html @@ -0,0 +1,1249 @@ + + + + + + + + + + +Approximators – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Approximators

+
+ +
+
+ Generic networks that approximate a function, used for supervised learning +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseModule

+
+
 BaseModule ()
+
+

*Base class for all neural network modules.

+

Your models should also subclass this class.

+

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

+
import torch.nn as nn
+import torch.nn.functional as F
+
+class Model(nn.Module):
+    def __init__(self) -> None:
+        super().__init__()
+        self.conv1 = nn.Conv2d(1, 20, 5)
+        self.conv2 = nn.Conv2d(20, 20, 5)
+
+    def forward(self, x):
+        x = F.relu(self.conv1(x))
+        return F.relu(self.conv2(x))
+

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

+

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

+

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*

+
+

source

+
+
+

LinearModel

+
+
 LinearModel (input_size:int, output_size:int, relu_output:bool=False)
+
+

Linear regression model

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_sizeintnumber of features
output_sizeintnumber of outputs/actions
relu_outputboolFalsewhether to apply ReLU activation to the output
+
+

source

+
+
+

MLP

+
+
 MLP (input_size:int, output_size:int, hidden_layers:list,
+      drop_prob:float=0.0, batch_norm:bool=False, relu_output:bool=False)
+
+

Multilayer perceptron model

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_sizeintnumber of features
output_sizeintnumber of outputs/actions
hidden_layerslistlist of number of neurons in each hidden layer
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
relu_outputboolFalsewhether to apply ReLU activation to the output
+
+

source

+
+
+

Transformer

+
+
 Transformer (input_size:int, output_size:int, max_context_length:int=128,
+              n_layer:int=3, n_head:int=8, n_embd_per_head:int=32,
+              rope_scaling:Optional[Dict]=None, min_multiple=256,
+              gating=True, drop_prob:float=0.0, final_activation:Literal['
+              relu','sigmoid','tanh','elu','leakyrelu','identity']='identi
+              ty')
+
+

Multilayer perceptron model

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_sizeintnumber of (time steps, features)
output_sizeintnumber of outputs/actions
max_context_lengthint128maximum context lenght during inference
n_layerint3number of layers in the transformer
n_headint8number of heads per layer
n_embd_per_headint32number of embedding per head
rope_scalingOptionalNonewhether to use rope scaling, not implemented yet
min_multipleint256minimum multiple for neurons in the MLP block of the transformer
gatingboolTrueWhether to apply the gating mechanism from the original Llama model (used in LagLlama)
drop_probfloat0.0dropout probability
final_activationLiteralidentityfinal activation function
+
+

source

+
+
+

apply_rotary_pos_emb

+
+
 apply_rotary_pos_emb (q, k, cos, sin, position_ids)
+
+
+

source

+
+
+

rotate_half

+
+
 rotate_half (x)
+
+

Rotates half the hidden dims of the input.

+
+

source

+
+
+

LlamaRotaryEmbedding

+
+
 LlamaRotaryEmbedding (dim, max_position_embeddings=2048, base=10000,
+                       device=None)
+
+

Rotary positional embeddings (RoPE) based on https://arxiv.org/abs/2104.09864 Code following the implementation in https://github.com/time-series-foundation-models/lag-llama

+
+

source

+
+
+

find_multiple

+
+
 find_multiple (n:int, k:int)
+
+
+

source

+
+
+

CausalSelfAttention

+
+
 CausalSelfAttention (n_embd_per_head, n_head, block_size, dropout)
+
+

Causeal self-attention module Based on the implementation in https://github.com/time-series-foundation-models/lag-llama, without usage of kv_cache since we always make a prediction for only the next step

+
+

source

+
+
+

MLP_block

+
+
 MLP_block (n_embd_per_head, n_head, min_multiple=256, gating=True)
+
+

*Base class for all neural network modules.

+

Your models should also subclass this class.

+

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

+
import torch.nn as nn
+import torch.nn.functional as F
+
+class Model(nn.Module):
+    def __init__(self) -> None:
+        super().__init__()
+        self.conv1 = nn.Conv2d(1, 20, 5)
+        self.conv2 = nn.Conv2d(20, 20, 5)
+
+    def forward(self, x):
+        x = F.relu(self.conv1(x))
+        return F.relu(self.conv2(x))
+

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

+

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

+

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*

+
+

source

+
+
+

RMSNorm

+
+
 RMSNorm (size:int, dim:int=-1, eps:float=1e-05)
+
+

*Root Mean Square Layer Normalization as implemented in https://github.com/time-series-foundation-models/lag-llama.

+

Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.*

+
+

source

+
+
+

Block

+
+
 Block (n_embd_per_head, n_head, block_size, dropout, min_multiple=256,
+        gating=True)
+
+

*Base class for all neural network modules.

+

Your models should also subclass this class.

+

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

+
import torch.nn as nn
+import torch.nn.functional as F
+
+class Model(nn.Module):
+    def __init__(self) -> None:
+        super().__init__()
+        self.conv1 = nn.Conv2d(1, 20, 5)
+        self.conv2 = nn.Conv2d(20, 20, 5)
+
+    def forward(self, x):
+        x = F.relu(self.conv1(x))
+        return F.relu(self.conv2(x))
+

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

+

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

+

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*

+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/60_approximators/critic_networks.html b/30_agents/60_approximators/critic_networks.html new file mode 100644 index 0000000..88e0b1c --- /dev/null +++ b/30_agents/60_approximators/critic_networks.html @@ -0,0 +1,1559 @@ + + + + + + + + + + +Critic Networks – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Critic Networks

+
+ +
+
+ Specific models that can serve as critic networks for RL agents +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

RNNWrapper

+
+
 RNNWrapper (rnn_cell_class, *args, **kwargs)
+
+

*Base class for all neural network modules.

+

Your models should also subclass this class.

+

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

+
import torch.nn as nn
+import torch.nn.functional as F
+
+class Model(nn.Module):
+    def __init__(self) -> None:
+        super().__init__()
+        self.conv1 = nn.Conv2d(1, 20, 5)
+        self.conv2 = nn.Conv2d(20, 20, 5)
+
+    def forward(self, x):
+        x = F.relu(self.conv1(x))
+        return F.relu(self.conv2(x))
+

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

+

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

+

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*

+
+

source

+
+
+

BaseApproximator

+
+
 BaseApproximator ()
+
+

Some basic functions for approximators

+
+

source

+
+
+

BaseApproximatorMLP

+
+
 BaseApproximatorMLP ()
+
+

Some basic functions for approximators

+
+

source

+
+
+

RNNMLPHybrid

+
+
 RNNMLPHybrid (RNN_input_size:int, MLP_input_size:int|None,
+               output_size:int, num_hidden_units_RNN:int,
+               hidden_layers_RNN:int, hidden_layers_MLP:List[int],
+               hidden_layers_input_MLP:Optional[List[int]],
+               RNN_cell:torch.nn.modules.module.Module,
+               activation:torch.nn.modules.module.Module,
+               final_activation:torch.nn.modules.module.Module,
+               drop_prob:float, batch_norm:bool, init_method:str)
+
+

A hybrid model combining an RNN and an MLP

+
+

source

+
+
+

BaseApproximatorRNN

+
+
 BaseApproximatorRNN ()
+
+

Some basic functions for approximators

+
+

source

+
+
+

MLPStateAction

+
+
 MLPStateAction (input_shape:Union[Tuple,List[Tuple]], output_shape:Tuple,
+                 hidden_layers:list, activation:str='relu',
+                 drop_prob:float=0.0, batch_norm:bool=False,
+                 final_activation:str='identity',
+                 init_method:str='xavier_uniform', use_cuda:bool=False,
+                 dropout:bool=False)
+
+

Multilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_shapeUnionnumber of features
output_shapeTuplenumber of outputs/actions
hidden_layerslistlist of number of neurons in each hidden layer
activationstrrelu
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
final_activationstridentitywhether to apply ReLU activation to the output
init_methodstrxavier_uniformParameter for initialization
use_cudaboolFalsehandled by mushroomRL, not used here
dropoutboolFalselegacy parameter to ensure compatibility, use drop_prob instead
+
+

source

+
+
+

MLPState

+
+
 MLPState (input_shape:Tuple, output_shape:Tuple, hidden_layers:list,
+           activation:str='relu', drop_prob:float=0.0,
+           batch_norm:bool=False, final_activation:str='identity',
+           init_method:str='xavier_uniform', use_cuda:bool=False,
+           dropout:bool=False)
+
+

Multilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_shapeTuplenumber of features
output_shapeTuplenumber of outputs/actions
hidden_layerslistlist of number of neurons in each hidden layer
activationstrrelu
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
final_activationstridentitywhether to apply ReLU activation to the output
init_methodstrxavier_uniformParameter for initialization
use_cudaboolFalsehandled by mushroomRL, not used here
dropoutboolFalselegacy parameter to ensure compatibility, use drop_prob instead
+
+

source

+
+
+

MLPActor

+
+
 MLPActor (input_shape:Tuple, output_shape:Tuple, hidden_layers:list,
+           activation:str='relu', drop_prob:float=0.0,
+           batch_norm:bool=False, final_activation:str='identity',
+           init_method:str='xavier_uniform', use_cuda:bool=False,
+           dropout:bool=False, **kwargs)
+
+

Multilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_shapeTuplenumber of features
output_shapeTuplenumber of outputs/actions
hidden_layerslistlist of number of neurons in each hidden layer
activationstrrelu
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
final_activationstridentitywhether to apply ReLU activation to the output
init_methodstrxavier_uniformParameter for initialization
use_cudaboolFalse
dropoutboolFalselegacy parameter to ensure compatibility, use drop_prob instead
kwargs
+
+

source

+
+
+

RNNActor

+
+
 RNNActor (input_shape:List[Tuple], output_shape:Tuple,
+           hidden_layers_RNN:int, num_hidden_units_RNN:int,
+           hidden_layers_MLP:List,
+           hidden_layers_input_MLP:Optional[List]=None,
+           RNN_cell:str='GRU', activation:str='relu', drop_prob:float=0.0,
+           batch_norm:bool=False, final_activation:str='identity',
+           init_method:str='xavier_uniform', use_cuda:bool=False,
+           dropout:bool=False, input_shape_:List[Tuple]=None, **kwargs)
+
+

Multilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_shapeListinput shape, must be exaclty as input shape into agent for mushroom_rl to work
output_shapeTuplenumber of outputs/actions
hidden_layers_RNNintnumber of initial hidden RNN layers
num_hidden_units_RNNintnumber of neurons in the RNN layers
hidden_layers_MLPListlist of number of neurons in each hidden MLP layer, following the RNN layers
hidden_layers_input_MLPOptionalNoneIf a separate MLP is used for (potential) MLP input
RNN_cellstrGRURNN cell type
activationstrrelu
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
final_activationstridentitywhether to apply ReLU activation to the output
init_methodstrxavier_uniformParameter for initialization
use_cudaboolFalse
dropoutboolFalselegacy parameter to ensure compatibility, use drop_prob instead
input_shape_ListNoneinput shape for composite spaces
kwargs
+
+

source

+
+
+

RNNStateAction

+
+
 RNNStateAction (input_shape:List[Tuple], output_shape:Tuple,
+                 hidden_layers_RNN:int, num_hidden_units_RNN:int,
+                 hidden_layers_MLP:List,
+                 hidden_layers_input_MLP:Optional[List]=None,
+                 RNN_cell:str='GRU', activation:str='relu',
+                 drop_prob:float=0.0, batch_norm:bool=False,
+                 final_activation:str='identity',
+                 init_method:str='xavier_uniform', use_cuda:bool=False,
+                 dropout:bool=False, input_shape_:List[Tuple]=None,
+                 **kwargs)
+
+

Multilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
input_shapeListinput shape, must be exaclty as input shape into agent for mushroom_rl to work
output_shapeTupleOutput shape
hidden_layers_RNNintnumber of initial hidden RNN layers
num_hidden_units_RNNintnumber of neurons in the RNN layers
hidden_layers_MLPListlist of number of neurons in each hidden MLP layer, following the RNN layers
hidden_layers_input_MLPOptionalNonestructure of MLP to speratly process non-RNN input
RNN_cellstrGRURNN cell type
activationstrrelu
drop_probfloat0.0dropout probability
batch_normboolFalsewhether to apply batch normalization
final_activationstridentitywhether to apply ReLU activation to the output
init_methodstrxavier_uniformParameter for initialization
use_cudaboolFalse
dropoutboolFalselegacy parameter to ensure compatibility, use drop_prob instead
input_shape_ListNoneinput shape for composite spaces
kwargs
+
+
import mushroom_rl
+mushroom_rl.__file__
+
+
'/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/mushroom_rl/__init__.py'
+
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/ml_utils.html b/30_agents/ml_utils.html new file mode 100644 index 0000000..9ff8f1c --- /dev/null +++ b/30_agents/ml_utils.html @@ -0,0 +1,938 @@ + + + + + + + + + + +ML utils – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

ML utils

+
+ +
+
+ Some helper functions for machine learning tasks. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

LRSchedulerPerStep

+
+
 LRSchedulerPerStep (optimizer:torch.optim.optimizer.Optimizer,
+                     base_learning_rate:float=0.0001, warmup:int=4000)
+
+

Learning rate scheduler from Attention is all you need paper (https://arxiv.org/abs/1706.03762) One ajustment: Added base LR as tunable parameter rather than setting it automated based on model dimension

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
optimizerOptimizerOptimizer to adjust learning rate for
base_learning_ratefloat0.0001
warmupint4000
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/30_agents/obsprocessors.html b/30_agents/obsprocessors.html new file mode 100644 index 0000000..2199ed0 --- /dev/null +++ b/30_agents/obsprocessors.html @@ -0,0 +1,1125 @@ + + + + + + + + + + +Obsprocessors – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Obsprocessors

+
+ +
+
+ Processors for observations can be used to process the input for an agent before it is being passed to the agent. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BaseProcessor

+
+
 BaseProcessor ()
+
+

Initialize self. See help(type(self)) for accurate signature.

+
+

source

+
+
+

FlattenTimeDimNumpy

+
+
 FlattenTimeDimNumpy (allow_2d:Optional[bool]=False,
+                      batch_dim_included:Optional[bool]=True)
+
+

Preprocessor to flatten the time and feature dimension of the input. Used, e.g., to convert time-series data for models that cannot process a time dimension such as MLPs or Regression models.

+ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
allow_2dOptionalFalse
batch_dim_includedOptionalTrue
+
+

source

+
+

FlattenTimeDimNumpy.check_input

+
+
 FlattenTimeDimNumpy.check_input (input:numpy.ndarray)
+
+

Check that the input is a Numpy array with the correct shape.

+ + + + + + + + + + + + + + + +
TypeDetails
inputndarray
+
+

source

+
+
+

FlattenTimeDimNumpy.__call__

+
+
 FlattenTimeDimNumpy.__call__ (input:numpy.ndarray)
+
+

Process the input array by keeping the batch dimension and flattening the time and feature dimensions.

+
+

source

+
+
+

ConvertDictSpace

+
+
 ConvertDictSpace (keep_time_dim:Optional[bool]=False,
+                   hybrid_space_params:Optional[Dict]=None)
+
+

*A utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension.

+

Note, this class is only used to preprocess output from the environment without batch dimension.*

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
keep_time_dimOptionalFalseIf time timension should be flattened as well.
hybrid_space_paramsOptionalNonedict with keys “time” that is a list of observation keys that should keep the time dimension.
+
+

source

+
+
+

AddParamsToFeaturesLEGACY

+
+
 AddParamsToFeaturesLEGACY (environment:object,
+                            keep_time_dim:Optional[bool]=False,
+                            hybrid:Optional[bool]=False,
+                            receive_batch_dim:Optional[bool]=False)
+
+

A utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension. # TODO: Currently is mixes too many cases like batched input, hybrid input etc. Seperate into more specific obsprocessors.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environmentobjectThe environment object, needed to check if val or train mode,
keep_time_dimOptionalFalseIf time timension should be flattened as well.
hybridOptionalFalseIf the param dim should be added as separate vector or concatenated to the features.
receive_batch_dimOptionalFalseIf the input contains a batch dimension.
+
+

source

+
+
+

AddParamsToFeatures

+
+
 AddParamsToFeatures (environment:object,
+                      keep_time_dim:Optional[bool]=False,
+                      receive_batch_dim:Optional[bool]=False)
+
+

A utility class to process a dictionary of numpy arrays (from dict space), with options to preserve or flatten the time dimension. It always adds the parameters to the appropriate dimension. For composite spaces (partially time-series, partially not), use the separate AddParamsToFeaturesComposite class.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
environmentobjectThe environment object, needed to check if val or train mode,
keep_time_dimOptionalFalseIf time timension should be flattened as well.
receive_batch_dimOptionalFalseIf the input contains a batch dimension.
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/40_experiments/experiment_functions.html b/40_experiments/experiment_functions.html new file mode 100644 index 0000000..d129688 --- /dev/null +++ b/40_experiments/experiment_functions.html @@ -0,0 +1,1533 @@ + + + + + + + + + + +Experiment functions – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Experiment functions

+
+ +
+
+ Functions to run experiments more efficiently. The usage of these functions is optional and they are only compatible with agents defined in this package. Using agents from other packages such as Stable Baselines or RLlib may require using their own experiment functions. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

EarlyStoppingHandler

+
+
 EarlyStoppingHandler (patience:int=50, warmup:int=100, criteria:str='J',
+                       direction:str='max')
+
+

Class to handle early stopping during experiments. The EarlyStoppingHandler handler calculates the average score over the last “patience” epochs and compares it to the average score over the previous “patience” epochs. Note that one epoch we define here as time in between evaluating on a validation set, for supervised learning typically one epoch is one pass through the training data. For reinforcement learning, in between each evaluation epoch there may be less than one, one, or many episodes played in the training environment.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
patienceint50Number of epochs to evaluate for stopping
warmupint100How many initial epochs to wait before evaluating
criteriastrJWhether to use discounted rewards J or total rewards R as criteria
directionstrmaxWhether reward shall be maximized or minimized
+
+

source

+
+

EarlyStoppingHandler.add_result

+
+
 EarlyStoppingHandler.add_result (J:float, R:float)
+
+

Add the result of the last epoch to the history and check if the experiment should be stopped.

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
JfloatReturn (discounted rewards) of the last epoch
RfloatTotal rewards of the last epoch
Returnsbool
+
+
+
+

Helper functions

+
+

Some functions that are needed to run an experiment

+
+
+

source

+
+

save_agent

+
+
 save_agent (agent:ddopai.agents.base.BaseAgent, experiment_dir:str,
+             save_best:bool, R:float, J:float, best_R:float, best_J:float,
+             criteria:str='J', force_save=False)
+
+

Save the agent if it has improved either R or J, depending on the criteria argument, vs. the previous epochs

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
agentBaseAgentAny agent inheriting from BaseAgent
experiment_dirstrDirectory to save the agent,
save_bestbool
Rfloat
Jfloat
best_Rfloat
best_Jfloat
criteriastrJ
force_saveboolFalse
+
+

source

+
+
+

update_best

+
+
 update_best (R:float, J:float, best_R:float, best_J:float)
+
+

Update the best total rewards R and the best discounted rewards J.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
Rfloat
Jfloat
best_Rfloat
best_Jfloat
+
+

source

+
+
+

log_info

+
+
 log_info (R:float, J:float, n_epochs:int, tracking:Literal['wandb'],
+           mode:Literal['train','val','test'])
+
+

Logs the same R, J information repeatedly for n_epoochs. E.g., to draw a straight line in wandb for algorithmes such as XGB, RF, etc. that can be comparared to the learning curves of supervised or reinforcement learning algorithms.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
Rfloat
Jfloat
n_epochsint
trackingLiteralonly wandb implemented so far
modeLiteral
+
+

source

+
+
+

calculate_score

+
+
 calculate_score (dataset:List, env:ddopai.envs.base.BaseEnvironment)
+
+

Calculate the total rewards R and the discounted rewards J of a dataset.

+ +++++ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
datasetList
envBaseEnvironmentAny environment inheriting from BaseEnvironment
ReturnsTuple
+
+
+
+

Experiment functions

+
+

Functions to run experiments

+
+
+

source

+
+

run_experiment

+
+
 run_experiment (agent:ddopai.agents.base.BaseAgent,
+                 env:ddopai.envs.base.BaseEnvironment, n_epochs:int,
+                 n_steps:int=None, early_stopping_handler:Optional[__main_
+                 _.EarlyStoppingHandler]=None, save_best:bool=True,
+                 performance_criterion:str='J',
+                 tracking:Optional[str]=None, results_dir:str='results',
+                 run_id:Optional[str]=None, print_freq:int=10,
+                 eval_step_info=False, return_score=False)
+
+

Run an experiment with the given agent and environment for n_epochs. It automaticall dedects if the train mode of the agent is direct, epochs_fit or env_interaction and runs the experiment accordingly.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
agentBaseAgent
envBaseEnvironment
n_epochsint
n_stepsintNoneNumber of steps to interact with the environment per epoch. Will be ignored for direct_fit and epchos_fit agents
early_stopping_handlerOptionalNone
save_bestboolTrue
performance_criterionstrJother: “R”
trackingOptionalNoneother: “wandb”
results_dirstrresults
run_idOptionalNone
print_freqint10
eval_step_infoboolFalse
return_scoreboolFalse
+
+
+

Important notes on running experiments

+

Training mode:

+
    +
  • Agents have either a training mode direct_fit or epochs_fit or env_interaction. direct_fit means that agents are called with a single call to the fit method, providing the full X and Y dataset. epochs_fit means that agents are training iteratively via epochs. It is assumed that they then have access to the dataloader.
  • +
+

Train, val, test mode:

+
    +
  • The function always sets the agent and environment to the approproate dataset mode (and thereofore indirectly the dataloader via then environment).
  • +
+

Early stopping:

+
    +
  • Can be optionally applied for epochs_fit and env_interaction agents.
  • +
+

Save best agent:

+
    +
  • The save_agent() functions, given the save_bestparam is True, will save the best agent based on the validation score.

  • +
  • At test time at a later point, one can then load the best agent and evaluate it on the test set (not done automatically by this function).

  • +
+

Logging:

+
    +
  • By setting logging to "wandb" the function will log J and R to wandb.
  • +
+
+

source

+
+
+

test_agent

+
+
 test_agent (agent:ddopai.agents.base.BaseAgent,
+             env:ddopai.envs.base.BaseEnvironment, return_dataset=False,
+             save_features=False, tracking=None, eval_step_info=False)
+
+

Tests the agent on the environment for a single episode

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
agentBaseAgent
envBaseEnvironment
return_datasetboolFalse
save_featuresboolFalse
trackingNoneTypeNoneother: “wandb”,
eval_step_infoboolFalse
+
+

source

+
+
+

run_test_episode

+
+
 run_test_episode (env:ddopai.envs.base.BaseEnvironment,
+                   agent:ddopai.agents.base.BaseAgent,
+                   eval_step_info:bool=False, save_features:bool=False)
+
+

Runs an episode to test the agent’s performance. It assumes, that agent and environment are initialized, in test/val mode and have done reset.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
envBaseEnvironmentAny environment inheriting from BaseEnvironment
agentBaseAgentAny agent inheriting from BaseAgent
eval_step_infoboolFalsePrint step info during evaluation
save_featuresboolFalseSave features (observation) of the dataset. Can be turned off since they sometimes become very large with many lag information
+

Usage example for test_agent():

+
+
from ddopai.envs.inventory.single_period import NewsvendorEnv
+from ddopai.dataloaders.tabular import XYDataLoader
+from ddopai.agents.basic import RandomAgent
+
+
+
val_index_start = 80 #90_000
+test_index_start = 90 #100_000
+
+X = np.random.rand(100, 2)
+Y = np.random.rand(100, 1)
+
+dataloader = XYDataLoader(X, Y, val_index_start, test_index_start)
+
+environment = NewsvendorEnv(
+    dataloader = dataloader,
+    underage_cost = 0.42857,
+    overage_cost = 1.0,
+    gamma = 0.999,
+    horizon_train = 365,
+)
+
+agent = RandomAgent(environment.mdp_info)
+
+environment.test()
+
+R, J = test_agent(agent, environment)
+
+print(f"R: {R}, J: {J}")
+
+
R: -7.269816766556392, J: -7.236762453375597
+
+
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/40_experiments/meta_experiment_functions.html b/40_experiments/meta_experiment_functions.html new file mode 100644 index 0000000..b0e0c25 --- /dev/null +++ b/40_experiments/meta_experiment_functions.html @@ -0,0 +1,1424 @@ + + + + + + + + + + +Meta experiment functions – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Meta experiment functions

+
+ +
+
+ Very high-level functions to run experiments with minimal code, directly from terminal. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

Warnings

+
+

Some warnings are irrelevant for this library

+
+
+

source

+
+

set_warnings

+
+
 set_warnings (logging_level)
+
+

Set warnings to be ignored for the given logging level or higher.

+
+
+
+

Load files and set-up tracking

+
+

Fist part of experiment: Log into wandb and load config files

+
+
+

source

+
+

prep_experiment

+
+
 prep_experiment (project_name:str,
+                  libraries_to_track:List[str]=['ddopai'],
+                  config_train_name:str='config_train',
+                  config_agent_name:str='config_agent',
+                  config_env_name:str='config_env')
+
+

First stpes to always execute when starting an experiment (using wandb for tracking)

+
+

source

+
+
+

init_wandb

+
+
 init_wandb (project_name:str)
+
+

init wandb

+ + + + + + + + + + + + + + + +
TypeDetails
project_namestr
+
+

source

+
+
+

track_libraries_and_git

+
+
 track_libraries_and_git (libraries_to_track:List[str],
+                          tracking:bool=True, tracking_tool='wandb')
+
+

Track the versions of the libraries and the git hash of the repository.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
libraries_to_trackList
trackingboolTrue
tracking_toolstrwandbCurrenty only wandb is supported
ReturnsNone
+
+

source

+
+
+

import_config

+
+
 import_config (filename:str, path:str=None)
+
+

Import a config file in YAML format

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
filenamestrName of the file, must be a yaml file
pathstrNoneOptional path to the file if it is not in the current directory
ReturnsDict
+
+

source

+
+
+

transfer_additional_target_to_env

+
+
 transfer_additional_target_to_env (config_env:Dict, config_agent:Dict)
+
+

Transfer the lag window from the agent configuration to the environment configuration

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
config_envDict
config_agentDict
ReturnsNone
+
+

source

+
+
+

transfer_lag_window_to_env

+
+
 transfer_lag_window_to_env (config_env:Dict, config_agent:Dict)
+
+

Transfer the lag window from the agent configuration to the environment configuration

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
config_envDict
config_agentDict
ReturnsNone
+
+
+
+

Import data

+
+

Import data from the ddop package

+
+
+

source

+
+

get_ddop_data

+
+
 get_ddop_data (config_env:Dict, overwrite:bool=False)
+
+

Standard function to load data provided by the ddop package

+
+

source

+
+
+

download_data

+
+
 download_data (config_env:Dict, overwrite:bool=False)
+
+

Download standard dataset from ddop repository using the DatasetLoader class

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
config_envDict
overwriteboolFalse
ReturnsTuple
+
+

source

+
+
+

set_indices

+
+
 set_indices (config_env:Dict, X:numpy.ndarray)
+
+

Set the indices for the validation and test set

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
config_envDict
Xndarray
ReturnsTuple
+
+
+
+

Set up environment

+
+

Some functions to set-up the environment

+
+
+

source

+
+

set_up_env

+
+
 set_up_env (env_class, raw_data:Tuple, val_index_start:int,
+             test_index_start:int, config_env:Dict, postprocessors:List)
+
+

Set up the environment

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDetails
env_class
raw_dataTuple
val_index_startint
test_index_startint
config_envDict
postprocessorsList
Returnsobject
+
+
+
+

Set up training

+
+

Some functions to set-up the environment

+
+
+

source

+
+

set_up_earlystoppinghandler

+
+
 set_up_earlystoppinghandler (config_train:Dict)
+
+

Set up the early stopping handler

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
config_trainDict
Returnsobject
+
+
+
+

Testing

+
+

Some functions to test the final model.

+
+
+

source

+
+

prep_and_run_test

+
+
 prep_and_run_test (agent, environment, agent_dir:str=None,
+                    save_dataset:bool=True, save_features:bool=False,
+                    dataset_dir:str=None, eval_step_info=False,
+                    tracking='wandb')
+
+

Test the agent in the environment.

+
+
+
+

Clean-up

+
+

Function to clean-up the experiment script

+
+
+

source

+
+

clean_up

+
+
 clean_up (agent, environment)
+
+

Clean up agent and environment to free up GPU memory

+
+
+
+

Helper functions

+
+

Some functions that are needed to run an experiment

+
+
+

source

+
+

select_agent

+
+
 select_agent (agent_name:str)
+
+

Select an agent class from a list of agent names and return the class

+ + + + + + + + + + + + + + + + + + + + +
TypeDetails
agent_namestr
Returnstype
+
+

source

+
+
+

merge_with_namespace

+
+
 merge_with_namespace (target_dict, source_dict, target_dict_name)
+
+

*Merge source_dict into target_dict, using the keys as namespaces. For example, if target_dict_name is “agent”, the key “agent-epsilon” in source_dict will be merged into target_dict[“epsilon”]. The function is to merge hyperparameters from a config file with the default hyperparameters from the yaml files

+

Args: target_dict (dict): Target dictionary source_dict (dict): Source dictionary target_dict_name (str): Name of the target dictionary

+

Returns: dict: Merged dictionary*

+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/40_experiments/tracking.html b/40_experiments/tracking.html new file mode 100644 index 0000000..78bb2fd --- /dev/null +++ b/40_experiments/tracking.html @@ -0,0 +1,1004 @@ + + + + + + + + + + +Tracking utils – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Tracking utils

+
+ +
+
+ Functions that help with tracking of experiments +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

get_git_hash

+
+
 get_git_hash (directory:str, tracking:bool=False,
+               tracking_tool:Literal['wandb']='wandb')
+
+

Get the git hash and optionally track

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
directorystrthe directory where the git repository is located
trackingboolFalsewhether to directly track the git revision hash
tracking_toolLiteralwandbCurrently only wandb is supported
Returnsstr
+
+

source

+
+
+

get_library_version

+
+
 get_library_version (library_name:str, tracking:bool=False,
+                      tracking_tool:Literal['wandb']='wandb')
+
+

Get the version of a specified library and optionally track it

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
library_namestr
trackingboolFalseWhether to directly track the library version
tracking_toolLiteralwandbCurrently only wandb is supported
Returnsstr
+

Example usage for the check_parameter_types function.

+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/90_datasets/default_datasets.html b/90_datasets/default_datasets.html new file mode 100644 index 0000000..a75fe5a --- /dev/null +++ b/90_datasets/default_datasets.html @@ -0,0 +1,1359 @@ + + + + + + + + + + +Dataset loader – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Dataset loader

+
+ +
+
+ Class to load datasets available in GitHub releases of this repository. +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

Info

+

We provide a range of synthetic and real-world datasets to enable reproducible research. Typically we have multiple datasets of the same dataset type (e.g., 16 multivariate datasets following an arma(10,10) process). The datasets are available in the releases of this repository. Below are automated functions that help to easily download those datasets. Three steps to load datasets:

+
    +
  • Step 1: Create a DatasetLoader object: datasetloader = DatasetLoader()

  • +
  • Step 2: Check available dataset types: datasetloader.show_dataset_types(show_num_datasets_per_type=True)

  • +
  • Step 3: Load a dataset: data = datasetloader.load_dataset("arma_10_10", 1)) where the first string argument is the name of the dataset type and the second integer argument is the dataset number.

  • +
+
+
+

Helper functions to load datasets

+
+

source

+
+

load_data_from_directory

+
+
 load_data_from_directory (dir)
+
+
+

source

+
+
+

unzip_file

+
+
 unzip_file (zip_file_path, output_dir, delete_zip_file=True)
+
+
+

source

+
+
+

download_file_from_github

+
+
 download_file_from_github (url, output_path, token=None)
+
+
+

source

+
+
+

get_asset_url

+
+
 get_asset_url (dataset_type, dataset_number, version='latest',
+                token=None)
+
+
+

source

+
+
+

get_dataset_url

+
+
 get_dataset_url (dataset_type, dataset_number, release_tag, token=None)
+
+
+

source

+
+
+

get_release_tag

+
+
 get_release_tag (dataset_type, version, token=None)
+
+
+

source

+
+
+

get_all_release_tags

+
+
 get_all_release_tags (token=None)
+
+
+
+
+

Dataset Loader class

+
+

source

+
+
+

DatasetLoader

+
+
 DatasetLoader ()
+
+

Class to load datasets from the GitHub repository.

+
+

source

+
+

DatasetLoader.show_dataset_types

+
+
 DatasetLoader.show_dataset_types (show_num_datasets_per_type=False)
+
+

Show an overview of all dataset types available in the repository.

+ ++++++ + + + + + + + + + + + + + + + + +
TypeDefaultDetails
show_num_datasets_per_typeboolFalseWhether to show the number of datasets per type
+
+

source

+
+
+

DatasetLoader.load_dataset

+
+
 DatasetLoader.load_dataset (dataset_type:str, dataset_number:int,
+                             overwrite:bool=False, version:str='latest',
+                             token:str=None)
+
+

Load a dataset from the GitHub repository.

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDefaultDetails
dataset_typestr
dataset_numberint
overwriteboolFalseWhether to overwrite the dataset if it already exists
versionstrlatestWhich version of the dataset to load, “latest” or a specific version,
tokenstrNoneGitHub token to enable more requests (otherwise limited to 60 requests per hour)
+

Example usage:

+
+
datasetloader = DatasetLoader()
+datasetloader.show_dataset_types()
+
+
Univariate datasets:
+bakery
+
+Multivariate datasets:
+arma_10_10
+arma_2_2
+ar_1
+
+
+
+
download_test = True
+
+if download_test:
+    data = datasetloader.load_dataset("bakery", 1) #arma_10_10 bakery
+    X = data["data_raw_features"]
+    y = data["data_raw_target"]
+    print(X.shape, y.shape)
+
+
(127575, 13) (127575, 1)
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
dateweekdaymonthyearis_schoolholidayis_holidayis_holiday_next2daysstoreproductraintemperaturepromotion_currentweekpromotion_lastweek
02016-01-02FRIJAN2016100210111.92.100
12016-01-03SATJAN201610021014.12.600
22016-01-04SUNJAN201610121017.93.200
32016-01-05MONJAN201610121013.53.100
42016-01-06TUEJAN201611021010.14.100
..........................................
1275702019-04-26THUAPR2019100711104.98.000
1275712019-04-27FRIAPR2019100711106.17.800
1275722019-04-28SATAPR2019000711101.06.500
1275732019-04-29SUNAPR2019001711109.16.500
1275742019-04-30MONAPR2019001711100.010.300
+ +

127575 rows × 13 columns

+
+
+
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/90_datasets/meta_bakery.html b/90_datasets/meta_bakery.html new file mode 100644 index 0000000..aa16587 --- /dev/null +++ b/90_datasets/meta_bakery.html @@ -0,0 +1,990 @@ + + + + + + + + + + +Dataset Preparation for Bakery dataset for Meta-Learning – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Dataset Preparation for Bakery dataset for Meta-Learning

+
+ +
+
+ Some pre-processings steps implemented to prepare the bakery dataset for meta-learning +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

BakeryDatasetLoader

+
+
 BakeryDatasetLoader (data_path, overwrite=False,
+                      product_as_feature=False, store_as_features=False)
+
+

Class to download the Kaggle M5 dataset and apply some preprocessing steps to prepare it for application in inventory management.

+
+
run_test = True
+if run_test:
+    data_path = "/Users/magnus/Documents/02_PhD/03_Newsvendor_foundation_model/experiments/datasets/raw/bakery" # For testing purposes, please specify the path to the data on your machine
+    if data_path is not None:
+        loader = BakeryDatasetLoader(data_path, overwrite=False, product_as_feature=False)
+        demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()
+
+
INFO:root:Importing data
+INFO:root:Preprocessing data
+INFO:root:--Creating catogory mapping and features
+INFO:root:--Preparing calendric information
+INFO:root:--Preparing state-specific features
+
+
+
           date weekday month  year
+0    2016-01-02     FRI   JAN  2016
+1    2016-01-03     SAT   JAN  2016
+2    2016-01-04     SUN   JAN  2016
+3    2016-01-05     MON   JAN  2016
+4    2016-01-06     TUE   JAN  2016
+...         ...     ...   ...   ...
+1210 2019-04-26     THU   APR  2019
+1211 2019-04-27     FRI   APR  2019
+1212 2019-04-28     SAT   APR  2019
+1213 2019-04-29     SUN   APR  2019
+1214 2019-04-30     MON   APR  2019
+
+[1215 rows x 4 columns]
+           date weekday month  year  trend
+0    2016-01-02     FRI   JAN  2016      0
+1    2016-01-03     SAT   JAN  2016      1
+2    2016-01-04     SUN   JAN  2016      2
+3    2016-01-05     MON   JAN  2016      3
+4    2016-01-06     TUE   JAN  2016      4
+...         ...     ...   ...   ...    ...
+1210 2019-04-26     THU   APR  2019   1210
+1211 2019-04-27     FRI   APR  2019   1211
+1212 2019-04-28     SAT   APR  2019   1212
+1213 2019-04-29     SUN   APR  2019   1213
+1214 2019-04-30     MON   APR  2019   1214
+
+[1215 rows x 5 columns]
+
+
+
+
demand
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/90_datasets/meta_kaggle_m5.html b/90_datasets/meta_kaggle_m5.html new file mode 100644 index 0000000..49886e4 --- /dev/null +++ b/90_datasets/meta_kaggle_m5.html @@ -0,0 +1,962 @@ + + + + + + + + + + +Dataset Preparation for Kaggle M5 dataset for Meta-Learning – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

Dataset Preparation for Kaggle M5 dataset for Meta-Learning

+
+ +
+
+ Some pre-processings steps implemented to prepare the Kaggle M5 dataset for meta-learning +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

source

+
+

KaggleM5DatasetLoader

+
+
 KaggleM5DatasetLoader (data_path, overwrite=False,
+                        product_as_feature=False)
+
+

Class to download the Kaggle M5 dataset and apply some preprocessing steps to prepare it for application in inventory management.

+
+
run_test = False
+if run_test:
+    data_path = "/Users/magnus/Documents/02_PhD/Reinforcement_Learning/general_purpose_drl/Newsvendor/kaggle_data" # For testing purposes, please specify the path to the data on your machine
+    if data_path is not None:
+        loader = KaggleM5DatasetLoader(data_path, overwrite=False, product_as_feature=False)
+        demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()
+
+
INFO:root:Using existing data from disk
+INFO:root:Importing data
+INFO:root:Preprocessing data
+INFO:root:--Creating catogory mapping and features
+INFO:root:--Preparing sales time series data
+INFO:root:--Preparing calendric information
+INFO:root:--Preparing snap features
+INFO:root:--Preparing price information
+INFO:root:--Creating indicator table if products are available for purchase
+INFO:root:--Preparing final outputs and ensure consistency of time and feature dimensions
+
+
+ + +
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/core.html b/core.html new file mode 100644 index 0000000..25e83b1 --- /dev/null +++ b/core.html @@ -0,0 +1,892 @@ + + + + + + + + + + +core – ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

core

+
+ +
+
+ Current placeholder +
+
+ + +
+ + + + +
+ + + +
+ + + + + + +
+ +
+ + + + + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 0000000..f7b3143 --- /dev/null +++ b/index.html @@ -0,0 +1,982 @@ + + + + + + + + + + +ddopai + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + +
+ +
+ + +
+ + + +
+ +
+
+

ddopai

+
+ +
+
+ A completely new version of ddop. Documentation here: https://opimwue.github.io/ddopai/ +
+
+ + +
+ + + + +
+ + + +
+ + + +
+

Install

+
pip install ddopai
+
+
+

What is ddopai?

+

To be written.

+
+
+

What is the difference to Gymnasium and how to convert Gymnasium Environments?

+

To make any enviroment compatible with mushroomRL and other agents defined within ddopai, there are some additional requirements when defining the environment. Instead of inheriting from gym.Env, the environment should inherit from ddopai.envs.base.BaseEnvironment. This base class provides some additional necessary methods and attributes to ensure compatibility with the agents. Below are the steps to convert a Gym environment to a ddopai environment. We strongly recommend you to also look at the implementation of the NewsvendorEnv (nbs/20_environments/21_envs_inventory/20_single_period_envs.ipynb) as an example.

+
+

1. Initialization and Parameter Setup

+
    +
  • In the __init__ method of your environment, ensure that any environment-specific parameters are added using the set_param(...) method. This guarantees the correct types and shapes for the parameters.
  • +
  • Define the action and observation spaces using set_action_space() and set_observation_space() respectively. These should be called within the __init__ method, rather than defining the spaces directly.
  • +
  • In the __init__, and MDPInfo object needs to be created mdp_info = MDPInfo(self.observation_space, self.action_space, gamma=gamma, horizon=horizon_train)
  • +
+
+
+

2. Handling Train, Validation, Test, and Horizon

+
    +
  • Implement or override the train(), val(), and test() methods to configure the correct datasets for each phase, ensuring no data leakage. The base class provides these methods, but you may need to adapt them based on your environment.
  • +
  • Update the mdp_info to set the horizon (episode length). For validation and testing, the horizon corresponds to the length of the dataset, while for training, the horizon is determined by the horizon_train parameter. If horizon_train is "use_all_data", the full dataset is used; if it’s an integer, a random subset is used.
  • +
+
+
+

3. Step Method

+
    +
  • The step() method is handled in the base class, so instead of overriding it, implement a step_(self, action) method for the specific environment. This method should return a tuple: (observation, reward, terminated, truncated, info).
  • +
  • The next observation should be constructed using the get_observation() method, which must be called inside the step_() method. Make sure to correctly pass the demand (or equivalent) to the next step to calculate rewards.
  • +
+
+
+

4. Pre- and Post-Processing

+
    +
  • Action post-processing should be done within the environment, in the step() method, to ensure the action is in the correct form for the environment.
  • +
  • Observation pre-processing, however, is handled by the agent in MushroomRL. This processing takes place in the agent’s draw_action() method.
  • +
+
+
+

5. Reset Method

+
    +
  • The reset() method must differentiate between the training, validation, and testing modes, and it should consider the horizon_train parameter for training.
  • +
  • After setting up the mode and horizon, call reset_index() (with an integer index or "random") to initialize the environment. Finally, use get_observation() to provide the initial observation to the agent.
  • +
+ + +
+
+ +
+ +
+ + + + + \ No newline at end of file diff --git a/robots.txt b/robots.txt new file mode 100644 index 0000000..7824d8f --- /dev/null +++ b/robots.txt @@ -0,0 +1 @@ +Sitemap: https://opimwue.github.io/ddopai/sitemap.xml diff --git a/search.json b/search.json new file mode 100644 index 0000000..96c0a04 --- /dev/null +++ b/search.json @@ -0,0 +1,916 @@ +[ + { + "objectID": "10_dataloaders/tabular_dataloaders.html", + "href": "10_dataloaders/tabular_dataloaders.html", + "title": "Tabular dataloaders", + "section": "", + "text": "source", + "crumbs": [ + "Dataloaders", + "Tabular dataloaders" + ] + }, + { + "objectID": "10_dataloaders/tabular_dataloaders.html#xydataloader", + "href": "10_dataloaders/tabular_dataloaders.html#xydataloader", + "title": "Tabular dataloaders", + "section": "XYDataLoader", + "text": "XYDataLoader\n\n XYDataLoader (X:numpy.ndarray, Y:numpy.ndarray,\n val_index_start:Optional[int]=None,\n test_index_start:Optional[int]=None,\n lag_window_params:dict=None, normalize_features:dict=None)\n\nA class for datasets with the typicall X, Y structure. Both X and Y are numpy arrays. X may be of shape (datapoints, features) or (datapoints, sequence_length, features) if lag features are used. The prep_lag_features can be used to create those lag features. Y is of shape (datapoints, units).\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nX\nndarray\n\n\n\n\nY\nndarray\n\n\n\n\nval_index_start\nOptional\nNone\n\n\n\ntest_index_start\nOptional\nNone\n\n\n\nlag_window_params\ndict\nNone\ndefault: {‘lag_window’: 0, ‘include_y’: False, ‘pre_calc’: False}\n\n\nnormalize_features\ndict\nNone\ndefault: {‘normalize’: True, ‘ignore_one_hot’: True}\n\n\n\n\nsource\n\nXYDataLoader.prep_lag_features\n\n XYDataLoader.prep_lag_features (lag_window:int=0, include_y:bool=False,\n pre_calc:bool=False)\n\nCreate lag feature for the dataset. If “inlcude_y” is true, then a lag-1 of of the target variable is added as a feature. If lag-window is > 0, the lag features are added as middle dimension to X. Note that this, e.g., means that with a lag window of 1, the data will include 2 time steps, the current features including lag-1 demand and the lag-1 features including lag-2 demand. If pre-calc is true, all these calculations are performed on the entire dataset reduce computation time later on at the expense of increases memory usage.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nlag_window\nint\n0\nlength of the lage window\n\n\ninclude_y\nbool\nFalse\nif lag demand shall be included as feature\n\n\npre_calc\nbool\nFalse\nif all lags are pre-calculated for the entire dataset\n\n\n\n\nsource\n\n\nXYDataLoader.__getitem__\n\n XYDataLoader.__getitem__ (idx)\n\nget item by index, depending on the dataset type (train, val, test)\n\nsource\n\n\nXYDataLoader.get_all_X\n\n XYDataLoader.get_all_X (dataset_type:str='train')\n\nReturns the entire features dataset. Return either the train, val, test, or all data.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataset_type\nstr\ntrain\ncan be ‘train’, ‘val’, ‘test’, ‘all’\n\n\n\n\nsource\n\n\nXYDataLoader.get_all_Y\n\n XYDataLoader.get_all_Y (dataset_type:str='train')\n\nReturns the entire target dataset. Return either the train, val, test, or all data.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataset_type\nstr\ntrain\ncan be ‘train’, ‘val’, ‘test’, ‘all’\n\n\n\nExample usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) for simple dataset:\n\nX = np.random.standard_normal((100, 2))\nY = np.random.standard_normal((100, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\n\ndataloader = XYDataLoader(X = X, Y = Y)\n\nsample_X, sample_Y = dataloader[0]\nprint(\"sample:\", sample_X, sample_Y)\nprint(\"sample shape Y:\", sample_Y.shape)\n\nprint(\"length:\", len(dataloader))\n\nsample: [0.19586287 1.09162108] [1.040336]\nsample shape Y: (1,)\nlength: 100\n\n\nExample usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) on how to handle train, val, and test set:\n\nX = np.random.standard_normal((10, 2))\nY = np.random.standard_normal((10, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\n\ndataloader = XYDataLoader(X = X, Y = Y, val_index_start=6, test_index_start=8)\n\nsample_X, sample_Y = dataloader[0]\n\nprint(\"length train:\", dataloader.len_train, \"length val:\", dataloader.len_val, \"length test:\", dataloader.len_test)\n\nprint(\"\")\nprint(\"### Data from train set ###\")\nfor i in range(dataloader.len_train):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.val()\n\nprint(\"\")\nprint(\"### Data from val set ###\")\nfor i in range(dataloader.len_val):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.test()\n\nprint(\"\")\nprint(\"### Data from test set ###\")\nfor i in range(dataloader.len_test):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.train()\n\nprint(\"\")\nprint(\"### Data from train set again ###\")\nfor i in range(dataloader.len_train):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\nlength train: 6 length val: 2 length test: 2\n\n### Data from train set ###\nidx: 0 data: [ 0.08854902 -1.7602724 ] [-5.34363735]\nidx: 1 data: [ 0.99129486 -1.78646157] [-0.9519102]\nidx: 2 data: [0.66334628 0.01231061] [0.95274982]\nidx: 3 data: [ 0.61796118 -0.54523986] [0.35028762]\nidx: 4 data: [1.04676734 1.75569924] [5.92952598]\nidx: 5 data: [ 0.21987025 -0.53602459] [0.66207364]\n\n### Data from val set ###\nidx: 0 data: [-1.54514703 -0.67784998] [-5.27601525]\nidx: 1 data: [ 0.935785 -1.30048604] [-2.66055254]\n\n### Data from test set ###\nidx: 0 data: [1.86740017 0.79714291] [4.61669816]\nidx: 1 data: [ 0.30325407 -0.62230244] [-2.03026803]\n\n### Data from train set again ###\nidx: 0 data: [ 0.08854902 -1.7602724 ] [-5.34363735]\nidx: 1 data: [ 0.99129486 -1.78646157] [-0.9519102]\nidx: 2 data: [0.66334628 0.01231061] [0.95274982]\nidx: 3 data: [ 0.61796118 -0.54523986] [0.35028762]\nidx: 4 data: [1.04676734 1.75569924] [5.92952598]\nidx: 5 data: [ 0.21987025 -0.53602459] [0.66207364]\n\n\nExample usage of [`XYDataLoader`](https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html#xydataloader) on how to include lag features:\n\nX = np.random.standard_normal((10, 2))\nY = np.random.standard_normal((10, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\n\nlag_window_params = {'lag_window': 1, 'include_y': True, 'pre_calc': True}\n\ndataloader = XYDataLoader(X = X, Y = Y, val_index_start=6, test_index_start=8, lag_window_params=lag_window_params)\n\nsample_X, sample_Y = dataloader[0]\n\nprint(\"length train:\", dataloader.len_train, \"length val:\", dataloader.len_val, \"length test:\", dataloader.len_test)\n\nprint(\"\")\nprint(\"### Data from train set ###\")\nfor i in range(dataloader.len_train):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.val()\n\nprint(\"\")\nprint(\"### Data from val set ###\")\nfor i in range(dataloader.len_val):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.test()\n\nprint(\"\")\nprint(\"### Data from test set ###\")\nfor i in range(dataloader.len_test):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\ndataloader.train()\n\nprint(\"\")\nprint(\"### Data from train set again ###\")\nfor i in range(dataloader.len_train):\n sample_X, sample_Y = dataloader[i]\n print(\"idx:\", i, \"data:\", sample_X, sample_Y)\n\nlength train: 4 length val: 2 length test: 2\n\n### Data from train set ###\nidx: 0 data: [[ 0.73863651 0.6084497 -0.1193545 ]\n [ 0.35830697 -1.87500947 2.48387723]] [-4.9460667]\nidx: 1 data: [[ 0.35830697 -1.87500947 2.48387723]\n [-1.11068046 -0.5626968 -4.9460667 ]] [-1.24390416]\nidx: 2 data: [[-1.11068046 -0.5626968 -4.9460667 ]\n [ 0.89828028 -2.19265635 -1.24390416]] [-5.78471176]\nidx: 3 data: [[ 0.89828028 -2.19265635 -1.24390416]\n [-0.09191616 0.32758207 -5.78471176]] [0.35156491]\n\n### Data from val set ###\nidx: 0 data: [[-0.09191616 0.32758207 -5.78471176]\n [ 1.51172992 -0.25329154 0.35156491]] [2.47560231]\nidx: 1 data: [[ 1.51172992 -0.25329154 0.35156491]\n [ 0.17512356 0.93368771 2.47560231]] [1.80751149]\n\n### Data from test set ###\nidx: 0 data: [[ 0.17512356 0.93368771 2.47560231]\n [-0.65111828 -0.13138032 1.80751149]] [-1.55867887]\nidx: 1 data: [[-0.65111828 -0.13138032 1.80751149]\n [ 0.41587237 -1.40709561 -1.55867887]] [-3.46579185]\n\n### Data from train set again ###\nidx: 0 data: [[ 0.73863651 0.6084497 -0.1193545 ]\n [ 0.35830697 -1.87500947 2.48387723]] [-4.9460667]\nidx: 1 data: [[ 0.35830697 -1.87500947 2.48387723]\n [-1.11068046 -0.5626968 -4.9460667 ]] [-1.24390416]\nidx: 2 data: [[-1.11068046 -0.5626968 -4.9460667 ]\n [ 0.89828028 -2.19265635 -1.24390416]] [-5.78471176]\nidx: 3 data: [[ 0.89828028 -2.19265635 -1.24390416]\n [-0.09191616 0.32758207 -5.78471176]] [0.35156491]\n\n\n\nsource\n\n\nMultiShapeLoader\n\n MultiShapeLoader (demand:pandas.core.frame.DataFrame,\n time_features:pandas.core.frame.DataFrame,\n time_SKU_features:pandas.core.frame.DataFrame,\n mask:pandas.core.frame.DataFrame=None,\n SKU_features:pandas.core.frame.DataFrame=None,\n val_index_start:Optional[int]=None,\n test_index_start:Optional[int]=None,\n in_sample_val_test_SKUs:List=None,\n out_of_sample_val_SKUs:List=None,\n out_of_sample_test_SKUs:List=None,\n lag_window_params:dict|None=None,\n normalize_features:dict|None=None,\n engineered_SKU_features:dict=None,\n use_engineered_SKU_features:bool=False,\n include_non_available:bool=False,\n train_subset:int=None, train_subset_SKUs:List=None,\n meta_learn_units:bool=False, lag_demand_normalization:O\n ptional[Literal['minmax','standard','no_normalization']\n ]='standard', demand_normalization:Literal['minmax','st\n andard','no_normalization']='no_normalization',\n demand_unit_size:float|None=None,\n provide_additional_target:bool=False,\n permutate_inputs:bool=False)\n\nA class designed for comlex datasets with mutlipe feature types. The class is more memory-efficient than the XYDataLoader, as it separate the storeage of SKU-specific feature, time-specific features, and time-SKU-specific features. The class works generically as long as those feature classes are provided during pre-processing. The class is designed to handle classic learning, but able to work in a meta-learning pipeline where no SKU-dimension is present and the model needs to make prediction on SKU-time level without knowhing the specific SKU.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndemand\nDataFrame\n\nDemand data of shape time x SKU\n\n\ntime_features\nDataFrame\n\nFeatures constant over SKU of shape time x time_features\n\n\ntime_SKU_features\nDataFrame\n\nFeatures varying over time and SKU of shape time x (time_SKU_features*SKU) with double index\n\n\nmask\nDataFrame\nNone\nMask of shape time x SKU telling which SKUs are available at which time (can be used as mask during trainig or added to features)\n\n\nSKU_features\nDataFrame\nNone\nFeatures constant over time of shape SKU x SKU_features - only for algorithms learning across SKUs\n\n\nval_index_start\nOptional\nNone\nValidation index start on the time dimension\n\n\ntest_index_start\nOptional\nNone\nTest index start on the time dimension\n\n\nin_sample_val_test_SKUs\nList\nNone\nSKUs in the training set to be used for validation and testing, out-of-sample w.r.t. time dimension\n\n\nout_of_sample_val_SKUs\nList\nNone\nSKUs to be hold-out for validation (can be same as test if no validation on out-of-sample SKUs required)\n\n\nout_of_sample_test_SKUs\nList\nNone\nSKUs to be hold-out for testing\n\n\nlag_window_params\ndict | None\nNone\ndefault: {‘lag_window’: 0, ‘include_y’: False, ‘pre_calc’: True}\n\n\nnormalize_features\ndict | None\nNone\ndefault: {‘normalize’: True, ‘ignore_one_hot’: True}\n\n\nengineered_SKU_features\ndict\nNone\ndefault: [“mean_demand”, “std_demand”, “kurtosis_demand”, “skewness_demand”, “percentile_10_demand”, “percentile_30_demand”, “median_demand”, “percentile_70_demand”, “percentile_90_demand”, “inter_quartile_range”]\n\n\nuse_engineered_SKU_features\nbool\nFalse\nif engineered features shall be used\n\n\ninclude_non_available\nbool\nFalse\nif timestep/SKU combination where the SKU was not available for sale shall be included. If included, it will be used as feature, otherwise as mask.\n\n\ntrain_subset\nint\nNone\nif only a subset of SKUs is used for training. Will always contain in_sample_val_test_SKUs and then fills the rest with random SKUs\n\n\ntrain_subset_SKUs\nList\nNone\nif train_subset is set, specific SKUs can be provided\n\n\nmeta_learn_units\nbool\nFalse\nif units (SKUs) are trained in the batch dimension to meta-learn across SKUs\n\n\nlag_demand_normalization\nOptional\nstandard\nminmax, standard, no_normalization or None. If None, same demand_normalization\n\n\ndemand_normalization\nLiteral\nno_normalization\n‘standard’ or ‘minmax’\n\n\ndemand_unit_size\nfloat | None\nNone\nuse same convention as for other dataloaders and enviornments, but here only full decimal values are allowed\n\n\nprovide_additional_target\nbool\nFalse\nfollows ICL convention by providing actual demand to token, with the last token receiving 0\n\n\npermutate_inputs\nbool\nFalse\nif the inputs shall be permutated during training for meta-learning\n\n\n\n\nrun_example = False\n\nif run_example:\n from ddopai.datasets.kaggle_m5 import KaggleM5DatasetLoader\n\n data_path = \"/Users/magnus/Documents/02_PhD/Reinforcement_Learning/general_purpose_drl/Newsvendor/kaggle_data\" # For testing purposes, please specify the path to the data on your machine\n if data_path is not None:\n loader = KaggleM5DatasetLoader(data_path, overwrite=False, product_as_feature=False)\n demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()\n \n val_index_start = len(demand)-300\n test_index_start = len(demand)-100\n\n out_of_sample_val_SKUs = [\"HOBBIESit_1_002_CA_1\", \"HOBBIES_1_003_CA_1\"]\n out_of_sample_test_SKUs = [\"HOBBIES_1_005_CA_1\", \"FOODS_3_819_WI_3\"]\n\n dataloader = MultiShapeLoader(\n demand.copy(),\n SKU_features.copy(),\n time_features.copy(),\n time_SKU_features.copy(),\n mask.copy(),\n val_index_start=val_index_start,\n test_index_start=test_index_start,\n # in_sample_val_test_SKUs=[\"FOODS_3_825_WI_3\"],\n out_of_sample_val_SKUs=out_of_sample_val_SKUs,\n out_of_sample_test_SKUs=out_of_sample_test_SKUs,\n lag_window_params = {'lag_window': 5, 'include_y': True, 'pre_calc': False},\n # train_subset=300,\n # train_subset_SKUs=[\"HOBBIES_1_001_CA_1\", \"HOBBIES_1_012_CA_1\"],\n SKU_as_batch = True\n )\n\n\n# dataloader.__getitem__(49844609) #986 with non-zero lag demand", + "crumbs": [ + "Dataloaders", + "Tabular dataloaders" + ] + }, + { + "objectID": "10_dataloaders/distribution_loaders.html", + "href": "10_dataloaders/distribution_loaders.html", + "title": "Distribution-based dataloaders", + "section": "", + "text": "source", + "crumbs": [ + "Dataloaders", + "Distribution-based dataloaders" + ] + }, + { + "objectID": "10_dataloaders/distribution_loaders.html#normaldistributiondataloader", + "href": "10_dataloaders/distribution_loaders.html#normaldistributiondataloader", + "title": "Distribution-based dataloaders", + "section": "NormalDistributionDataLoader", + "text": "NormalDistributionDataLoader\n\n NormalDistributionDataLoader (mean:float, std:float, num_units:int,\n truncated_low:int=0,\n truncated_high:int=None)\n\nA dataloader that generates a dataset of normally distributed values.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nmean\nfloat\n\n\n\n\nstd\nfloat\n\n\n\n\nnum_units\nint\n\n\n\n\ntruncated_low\nint\n0\n\n\n\ntruncated_high\nint\nNone\n\n\n\n\n\ndataloader = NormalDistributionDataLoader(mean=3, std=4, num_units=2)\n\nsample_X, sample_Y = dataloader[0]\nprint(\"sample:\", sample_X, sample_Y)\nprint(\"sample shape Y:\", sample_Y.shape)\n\n## The next print should give an error:\n#print(\"length:\", len(dataloader))\n\nsample: None [0. 0.]\nsample shape Y: (2,)\n\n\n\ndataloader.train()\ndataloader.val()\ndataloader.test()", + "crumbs": [ + "Dataloaders", + "Distribution-based dataloaders" + ] + }, + { + "objectID": "90_datasets/default_datasets.html", + "href": "90_datasets/default_datasets.html", + "title": "Dataset loader", + "section": "", + "text": "We provide a range of synthetic and real-world datasets to enable reproducible research. Typically we have multiple datasets of the same dataset type (e.g., 16 multivariate datasets following an arma(10,10) process). The datasets are available in the releases of this repository. Below are automated functions that help to easily download those datasets. Three steps to load datasets:\n\nStep 1: Create a DatasetLoader object: datasetloader = DatasetLoader()\nStep 2: Check available dataset types: datasetloader.show_dataset_types(show_num_datasets_per_type=True)\nStep 3: Load a dataset: data = datasetloader.load_dataset(\"arma_10_10\", 1)) where the first string argument is the name of the dataset type and the second integer argument is the dataset number.", + "crumbs": [ + "Datasets", + "Dataset loader" + ] + }, + { + "objectID": "90_datasets/default_datasets.html#info", + "href": "90_datasets/default_datasets.html#info", + "title": "Dataset loader", + "section": "", + "text": "We provide a range of synthetic and real-world datasets to enable reproducible research. Typically we have multiple datasets of the same dataset type (e.g., 16 multivariate datasets following an arma(10,10) process). The datasets are available in the releases of this repository. Below are automated functions that help to easily download those datasets. Three steps to load datasets:\n\nStep 1: Create a DatasetLoader object: datasetloader = DatasetLoader()\nStep 2: Check available dataset types: datasetloader.show_dataset_types(show_num_datasets_per_type=True)\nStep 3: Load a dataset: data = datasetloader.load_dataset(\"arma_10_10\", 1)) where the first string argument is the name of the dataset type and the second integer argument is the dataset number.", + "crumbs": [ + "Datasets", + "Dataset loader" + ] + }, + { + "objectID": "90_datasets/default_datasets.html#helper-functions-to-load-datasets", + "href": "90_datasets/default_datasets.html#helper-functions-to-load-datasets", + "title": "Dataset loader", + "section": "Helper functions to load datasets", + "text": "Helper functions to load datasets\n\nsource\n\nload_data_from_directory\n\n load_data_from_directory (dir)\n\n\nsource\n\n\nunzip_file\n\n unzip_file (zip_file_path, output_dir, delete_zip_file=True)\n\n\nsource\n\n\ndownload_file_from_github\n\n download_file_from_github (url, output_path, token=None)\n\n\nsource\n\n\nget_asset_url\n\n get_asset_url (dataset_type, dataset_number, version='latest',\n token=None)\n\n\nsource\n\n\nget_dataset_url\n\n get_dataset_url (dataset_type, dataset_number, release_tag, token=None)\n\n\nsource\n\n\nget_release_tag\n\n get_release_tag (dataset_type, version, token=None)\n\n\nsource\n\n\nget_all_release_tags\n\n get_all_release_tags (token=None)", + "crumbs": [ + "Datasets", + "Dataset loader" + ] + }, + { + "objectID": "90_datasets/default_datasets.html#dataset-loader-class", + "href": "90_datasets/default_datasets.html#dataset-loader-class", + "title": "Dataset loader", + "section": "Dataset Loader class", + "text": "Dataset Loader class\n\nsource", + "crumbs": [ + "Datasets", + "Dataset loader" + ] + }, + { + "objectID": "90_datasets/default_datasets.html#datasetloader", + "href": "90_datasets/default_datasets.html#datasetloader", + "title": "Dataset loader", + "section": "DatasetLoader", + "text": "DatasetLoader\n\n DatasetLoader ()\n\nClass to load datasets from the GitHub repository.\n\nsource\n\nDatasetLoader.show_dataset_types\n\n DatasetLoader.show_dataset_types (show_num_datasets_per_type=False)\n\nShow an overview of all dataset types available in the repository.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nshow_num_datasets_per_type\nbool\nFalse\nWhether to show the number of datasets per type\n\n\n\n\nsource\n\n\nDatasetLoader.load_dataset\n\n DatasetLoader.load_dataset (dataset_type:str, dataset_number:int,\n overwrite:bool=False, version:str='latest',\n token:str=None)\n\nLoad a dataset from the GitHub repository.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataset_type\nstr\n\n\n\n\ndataset_number\nint\n\n\n\n\noverwrite\nbool\nFalse\nWhether to overwrite the dataset if it already exists\n\n\nversion\nstr\nlatest\nWhich version of the dataset to load, “latest” or a specific version,\n\n\ntoken\nstr\nNone\nGitHub token to enable more requests (otherwise limited to 60 requests per hour)\n\n\n\nExample usage:\n\ndatasetloader = DatasetLoader()\ndatasetloader.show_dataset_types()\n\nUnivariate datasets:\nbakery\n\nMultivariate datasets:\narma_10_10\narma_2_2\nar_1\n\n\n\ndownload_test = True\n\nif download_test:\n data = datasetloader.load_dataset(\"bakery\", 1) #arma_10_10 bakery\n X = data[\"data_raw_features\"]\n y = data[\"data_raw_target\"]\n print(X.shape, y.shape)\n\n(127575, 13) (127575, 1)\n\n\n\n\n\n\n\n\n\n\n\n\ndate\nweekday\nmonth\nyear\nis_schoolholiday\nis_holiday\nis_holiday_next2days\nstore\nproduct\nrain\ntemperature\npromotion_currentweek\npromotion_lastweek\n\n\n\n\n0\n2016-01-02\nFRI\nJAN\n2016\n1\n0\n0\n2\n101\n11.9\n2.1\n0\n0\n\n\n1\n2016-01-03\nSAT\nJAN\n2016\n1\n0\n0\n2\n101\n4.1\n2.6\n0\n0\n\n\n2\n2016-01-04\nSUN\nJAN\n2016\n1\n0\n1\n2\n101\n7.9\n3.2\n0\n0\n\n\n3\n2016-01-05\nMON\nJAN\n2016\n1\n0\n1\n2\n101\n3.5\n3.1\n0\n0\n\n\n4\n2016-01-06\nTUE\nJAN\n2016\n1\n1\n0\n2\n101\n0.1\n4.1\n0\n0\n\n\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n\n\n127570\n2019-04-26\nTHU\nAPR\n2019\n1\n0\n0\n71\n110\n4.9\n8.0\n0\n0\n\n\n127571\n2019-04-27\nFRI\nAPR\n2019\n1\n0\n0\n71\n110\n6.1\n7.8\n0\n0\n\n\n127572\n2019-04-28\nSAT\nAPR\n2019\n0\n0\n0\n71\n110\n1.0\n6.5\n0\n0\n\n\n127573\n2019-04-29\nSUN\nAPR\n2019\n0\n0\n1\n71\n110\n9.1\n6.5\n0\n0\n\n\n127574\n2019-04-30\nMON\nAPR\n2019\n0\n0\n1\n71\n110\n0.0\n10.3\n0\n0\n\n\n\n\n127575 rows × 13 columns", + "crumbs": [ + "Datasets", + "Dataset loader" + ] + }, + { + "objectID": "40_experiments/experiment_functions.html", + "href": "40_experiments/experiment_functions.html", + "title": "Experiment functions", + "section": "", + "text": "source", + "crumbs": [ + "Experiment functions", + "Experiment functions" + ] + }, + { + "objectID": "40_experiments/experiment_functions.html#earlystoppinghandler", + "href": "40_experiments/experiment_functions.html#earlystoppinghandler", + "title": "Experiment functions", + "section": "EarlyStoppingHandler", + "text": "EarlyStoppingHandler\n\n EarlyStoppingHandler (patience:int=50, warmup:int=100, criteria:str='J',\n direction:str='max')\n\nClass to handle early stopping during experiments. The EarlyStoppingHandler handler calculates the average score over the last “patience” epochs and compares it to the average score over the previous “patience” epochs. Note that one epoch we define here as time in between evaluating on a validation set, for supervised learning typically one epoch is one pass through the training data. For reinforcement learning, in between each evaluation epoch there may be less than one, one, or many episodes played in the training environment.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\npatience\nint\n50\nNumber of epochs to evaluate for stopping\n\n\nwarmup\nint\n100\nHow many initial epochs to wait before evaluating\n\n\ncriteria\nstr\nJ\nWhether to use discounted rewards J or total rewards R as criteria\n\n\ndirection\nstr\nmax\nWhether reward shall be maximized or minimized\n\n\n\n\nsource\n\nEarlyStoppingHandler.add_result\n\n EarlyStoppingHandler.add_result (J:float, R:float)\n\nAdd the result of the last epoch to the history and check if the experiment should be stopped.\n\n\n\n\nType\nDetails\n\n\n\n\nJ\nfloat\nReturn (discounted rewards) of the last epoch\n\n\nR\nfloat\nTotal rewards of the last epoch\n\n\nReturns\nbool", + "crumbs": [ + "Experiment functions", + "Experiment functions" + ] + }, + { + "objectID": "40_experiments/experiment_functions.html#helper-functions", + "href": "40_experiments/experiment_functions.html#helper-functions", + "title": "Experiment functions", + "section": "Helper functions", + "text": "Helper functions\n\nSome functions that are needed to run an experiment\n\n\nsource\n\nsave_agent\n\n save_agent (agent:ddopai.agents.base.BaseAgent, experiment_dir:str,\n save_best:bool, R:float, J:float, best_R:float, best_J:float,\n criteria:str='J', force_save=False)\n\nSave the agent if it has improved either R or J, depending on the criteria argument, vs. the previous epochs\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nagent\nBaseAgent\n\nAny agent inheriting from BaseAgent\n\n\nexperiment_dir\nstr\n\nDirectory to save the agent,\n\n\nsave_best\nbool\n\n\n\n\nR\nfloat\n\n\n\n\nJ\nfloat\n\n\n\n\nbest_R\nfloat\n\n\n\n\nbest_J\nfloat\n\n\n\n\ncriteria\nstr\nJ\n\n\n\nforce_save\nbool\nFalse\n\n\n\n\n\nsource\n\n\nupdate_best\n\n update_best (R:float, J:float, best_R:float, best_J:float)\n\nUpdate the best total rewards R and the best discounted rewards J.\n\n\n\n\nType\nDetails\n\n\n\n\nR\nfloat\n\n\n\nJ\nfloat\n\n\n\nbest_R\nfloat\n\n\n\nbest_J\nfloat\n\n\n\n\n\nsource\n\n\nlog_info\n\n log_info (R:float, J:float, n_epochs:int, tracking:Literal['wandb'],\n mode:Literal['train','val','test'])\n\nLogs the same R, J information repeatedly for n_epoochs. E.g., to draw a straight line in wandb for algorithmes such as XGB, RF, etc. that can be comparared to the learning curves of supervised or reinforcement learning algorithms.\n\n\n\n\nType\nDetails\n\n\n\n\nR\nfloat\n\n\n\nJ\nfloat\n\n\n\nn_epochs\nint\n\n\n\ntracking\nLiteral\nonly wandb implemented so far\n\n\nmode\nLiteral\n\n\n\n\n\nsource\n\n\ncalculate_score\n\n calculate_score (dataset:List, env:ddopai.envs.base.BaseEnvironment)\n\nCalculate the total rewards R and the discounted rewards J of a dataset.\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\ndataset\nList\n\n\n\nenv\nBaseEnvironment\nAny environment inheriting from BaseEnvironment\n\n\nReturns\nTuple", + "crumbs": [ + "Experiment functions", + "Experiment functions" + ] + }, + { + "objectID": "40_experiments/experiment_functions.html#experiment-functions", + "href": "40_experiments/experiment_functions.html#experiment-functions", + "title": "Experiment functions", + "section": "Experiment functions", + "text": "Experiment functions\n\nFunctions to run experiments\n\n\nsource\n\nrun_experiment\n\n run_experiment (agent:ddopai.agents.base.BaseAgent,\n env:ddopai.envs.base.BaseEnvironment, n_epochs:int,\n n_steps:int=None, early_stopping_handler:Optional[__main_\n _.EarlyStoppingHandler]=None, save_best:bool=True,\n performance_criterion:str='J',\n tracking:Optional[str]=None, results_dir:str='results',\n run_id:Optional[str]=None, print_freq:int=10,\n eval_step_info=False, return_score=False)\n\nRun an experiment with the given agent and environment for n_epochs. It automaticall dedects if the train mode of the agent is direct, epochs_fit or env_interaction and runs the experiment accordingly.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nagent\nBaseAgent\n\n\n\n\nenv\nBaseEnvironment\n\n\n\n\nn_epochs\nint\n\n\n\n\nn_steps\nint\nNone\nNumber of steps to interact with the environment per epoch. Will be ignored for direct_fit and epchos_fit agents\n\n\nearly_stopping_handler\nOptional\nNone\n\n\n\nsave_best\nbool\nTrue\n\n\n\nperformance_criterion\nstr\nJ\nother: “R”\n\n\ntracking\nOptional\nNone\nother: “wandb”\n\n\nresults_dir\nstr\nresults\n\n\n\nrun_id\nOptional\nNone\n\n\n\nprint_freq\nint\n10\n\n\n\neval_step_info\nbool\nFalse\n\n\n\nreturn_score\nbool\nFalse\n\n\n\n\n\n\nImportant notes on running experiments\nTraining mode:\n\nAgents have either a training mode direct_fit or epochs_fit or env_interaction. direct_fit means that agents are called with a single call to the fit method, providing the full X and Y dataset. epochs_fit means that agents are training iteratively via epochs. It is assumed that they then have access to the dataloader.\n\nTrain, val, test mode:\n\nThe function always sets the agent and environment to the approproate dataset mode (and thereofore indirectly the dataloader via then environment).\n\nEarly stopping:\n\nCan be optionally applied for epochs_fit and env_interaction agents.\n\nSave best agent:\n\nThe save_agent() functions, given the save_bestparam is True, will save the best agent based on the validation score.\nAt test time at a later point, one can then load the best agent and evaluate it on the test set (not done automatically by this function).\n\nLogging:\n\nBy setting logging to \"wandb\" the function will log J and R to wandb.\n\n\nsource\n\n\ntest_agent\n\n test_agent (agent:ddopai.agents.base.BaseAgent,\n env:ddopai.envs.base.BaseEnvironment, return_dataset=False,\n save_features=False, tracking=None, eval_step_info=False)\n\nTests the agent on the environment for a single episode\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nagent\nBaseAgent\n\n\n\n\nenv\nBaseEnvironment\n\n\n\n\nreturn_dataset\nbool\nFalse\n\n\n\nsave_features\nbool\nFalse\n\n\n\ntracking\nNoneType\nNone\nother: “wandb”,\n\n\neval_step_info\nbool\nFalse\n\n\n\n\n\nsource\n\n\nrun_test_episode\n\n run_test_episode (env:ddopai.envs.base.BaseEnvironment,\n agent:ddopai.agents.base.BaseAgent,\n eval_step_info:bool=False, save_features:bool=False)\n\nRuns an episode to test the agent’s performance. It assumes, that agent and environment are initialized, in test/val mode and have done reset.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenv\nBaseEnvironment\n\nAny environment inheriting from BaseEnvironment\n\n\nagent\nBaseAgent\n\nAny agent inheriting from BaseAgent\n\n\neval_step_info\nbool\nFalse\nPrint step info during evaluation\n\n\nsave_features\nbool\nFalse\nSave features (observation) of the dataset. Can be turned off since they sometimes become very large with many lag information\n\n\n\nUsage example for test_agent():\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.agents.basic import RandomAgent\n\n\nval_index_start = 80 #90_000\ntest_index_start = 90 #100_000\n\nX = np.random.rand(100, 2)\nY = np.random.rand(100, 1)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start)\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n)\n\nagent = RandomAgent(environment.mdp_info)\n\nenvironment.test()\n\nR, J = test_agent(agent, environment)\n\nprint(f\"R: {R}, J: {J}\")\n\nR: -7.269816766556392, J: -7.236762453375597", + "crumbs": [ + "Experiment functions", + "Experiment functions" + ] + }, + { + "objectID": "40_experiments/tracking.html", + "href": "40_experiments/tracking.html", + "title": "Tracking utils", + "section": "", + "text": "source", + "crumbs": [ + "Experiment functions", + "Tracking utils" + ] + }, + { + "objectID": "40_experiments/tracking.html#get_git_hash", + "href": "40_experiments/tracking.html#get_git_hash", + "title": "Tracking utils", + "section": "get_git_hash", + "text": "get_git_hash\n\n get_git_hash (directory:str, tracking:bool=False,\n tracking_tool:Literal['wandb']='wandb')\n\nGet the git hash and optionally track\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndirectory\nstr\n\nthe directory where the git repository is located\n\n\ntracking\nbool\nFalse\nwhether to directly track the git revision hash\n\n\ntracking_tool\nLiteral\nwandb\nCurrently only wandb is supported\n\n\nReturns\nstr\n\n\n\n\n\n\nsource", + "crumbs": [ + "Experiment functions", + "Tracking utils" + ] + }, + { + "objectID": "40_experiments/tracking.html#get_library_version", + "href": "40_experiments/tracking.html#get_library_version", + "title": "Tracking utils", + "section": "get_library_version", + "text": "get_library_version\n\n get_library_version (library_name:str, tracking:bool=False,\n tracking_tool:Literal['wandb']='wandb')\n\nGet the version of a specified library and optionally track it\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nlibrary_name\nstr\n\n\n\n\ntracking\nbool\nFalse\nWhether to directly track the library version\n\n\ntracking_tool\nLiteral\nwandb\nCurrently only wandb is supported\n\n\nReturns\nstr\n\n\n\n\n\nExample usage for the check_parameter_types function.", + "crumbs": [ + "Experiment functions", + "Tracking utils" + ] + }, + { + "objectID": "30_agents/60_approximators/critic_networks.html", + "href": "30_agents/60_approximators/critic_networks.html", + "title": "Critic Networks", + "section": "", + "text": "source\n\nRNNWrapper\n\n RNNWrapper (rnn_cell_class, *args, **kwargs)\n\n*Base class for all neural network modules.\nYour models should also subclass this class.\nModules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nclass Model(nn.Module):\n def __init__(self) -> None:\n super().__init__()\n self.conv1 = nn.Conv2d(1, 20, 5)\n self.conv2 = nn.Conv2d(20, 20, 5)\n\n def forward(self, x):\n x = F.relu(self.conv1(x))\n return F.relu(self.conv2(x))\nSubmodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.\n.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.\n:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*\n\nsource\n\n\nBaseApproximator\n\n BaseApproximator ()\n\nSome basic functions for approximators\n\nsource\n\n\nBaseApproximatorMLP\n\n BaseApproximatorMLP ()\n\nSome basic functions for approximators\n\nsource\n\n\nRNNMLPHybrid\n\n RNNMLPHybrid (RNN_input_size:int, MLP_input_size:int|None,\n output_size:int, num_hidden_units_RNN:int,\n hidden_layers_RNN:int, hidden_layers_MLP:List[int],\n hidden_layers_input_MLP:Optional[List[int]],\n RNN_cell:torch.nn.modules.module.Module,\n activation:torch.nn.modules.module.Module,\n final_activation:torch.nn.modules.module.Module,\n drop_prob:float, batch_norm:bool, init_method:str)\n\nA hybrid model combining an RNN and an MLP\n\nsource\n\n\nBaseApproximatorRNN\n\n BaseApproximatorRNN ()\n\nSome basic functions for approximators\n\nsource\n\n\nMLPStateAction\n\n MLPStateAction (input_shape:Union[Tuple,List[Tuple]], output_shape:Tuple,\n hidden_layers:list, activation:str='relu',\n drop_prob:float=0.0, batch_norm:bool=False,\n final_activation:str='identity',\n init_method:str='xavier_uniform', use_cuda:bool=False,\n dropout:bool=False)\n\nMultilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_shape\nUnion\n\nnumber of features\n\n\noutput_shape\nTuple\n\nnumber of outputs/actions\n\n\nhidden_layers\nlist\n\nlist of number of neurons in each hidden layer\n\n\nactivation\nstr\nrelu\n\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nfinal_activation\nstr\nidentity\nwhether to apply ReLU activation to the output\n\n\ninit_method\nstr\nxavier_uniform\nParameter for initialization\n\n\nuse_cuda\nbool\nFalse\nhandled by mushroomRL, not used here\n\n\ndropout\nbool\nFalse\nlegacy parameter to ensure compatibility, use drop_prob instead\n\n\n\n\nsource\n\n\nMLPState\n\n MLPState (input_shape:Tuple, output_shape:Tuple, hidden_layers:list,\n activation:str='relu', drop_prob:float=0.0,\n batch_norm:bool=False, final_activation:str='identity',\n init_method:str='xavier_uniform', use_cuda:bool=False,\n dropout:bool=False)\n\nMultilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_shape\nTuple\n\nnumber of features\n\n\noutput_shape\nTuple\n\nnumber of outputs/actions\n\n\nhidden_layers\nlist\n\nlist of number of neurons in each hidden layer\n\n\nactivation\nstr\nrelu\n\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nfinal_activation\nstr\nidentity\nwhether to apply ReLU activation to the output\n\n\ninit_method\nstr\nxavier_uniform\nParameter for initialization\n\n\nuse_cuda\nbool\nFalse\nhandled by mushroomRL, not used here\n\n\ndropout\nbool\nFalse\nlegacy parameter to ensure compatibility, use drop_prob instead\n\n\n\n\nsource\n\n\nMLPActor\n\n MLPActor (input_shape:Tuple, output_shape:Tuple, hidden_layers:list,\n activation:str='relu', drop_prob:float=0.0,\n batch_norm:bool=False, final_activation:str='identity',\n init_method:str='xavier_uniform', use_cuda:bool=False,\n dropout:bool=False, **kwargs)\n\nMultilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_shape\nTuple\n\nnumber of features\n\n\noutput_shape\nTuple\n\nnumber of outputs/actions\n\n\nhidden_layers\nlist\n\nlist of number of neurons in each hidden layer\n\n\nactivation\nstr\nrelu\n\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nfinal_activation\nstr\nidentity\nwhether to apply ReLU activation to the output\n\n\ninit_method\nstr\nxavier_uniform\nParameter for initialization\n\n\nuse_cuda\nbool\nFalse\n\n\n\ndropout\nbool\nFalse\nlegacy parameter to ensure compatibility, use drop_prob instead\n\n\nkwargs\n\n\n\n\n\n\n\nsource\n\n\nRNNActor\n\n RNNActor (input_shape:List[Tuple], output_shape:Tuple,\n hidden_layers_RNN:int, num_hidden_units_RNN:int,\n hidden_layers_MLP:List,\n hidden_layers_input_MLP:Optional[List]=None,\n RNN_cell:str='GRU', activation:str='relu', drop_prob:float=0.0,\n batch_norm:bool=False, final_activation:str='identity',\n init_method:str='xavier_uniform', use_cuda:bool=False,\n dropout:bool=False, input_shape_:List[Tuple]=None, **kwargs)\n\nMultilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_shape\nList\n\ninput shape, must be exaclty as input shape into agent for mushroom_rl to work\n\n\noutput_shape\nTuple\n\nnumber of outputs/actions\n\n\nhidden_layers_RNN\nint\n\nnumber of initial hidden RNN layers\n\n\nnum_hidden_units_RNN\nint\n\nnumber of neurons in the RNN layers\n\n\nhidden_layers_MLP\nList\n\nlist of number of neurons in each hidden MLP layer, following the RNN layers\n\n\nhidden_layers_input_MLP\nOptional\nNone\nIf a separate MLP is used for (potential) MLP input\n\n\nRNN_cell\nstr\nGRU\nRNN cell type\n\n\nactivation\nstr\nrelu\n\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nfinal_activation\nstr\nidentity\nwhether to apply ReLU activation to the output\n\n\ninit_method\nstr\nxavier_uniform\nParameter for initialization\n\n\nuse_cuda\nbool\nFalse\n\n\n\ndropout\nbool\nFalse\nlegacy parameter to ensure compatibility, use drop_prob instead\n\n\ninput_shape_\nList\nNone\ninput shape for composite spaces\n\n\nkwargs\n\n\n\n\n\n\n\nsource\n\n\nRNNStateAction\n\n RNNStateAction (input_shape:List[Tuple], output_shape:Tuple,\n hidden_layers_RNN:int, num_hidden_units_RNN:int,\n hidden_layers_MLP:List,\n hidden_layers_input_MLP:Optional[List]=None,\n RNN_cell:str='GRU', activation:str='relu',\n drop_prob:float=0.0, batch_norm:bool=False,\n final_activation:str='identity',\n init_method:str='xavier_uniform', use_cuda:bool=False,\n dropout:bool=False, input_shape_:List[Tuple]=None,\n **kwargs)\n\nMultilayer perceptron model for critic networks that take both states and actions as inputs to output the q-value\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_shape\nList\n\ninput shape, must be exaclty as input shape into agent for mushroom_rl to work\n\n\noutput_shape\nTuple\n\nOutput shape\n\n\nhidden_layers_RNN\nint\n\nnumber of initial hidden RNN layers\n\n\nnum_hidden_units_RNN\nint\n\nnumber of neurons in the RNN layers\n\n\nhidden_layers_MLP\nList\n\nlist of number of neurons in each hidden MLP layer, following the RNN layers\n\n\nhidden_layers_input_MLP\nOptional\nNone\nstructure of MLP to speratly process non-RNN input\n\n\nRNN_cell\nstr\nGRU\nRNN cell type\n\n\nactivation\nstr\nrelu\n\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nfinal_activation\nstr\nidentity\nwhether to apply ReLU activation to the output\n\n\ninit_method\nstr\nxavier_uniform\nParameter for initialization\n\n\nuse_cuda\nbool\nFalse\n\n\n\ndropout\nbool\nFalse\nlegacy parameter to ensure compatibility, use drop_prob instead\n\n\ninput_shape_\nList\nNone\ninput shape for composite spaces\n\n\nkwargs\n\n\n\n\n\n\n\nimport mushroom_rl\nmushroom_rl.__file__\n\n'/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/mushroom_rl/__init__.py'", + "crumbs": [ + "Agents", + "Approximators", + "Critic Networks" + ] + }, + { + "objectID": "30_agents/40_base_agents/basic_agents.html", + "href": "30_agents/40_base_agents/basic_agents.html", + "title": "Basic agents", + "section": "", + "text": "source\n\nRandomAgent\n\n RandomAgent (environment_info:ddopai.utils.MDPInfo,\n obsprocessors:list[object]|None=None,\n agent_name:str='RandomAgent', *args, **kwargs)\n\nA random agent that samples actions from the environment’s action space. Useful for testing and as minimal baseline.", + "crumbs": [ + "Agents", + "Basic agents", + "Basic agents" + ] + }, + { + "objectID": "30_agents/51_RL_agents/mushroom_base_agent.html", + "href": "30_agents/51_RL_agents/mushroom_base_agent.html", + "title": "Mushroom base agent", + "section": "", + "text": "source", + "crumbs": [ + "Agents", + "Reinforcement Learning agents", + "Mushroom base agent" + ] + }, + { + "objectID": "30_agents/51_RL_agents/mushroom_base_agent.html#mushroombaseagent", + "href": "30_agents/51_RL_agents/mushroom_base_agent.html#mushroombaseagent", + "title": "Mushroom base agent", + "section": "MushroomBaseAgent", + "text": "MushroomBaseAgent\n\n MushroomBaseAgent (environment_info:ddopai.utils.MDPInfo,\n obsprocessors:Optional[List]=None, device:str='cpu',\n agent_name:str|None=None)\n\nBase class for Agents that integrate MushroomRL agents.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nobsprocessors\nOptional\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nNone\n\n\n\n\n\nXXX\nXXX\nXXXs:\n\nXXX", + "crumbs": [ + "Agents", + "Reinforcement Learning agents", + "Mushroom base agent" + ] + }, + { + "objectID": "30_agents/51_RL_agents/td3_agents.html", + "href": "30_agents/51_RL_agents/td3_agents.html", + "title": "TD3 agents", + "section": "", + "text": "source\n\nTD3Agent\n\n TD3Agent (environment_info:ddopai.utils.MDPInfo,\n learning_rate_actor:float=0.0003,\n learning_rate_critic:float|None=None,\n initial_replay_size:int=1024, max_replay_size:int=50000,\n batch_size:int=64, hidden_layers:List=None,\n activation:str='relu', tau:float=0.005, policy_delay:int=2,\n noise_std:float=0.2, sigma_scale:float=0.5, theta:float=0.15,\n dt=0.02, drop_prob:float=0.0, batch_norm:bool=False,\n init_method:str='xavier_uniform', optimizer:str='Adam',\n loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None='SAC')\n\nXXX\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nlearning_rate_actor\nfloat\n0.0003\n\n\n\nlearning_rate_critic\nfloat | None\nNone\nIf none, then it is set to learning_rate_actor\n\n\ninitial_replay_size\nint\n1024\n\n\n\nmax_replay_size\nint\n50000\n\n\n\nbatch_size\nint\n64\n\n\n\nhidden_layers\nList\nNone\nif None, then default is [64, 64]\n\n\nactivation\nstr\nrelu\n“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”\n\n\ntau\nfloat\n0.005\n\n\n\npolicy_delay\nint\n2\n\n\n\nnoise_std\nfloat\n0.2\n\n\n\nsigma_scale\nfloat\n0.5\n\n\n\ntheta\nfloat\n0.15\n\n\n\ndt\nfloat\n0.02\n\n\n\ndrop_prob\nfloat\n0.0\n\n\n\nbatch_norm\nbool\nFalse\n\n\n\ninit_method\nstr\nxavier_uniform\n“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”\n\n\noptimizer\nstr\nAdam\n“Adam” or “SGD” or “RMSprop”\n\n\nloss\nstr\nMSE\ncurrently only MSE is supported\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nSAC\n\n\n\n\n\n# #| export\n\n# class TD3Agent():\n\n# train_mode = \"env_interaction\"\n\n# \"\"\"\n# Soft Actor Critic (SAC) agent with hybrid action, both based on Gaussian. The binary action is \n# 0 if the output of the network is less or equal than 0, and 1 otherwise.\n\n# Args:\n# mdp_info (MDPInfo): Contains relevant information about the environment.\n# learning_rate_actor (float): Learning rate for the actor.\n# learning_rate_critic (float): Learning rate for the critic.\n# learning_rate_alpha (float): Learning rate for the temperature parameter.\n# initial_replay_size (int): Number of transitions to save in the replay buffer during startup.\n# max_replay_size (int): Maximum number of transitions to save in the replay buffer.\n# batch_size (int): Number of transitions to sample each time experience is replayed.\n# n_features (int): Number of features for the hidden layers of the networks.\n# lr_alpha (float): Learning rate for the temperature parameter.\n# tau (float): Parameter for the soft update of the target networks.\n# optimizer (torch.optim): Optimizer to use for the networks.\n# squeeze_output (bool): Whether to squeeze the output of the actor network or not.\n# use_cuda (bool): Whether to use CUDA or not. If True and not available, it will use CPU.\n# agent_name (str): Name of the agent. If set to None will use some default name.\n\n# \"\"\"\n\n# def __init__(\n# self,\n# environment_info: MDPInfo,\n# learning_rate_actor = 3e-4,\n# learning_rate_critic = None,\n# initial_replay_size = 1024,\n# max_replay_size = 50000,\n# batch_size = 64,\n# hidden_layers = [64, 64],\n# tau = 0.005,\n# policy_delay = 2,\n# noise_std = 0.2,\n# optimizer = optim.Adam,\n# sigma_scale = 0.5,\n\n# loss = \"MSE\",\n\n# theta=0.15,\n# dt=0.02,\n# squeeze_output = True,\n# device = \"cuda\",\n# agent_name = None): \n \n# # print(\"in init fubction\")\n\n# self.warmup_training_steps = initial_replay_size\n\n# mdp_info = environment_info\n# optimizer = optim.Adam\n \n# self.policy_class = OrnsteinUhlenbeckPolicy\n# self.policy_params = dict(sigma=np.ones(1) * sigma_scale, theta=theta, dt=dt)\n\n# if len(mdp_info.observation_space.shape) == 2:\n# input_shape = (mdp_info.observation_space.shape[0]*mdp_info.observation_space.shape[1],)\n# else:\n# input_shape = mdp_info.observation_space.shape\n\n# actor_output_shape = (mdp_info.action_space.shape[0],) \n\n# print(input_shape)\n\n# use_cuda = False\n\n# if learning_rate_critic is None:\n# learning_rate_critic = learning_rate_actor\n\n# actor_params = dict(network=MLPActor,\n# hidden_layers=hidden_layers,\n# input_shape=input_shape,\n# output_shape=actor_output_shape,\n# use_cuda=use_cuda)\n \n# # print(\"setting optimizer class\")\n# actor_optimizer = {'class': optimizer,\n# 'params': {'lr': learning_rate_actor}} \n \n# critic_input_shape = (input_shape[0] + actor_output_shape[0],)\n# critic_params = dict(network=MLPStateAction,\n# optimizer={'class': optimizer,\n# 'params': {'lr': learning_rate_critic}}, \n# loss=F.mse_loss,\n# hidden_layers=hidden_layers,\n# input_shape=critic_input_shape,\n# output_shape=(1,),\n# squeeze_output=squeeze_output,\n# use_cuda=use_cuda)\n \n# # print(\"creating agent from mushroom\")\n \n# self.agent = TD3(mdp_info, self.policy_class, self.policy_params,\n# actor_params, actor_optimizer, critic_params, batch_size,\n# initial_replay_size, max_replay_size, tau, policy_delay, noise_std)\n \n# self.network_list, self.actor, self.critic = self.get_network_list(set_actor_critic_attributes=True)\n \n# # print(\"created agent from mushroom\")\n\n# if agent_name is None:\n# self.agent.name = 'TD3_classic'\n# else:\n# self.agent.name = agent_name\n\n# def __getattr__(self, attr):\n# return getattr(self.agent, attr)\n\n# def train(self,):\n# self.agent.policy.train()\n \n# def eval(self,):\n# self.agent.policy.eval()\n\n# def get_network_list(self, set_actor_critic_attributes: bool = True):\n# \"\"\" Get the list of networks in the agent for the save and load functions\n# Get the actor for the predict function in eval mode \"\"\"\n\n# networks = []\n# ensemble_critic = self.agent._critic_approximator._impl.model\n# for i, model in enumerate(ensemble_critic):\n# networks.append(model.network)\n# networks.append(self.agent.policy._approximator._impl.model.network)\n\n# actor = self.agent.policy._approximator._impl.model.network\n# critic = ensemble_critic[0].network\n\n# if set_actor_critic_attributes:\n# return networks, actor, critic\n# else:\n# return networks\n \n# def save(self,\n# path: str, # The directory where the file will be saved.\n# overwrite: bool=True): # Allow overwriting; if False, a FileExistsError will be raised if the file exists.\n \n# \"\"\"\n# Save the PyTorch model to a file in the specified directory.\n\n# \"\"\"\n \n# if not hasattr(self, 'network_list') or self.network_list is None:\n# raise AttributeError(\"Cannot find networks.\")\n\n# # Create the directory path if it does not exist\n# os.makedirs(path, exist_ok=True)\n\n# # Construct the file path using os.path.join for better cross-platform compatibility\n\n# for network_number, network in enumerate(self.network_list):\n# full_path = os.path.join(path, f\"network_{network_number}.pth\")\n\n# if os.path.exists(full_path):\n# if not overwrite:\n# raise FileExistsError(f\"The file {full_path} already exists and will not be overwritten.\")\n# else:\n# logging.debug(f\"Overwriting file {full_path}\") # Only log with info as during training we will continuously overwrite the model\n \n# # Save the model's state_dict using torch.save\n# torch.save(network.state_dict(), full_path)\n# logging.debug(f\"Model saved successfully to {full_path}\")\n \n# def load(self, path: str):\n# \"\"\"\n# Load the PyTorch models from files in the specified directory.\n# \"\"\"\n \n# if not hasattr(self, 'network_list') or self.network_list is None:\n# raise AttributeError(\"Cannot find networks to load.\")\n\n# # Check for the presence of model files\n# for network_number, network in enumerate(self.network_list):\n# full_path = os.path.join(path, f\"network_{network_number}.pth\")\n\n# if not os.path.exists(full_path):\n# raise FileNotFoundError(f\"The file {full_path} does not exist.\")\n \n# try:\n# # Load each network's state_dict\n# network.load_state_dict(torch.load(full_path))\n# logging.info(f\"Network {network_number} loaded successfully from {full_path}\")\n# except Exception as e:\n# raise RuntimeError(f\"An error occurred while loading network {network_number}: {e}\")\n\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\n\nval_index_start = 8000 #90_000\ntest_index_start = 9000 #100_000\n\nX = np.random.standard_normal((10000, 2))\nY = np.random.standard_normal((10000, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\nY = X[:,0].reshape(-1, 1)\n# truncate Y at 0:\nY = np.maximum(Y, 0)\n# normalize Y max to 1\nY = Y/np.max(Y)\n\nprint(np.max(Y))\n\nprint(X.shape, Y.shape)\n\nclip_action = ClipAction(0., 1.)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params = {'lag_window': 0, 'include_y': False, 'pre_calc': True})\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n q_bound_high = 1.0,\n q_bound_low = -0.1,\n postprocessors = [clip_action],\n)\n\n\n\nagent = TD3Agent(environment.mdp_info,\n obsprocessors = None, # default: []\n device=\"cpu\", # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nenvironment.train()\nagent.train()\nenvironment.print=False\n\n# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = \"test\", save_best=True, print_freq=1) # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\n1.0\n(10000, 2) (10000, 1)\n\n\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32\n gym.logger.warn(f\"Box bound precision lowered by casting to {self.dtype}\")\nINFO:root:Actor network:\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n action_fn=lambda data: sys.getsizeof(data.storage()),\n\n\nChecking tuple: (2,)\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPActor [1, 1] --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 192\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,417\nTrainable params: 4,417\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n\n\nINFO:root:Critic network:\n\n\nChecking tuple: (2,)\nChecking tuple: (1,)\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPStateAction -- --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 256\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,481\nTrainable params: 4,481\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n-779.2586167634846 -492.39378518242427\n-779.2586167634846 -492.39378518242427", + "crumbs": [ + "Agents", + "Reinforcement Learning agents", + "TD3 agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_saa_agents.html", + "href": "30_agents/41_NV_agents/nv_saa_agents.html", + "title": "SAA based agents", + "section": "", + "text": "source", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "SAA based agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_saa_agents.html#basesaaagent", + "href": "30_agents/41_NV_agents/nv_saa_agents.html#basesaaagent", + "title": "SAA based agents", + "section": "BaseSAAagent", + "text": "BaseSAAagent\n\n BaseSAAagent (environment_info:ddopai.utils.MDPInfo,\n obsprocessors:Optional[List[object]]=None,\n agent_name:str|None=None)\n\nBase class for Sample Average Approximation Agents, implementing the main method to find the quntile of some (weighted) empirical distribution.\n\nsource\n\nBaseSAAagent._validate_X_predict\n\n BaseSAAagent._validate_X_predict (X)\n\nValidate X data before prediction\n\nsource\n\n\nBaseSAAagent.find_weighted_quantiles\n\n BaseSAAagent.find_weighted_quantiles (weights, weightPosIndices, sl, y)\n\nFind the weighted quantile of a range of data y. It assumes that all arrays are of shape (n_samples, n_outputs). Note that it has not been tested for n_outputs > 1.\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "SAA based agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_saa_agents.html#newsvendorsaaagent", + "href": "30_agents/41_NV_agents/nv_saa_agents.html#newsvendorsaaagent", + "title": "SAA based agents", + "section": "NewsvendorSAAagent", + "text": "NewsvendorSAAagent\n\n NewsvendorSAAagent (environment_info:ddopai.utils.MDPInfo,\n cu:float|numpy.ndarray, co:float|numpy.ndarray,\n obsprocessors:list[object]|None=None,\n agent_name:str='SAA')\n\nNewsvendor agent that uses Sample Average Approximation to find the quantile of the empirical distribution\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ncu\nfloat | numpy.ndarray\n\nunderage cost\n\n\nco\nfloat | numpy.ndarray\n\noverage cost\n\n\nobsprocessors\nlist[object] | None\nNone\n\n\n\nagent_name\nstr\nSAA\n\n\n\n\n\nFurther information:\nReferences:\n.. [1] Levi, Retsef, Georgia Perakis, and Joline Uichanco. \"The data-driven newsvendor problem: new bounds and insights.\"\n Operations Research 63.6 (2015): 1294-1306.\n\nsource\n\n\nNewsvendorSAAagent.fit\n\n NewsvendorSAAagent.fit (X:numpy.ndarray, Y:numpy.ndarray)\n\nFit the agent to the data. The agent will find the quantile of the empirical distribution of the data.\n\n\n\n\nType\nDetails\n\n\n\n\nX\nndarray\nfeatures will be ignored\n\n\nY\nndarray\n\n\n\nReturns\nNone\n\n\n\n\n\nsource\n\n\nNewsvendorSAAagent.draw_action_\n\n NewsvendorSAAagent.draw_action_ (observation:numpy.ndarray)\n\nDraw an action from the quantile of the empirical distribution.\n\n\n\n\nType\nDetails\n\n\n\n\nobservation\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nNewsvendorSAAagent.save\n\n NewsvendorSAAagent.save (path:str, overwrite:bool=True)\n\nSave the quantiles to a file in the specified directory.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\npath\nstr\n\nThe directory where the file will be saved.\n\n\noverwrite\nbool\nTrue\nAllow overwriting; if False, a FileExistsError will be raised if the file exists.\n\n\n\n\nsource\n\n\nNewsvendorSAAagent.load\n\n NewsvendorSAAagent.load (path:str)\n\nLoad the quantiles from a file.\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\npath\nstr\nOnly the path to the folder is needed, not the file itself\n\n\n\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "SAA based agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_saa_agents.html#basewsaaagent", + "href": "30_agents/41_NV_agents/nv_saa_agents.html#basewsaaagent", + "title": "SAA based agents", + "section": "BasewSAAagent", + "text": "BasewSAAagent\n\n BasewSAAagent (environment_info:ddopai.utils.MDPInfo,\n cu:float|numpy.ndarray, co:float|numpy.ndarray,\n obsprocessors:list[object]|None=None,\n agent_name:str='wSAA')\n\nBase class for weighted Sample Average Approximation (wSAA) Agents\n\nsource\n\nBasewSAAagent.fit\n\n BasewSAAagent.fit (X:numpy.ndarray, Y:numpy.ndarray)\n\n*Fit the agent to the data. The function will call _get_fitted_model which will train a machine learning model to determine the sample weightes (e.g., kNN, DT, RF).*\n\n\n\n\nType\nDetails\n\n\n\n\nX\nndarray\n\n\n\nY\nndarray\n\n\n\n\n\nsource\n\n\nBaseAgent.draw_action\n\n BaseAgent.draw_action (observation:numpy.ndarray)\n\nMain interfrace to the environemnt. Applies preprocessors to the observation. Internal logic of the agent to be implemented in draw_action_ method.\n\n\n\n\nType\nDetails\n\n\n\n\nobservation\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nBasewSAAagent._get_fitted_model\n\n BasewSAAagent._get_fitted_model (X, y)\n\nInitialise the underlying model - depending on the underlying machine learning model\n\nsource\n\n\nBasewSAAagent._calc_weights\n\n BasewSAAagent._calc_weights (sample)\n\nCalculate the sample weights - depending on the underlying machine learning model\n\nsource\n\n\nBasewSAAagent.predict\n\n BasewSAAagent.predict (X:numpy.ndarray)\n\nPredict value for X by finding the quantiles of the empirical distribution based on the sample weights predicted by the underlying machine learning model.\n\n\n\n\nType\nDetails\n\n\n\n\nX\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nBasewSAAagent.save\n\n BasewSAAagent.save (path:str, overwrite:bool=True)\n\nSave the scikit-learn model to a file in the specified directory.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\npath\nstr\n\nThe directory where the file will be saved.\n\n\noverwrite\nbool\nTrue\nAllow overwriting; if False, a FileExistsError will be raised if the file exists.\n\n\n\n\nsource\n\n\nBasewSAAagent.load\n\n BasewSAAagent.load (path:str)\n\nLoad the scikit-learn model from a file.\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\npath\nstr\nOnly the path to the folder is needed, not the file itself\n\n\n\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "SAA based agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_saa_agents.html#newsvendorrfwsaaagent", + "href": "30_agents/41_NV_agents/nv_saa_agents.html#newsvendorrfwsaaagent", + "title": "SAA based agents", + "section": "NewsvendorRFwSAAagent", + "text": "NewsvendorRFwSAAagent\n\n NewsvendorRFwSAAagent (environment_info:ddopai.utils.MDPInfo,\n cu:float|numpy.ndarray, co:float|numpy.ndarray,\n obsprocessors:list[object]|None=None,\n n_estimators:int=100,\n criterion:str='squared_error',\n max_depth:int|None=None, min_samples_split:int=2,\n min_samples_leaf:int=1,\n min_weight_fraction_leaf:float=0.0,\n max_features:int|float|str|None=1.0,\n max_leaf_nodes:int|None=None,\n min_impurity_decrease:float=0.0,\n bootstrap:bool=True, oob_score:bool=False,\n n_jobs:int|None=None, random_state:int|numpy.rando\n m.mtrand.RandomState|None=None, verbose:int=0,\n warm_start:bool=False, ccp_alpha:float=0.0,\n max_samples:int|float|None=None,\n monotonic_cst:numpy.ndarray|None=None,\n agent_name:str='wSAA')\n\nNewsvendor agent that uses weighted Sample Average Approximation based on Random Forest\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ncu\nfloat | numpy.ndarray\n\nunderage cost\n\n\nco\nfloat | numpy.ndarray\n\noverage cost\n\n\nobsprocessors\nlist[object] | None\nNone\nList of obsprocessors to apply to the observation\n\n\nn_estimators\nint\n100\nThe number of trees in the forest.\n\n\ncriterion\nstr\nsquared_error\nFunction to measure the quality of a split.\n\n\nmax_depth\nint | None\nNone\nMaximum depth of the tree; None means unlimited.\n\n\nmin_samples_split\nint\n2\nMinimum samples required to split a node.\n\n\nmin_samples_leaf\nint\n1\nMinimum samples required to be at a leaf node.\n\n\nmin_weight_fraction_leaf\nfloat\n0.0\nMinimum weighted fraction of the total weights at a leaf node.\n\n\nmax_features\nint | float | str | None\n1.0\nNumber of features to consider when looking for the best split.\n\n\nmax_leaf_nodes\nint | None\nNone\nMaximum number of leaf nodes; None means unlimited.\n\n\nmin_impurity_decrease\nfloat\n0.0\nMinimum impurity decrease required to split a node.\n\n\nbootstrap\nbool\nTrue\nWhether to use bootstrap samples when building trees.\n\n\noob_score\nbool\nFalse\nWhether to use out-of-bag samples to estimate R^2 on unseen data.\n\n\nn_jobs\nint | None\nNone\nNumber of jobs to run in parallel; None means 1.\n\n\nrandom_state\nint | numpy.random.mtrand.RandomState | None\nNone\nControls randomness for bootstrapping and feature sampling.\n\n\nverbose\nint\n0\nControls the verbosity when fitting and predicting.\n\n\nwarm_start\nbool\nFalse\nIf True, reuse solution from previous fit and add more estimators.\n\n\nccp_alpha\nfloat\n0.0\nComplexity parameter for Minimal Cost-Complexity Pruning.\n\n\nmax_samples\nint | float | None\nNone\nNumber of samples to draw when bootstrap is True.\n\n\nmonotonic_cst\nnumpy.ndarray | None\nNone\nMonotonic constraints for features.\n\n\nagent_name\nstr\nwSAA\nDefault wSAA, change if it is needed to differentiate among different ML models\n\n\n\n\nFurther information:\nNotes —–\nThe default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, max_features=n_features and bootstrap=False, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, random_state has to be fixed.\nReferences ———-\n.. [1] L. Breiman, \"Random Forests\", Machine Learning, 45(1), 5-32, 2001.\n\n.. [2] P. Geurts, D. Ernst., and L. Wehenkel, \"Extremely randomized\n trees\", Machine Learning, 63(1), 3-42, 2006.\n\n.. [3] Bertsimas, Dimitris, and Nathan Kallus, \"From predictive to prescriptive analytics.\"\n arXiv preprint arXiv:1402.5481 (2014).\n\n.. [4] scikit-learn, RandomForestRegressor,\n <https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_forest.py>\n \n.. [5] Scornet, Erwan. \"Random forests and kernel methods.\"\n IEEE Transactions on Information Theory 62.3 (2016): 1485-1500.\n\nsource\n\n\nNewsvendorRFwSAAagent._get_fitted_model\n\n NewsvendorRFwSAAagent._get_fitted_model (X:numpy.ndarray,\n Y:numpy.ndarray)\n\nFit the underlying machine learning model using all X and Y data in the train set.\n\n\n\n\nType\nDetails\n\n\n\n\nX\nndarray\n\n\n\nY\nndarray\n\n\n\n\n\nsource\n\n\nNewsvendorRFwSAAagent._calc_weights\n\n NewsvendorRFwSAAagent._calc_weights (sample:numpy.ndarray)\n\nCalculate the sample weights based on the Random Forest model.\n\n\n\n\nType\nDetails\n\n\n\n\nsample\nndarray\n\n\n\nReturns\ntuple\n\n\n\n\nExample usage:\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\n\nval_index_start = 800 #90_000\ntest_index_start = 900 #100_000\n\nX = np.random.rand(1000, 2)\nY = np.random.rand(1000, 1)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start)\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n)\n\nagent = NewsvendorSAAagent(environment.mdp_info, cu=0.42857, co=1.0)\nagent = NewsvendorRFwSAAagent(environment.mdp_info, cu=0.42857, co=1.0)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nrun_experiment(agent, environment, 100, run_id = \"test\", save_best=True) # fit agent via run_experiment function\n \nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\n-18.01888542213257 -17.142493964355882\n\n\nWARNING:root:Overwriting file results/test/saved_models/best/model.joblib\n\n\nresults\n-15.763567080255545 -15.022369246527656 -15.763567080255545 -15.022369246527656\n-17.334785352427232 -16.554914069406784", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "SAA based agents" + ] + }, + { + "objectID": "index.html", + "href": "index.html", + "title": "ddopai", + "section": "", + "text": "pip install ddopai", + "crumbs": [ + "ddopai" + ] + }, + { + "objectID": "index.html#install", + "href": "index.html#install", + "title": "ddopai", + "section": "", + "text": "pip install ddopai", + "crumbs": [ + "ddopai" + ] + }, + { + "objectID": "index.html#what-is-ddopai", + "href": "index.html#what-is-ddopai", + "title": "ddopai", + "section": "What is ddopai?", + "text": "What is ddopai?\nTo be written.", + "crumbs": [ + "ddopai" + ] + }, + { + "objectID": "index.html#what-is-the-difference-to-gymnasium-and-how-to-convert-gymnasium-environments", + "href": "index.html#what-is-the-difference-to-gymnasium-and-how-to-convert-gymnasium-environments", + "title": "ddopai", + "section": "What is the difference to Gymnasium and how to convert Gymnasium Environments?", + "text": "What is the difference to Gymnasium and how to convert Gymnasium Environments?\nTo make any enviroment compatible with mushroomRL and other agents defined within ddopai, there are some additional requirements when defining the environment. Instead of inheriting from gym.Env, the environment should inherit from ddopai.envs.base.BaseEnvironment. This base class provides some additional necessary methods and attributes to ensure compatibility with the agents. Below are the steps to convert a Gym environment to a ddopai environment. We strongly recommend you to also look at the implementation of the NewsvendorEnv (nbs/20_environments/21_envs_inventory/20_single_period_envs.ipynb) as an example.\n\n1. Initialization and Parameter Setup\n\nIn the __init__ method of your environment, ensure that any environment-specific parameters are added using the set_param(...) method. This guarantees the correct types and shapes for the parameters.\nDefine the action and observation spaces using set_action_space() and set_observation_space() respectively. These should be called within the __init__ method, rather than defining the spaces directly.\nIn the __init__, and MDPInfo object needs to be created mdp_info = MDPInfo(self.observation_space, self.action_space, gamma=gamma, horizon=horizon_train)\n\n\n\n2. Handling Train, Validation, Test, and Horizon\n\nImplement or override the train(), val(), and test() methods to configure the correct datasets for each phase, ensuring no data leakage. The base class provides these methods, but you may need to adapt them based on your environment.\nUpdate the mdp_info to set the horizon (episode length). For validation and testing, the horizon corresponds to the length of the dataset, while for training, the horizon is determined by the horizon_train parameter. If horizon_train is \"use_all_data\", the full dataset is used; if it’s an integer, a random subset is used.\n\n\n\n3. Step Method\n\nThe step() method is handled in the base class, so instead of overriding it, implement a step_(self, action) method for the specific environment. This method should return a tuple: (observation, reward, terminated, truncated, info).\nThe next observation should be constructed using the get_observation() method, which must be called inside the step_() method. Make sure to correctly pass the demand (or equivalent) to the next step to calculate rewards.\n\n\n\n4. Pre- and Post-Processing\n\nAction post-processing should be done within the environment, in the step() method, to ensure the action is in the correct form for the environment.\nObservation pre-processing, however, is handled by the agent in MushroomRL. This processing takes place in the agent’s draw_action() method.\n\n\n\n5. Reset Method\n\nThe reset() method must differentiate between the training, validation, and testing modes, and it should consider the horizon_train parameter for training.\nAfter setting up the mode and horizon, call reset_index() (with an integer index or \"random\") to initialize the environment. Finally, use get_observation() to provide the initial observation to the agent.", + "crumbs": [ + "ddopai" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/inventory_utils.html", + "href": "20_environments/21_envs_inventory/inventory_utils.html", + "title": "Inventory utils", + "section": "", + "text": "source", + "crumbs": [ + "Environments", + "Inventory environments", + "Inventory utils" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/inventory_utils.html#orderpipeline", + "href": "20_environments/21_envs_inventory/inventory_utils.html#orderpipeline", + "title": "Inventory utils", + "section": "OrderPipeline", + "text": "OrderPipeline\n\n OrderPipeline (num_units:int, lead_time_mean:Union[ddopai.utils.Parameter\n ,numpy.ndarray,List,int,float], lead_time_stochasticity:Li\n teral['fixed','gamma','normal_absolute','normal_relative']\n ='fixed', lead_time_variance:Union[ddopai.utils.Parameter,\n int,float,numpy.ndarray,List,NoneType]=None,\n max_lead_time:list[object]|None=None,\n min_lead_time:list[object]|None=1)\n\nClass to handle the order pipeline in the inventory environments. It is used to keep track of the orders that are placed. It can account for fixed and variable lead times.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nnum_units\nint\n\nnumber of units (SKUs)\n\n\nlead_time_mean\nUnion\n\nmean lead time\n\n\nlead_time_stochasticity\nLiteral\nfixed\n“fixed”, “gamma”, “normal_absolute”, “normal_relative”\n\n\nlead_time_variance\nUnion\nNone\nvariance of the lead time\n\n\nmax_lead_time\nlist[object] | None\nNone\nmaximum lead time in case of stochastic lead times\n\n\nmin_lead_time\nlist[object] | None\n1\nminimum lead time in case of stochastic lead times\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nOrderPipeline.get_pipeline\n\n OrderPipeline.get_pipeline ()\n\nGet the current pipeline\n\nsource\n\n\nOrderPipeline.reset\n\n OrderPipeline.reset ()\n\nReset the pipeline\n\nsource\n\n\nOrderPipeline.step\n\n OrderPipeline.step (orders:numpy.ndarray)\n\nAdd orders to the pipeline and return the orders that are arriving\n\nsource\n\n\nOrderPipeline.get_orders_arriving\n\n OrderPipeline.get_orders_arriving ()\n\nGet the orders that are arriving in the current period\n\nsource\n\n\nOrderPipeline.draw_lead_times\n\n OrderPipeline.draw_lead_times ()\n\nDraw lead times for the orders\n\nsource\n\n\nOrderPipeline.check_stochasticity\n\n OrderPipeline.check_stochasticity (max_lead_time)\n\nCheck that params for stochastic lead times are set correctly\n\nsource\n\n\nOrderPipeline.check_max_min_mean_lt\n\n OrderPipeline.check_max_min_mean_lt ()\n\n\nsource\n\n\nOrderPipeline.set_param\n\n OrderPipeline.set_param (name:str,\n input:Union[ddopai.utils.Parameter,int,float,num\n py.ndarray,List], shape:tuple=(1,),\n new:bool=False)\n\nSet a parameter for the environment. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nname\nstr\n\nname of the parameter (will become the attribute name)\n\n\ninput\nUnion\n\ninput value of the parameter\n\n\nshape\ntuple\n(1,)\nshape of the parameter\n\n\nnew\nbool\nFalse\nwhether to create a new parameter or update an existing one\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nOrderPipeline.shape\n\n OrderPipeline.shape ()\n\nGet the shape of the pipeline", + "crumbs": [ + "Environments", + "Inventory environments", + "Inventory utils" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/base_inventory_env.html", + "href": "20_environments/21_envs_inventory/base_inventory_env.html", + "title": "Base inventory env", + "section": "", + "text": "source", + "crumbs": [ + "Environments", + "Inventory environments", + "Base inventory env" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/base_inventory_env.html#baseinventoryenv", + "href": "20_environments/21_envs_inventory/base_inventory_env.html#baseinventoryenv", + "title": "Base inventory env", + "section": "BaseInventoryEnv", + "text": "BaseInventoryEnv\n\n BaseInventoryEnv (mdp_info:ddopai.utils.MDPInfo,\n postprocessors:list[object]|None=None,\n mode:str='train', return_truncation:str=True,\n dataloader:ddopai.dataloaders.base.BaseDataLoader=None,\n horizon_train:int=100, underage_cost:Union[numpy.ndarra\n y,ddopai.utils.Parameter,int,float]=1, overage_cost:Uni\n on[numpy.ndarray,ddopai.utils.Parameter,int,float]=0)\n\nBase class for inventory management environments. This class inherits from BaseEnvironment.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nmdp_info\nMDPInfo\n\n\n\n\npostprocessors\nlist[object] | None\nNone\ndefault is empty list\n\n\nmode\nstr\ntrain\nInitial mode (train, val, test) of the environment\n\n\nreturn_truncation\nstr\nTrue\nwhether to return a truncated condition in step function\n\n\ndataloader\nBaseDataLoader\nNone\ndataloader for the environment\n\n\nhorizon_train\nint\n100\nhorizon for training mode\n\n\nunderage_cost\nUnion\n1\nunderage cost per unit\n\n\noverage_cost\nUnion\n0\noverage cost per unit (zero in most cases)\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nBaseInventoryEnv.set_observation_space\n\n BaseInventoryEnv.set_observation_space (shape:tuple,\n low:Union[numpy.ndarray,float]=-\n inf, high:Union[numpy.ndarray,flo\n at]=inf,\n samples_dim_included=True)\n\nSet the observation space of the environment. This is a standard function for simple observation spaces. For more complex observation spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the observation space.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nshape\ntuple\n\nshape of the dataloader features\n\n\nlow\nUnion\n-inf\nlower bound of the observation space\n\n\nhigh\nUnion\ninf\nupper bound of the observation space\n\n\nsamples_dim_included\nbool\nTrue\nwhether the first dimension of the shape input is the number of samples\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nBaseInventoryEnv.set_action_space\n\n BaseInventoryEnv.set_action_space (shape:tuple,\n low:Union[numpy.ndarray,float]=-inf,\n high:Union[numpy.ndarray,float]=inf,\n samples_dim_included=True)\n\nSet the action space of the environment. This is a standard function for simple action spaces. For more complex action spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the action space.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nshape\ntuple\n\nshape of the dataloader target\n\n\nlow\nUnion\n-inf\nlower bound of the observation space\n\n\nhigh\nUnion\ninf\nupper bound of the observation space\n\n\nsamples_dim_included\nbool\nTrue\nwhether the first dimension of the shape input is the number of samples\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nBaseInventoryEnv.reset\n\n BaseInventoryEnv.reset (start_index:int|str=None,\n state:numpy.ndarray=None)\n\nReset function for the Newsvendor problem. It will return the first observation and demand. For val and test modes, it will by default reset to 0, while for the train mode it depends on the paramter “horizon_train” whether a random point in the training data is selected or 0\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nstart_index\nint | str\nNone\nindex to start from\n\n\nstate\nndarray\nNone\ninitial state\n\n\nReturns\nTuple\n\n\n\n\n\n\nsource\n\n\nBaseInventoryEnv.get_observation\n\n BaseInventoryEnv.get_observation ()\n\nReturn the current observation. This function is for the simple case where the observation is only an x,y pair. For more complex observations, this function should be overwritten.", + "crumbs": [ + "Environments", + "Inventory environments", + "Base inventory env" + ] + }, + { + "objectID": "20_environments/actionprocessors.html", + "href": "20_environments/actionprocessors.html", + "title": "Actionprocessors", + "section": "", + "text": "source", + "crumbs": [ + "Environments", + "Actionprocessors" + ] + }, + { + "objectID": "20_environments/actionprocessors.html#roundaction", + "href": "20_environments/actionprocessors.html#roundaction", + "title": "Actionprocessors", + "section": "RoundAction", + "text": "RoundAction\n\n RoundAction (unit_size:Union[float,int,numpy.ndarray])\n\nA class to round input values to the nearest specified unit size. Unit size can be any decimal value like 10, 3, 1, 0.1, 0.03, etc.\n\n\n\n\nType\nDetails\n\n\n\n\nunit_size\nUnion\n\n\n\n\n\nsource\n\nRoundAction._validate_unit_size\n\n RoundAction._validate_unit_size\n (unit_size:Union[float,int,numpy.ndarray\n ])\n\nEnsures that the unit size is a positive float, int, or a numpy array of positive values.\n\nsource\n\n\nRoundAction.__call__\n\n RoundAction.__call__ (input:numpy.ndarray)\n\nRounds the input array to the nearest specified unit size.\nExample usage of [`RoundAction`](https://opimwue.github.io/ddopai/20_environments/actionprocessors.html#roundaction). Expected result:\n[1. 2. 4. 5. 6.]\n[0.1 0.4]\n[ 0. 12. 6. 0. 0. 0. 3.]\n\ninput = np.array([1.1, 2.5, 3.5, 4.6, 5.9])\nround_action = RoundAction(1)\nprint(round_action(input))\n\ninput = np.array([0.12, 0.39])\nround_action = RoundAction(0.1)\nprint(round_action(input))\n\ninput = np.array([1.1231, 12.13, 7, 0.5, 1.4, 1.5, 1.6])\nround_action = RoundAction(3)\nprint(round_action(input))\n\n[1. 2. 4. 5. 6.]\n[0.1 0.4]\n[ 0. 12. 6. 0. 0. 0. 3.]\n\n\n\nsource", + "crumbs": [ + "Environments", + "Actionprocessors" + ] + }, + { + "objectID": "20_environments/actionprocessors.html#movebatchtoproductdim", + "href": "20_environments/actionprocessors.html#movebatchtoproductdim", + "title": "Actionprocessors", + "section": "MoveBatchToProductDim", + "text": "MoveBatchToProductDim\n\n MoveBatchToProductDim (remove_action_per_unit_dim:bool=False)\n\nA class that moves the first dimension to the last place. Usefull for meta learners that return the predictions of various units in the batch dimension while in environment the num_unit (e.g., num_SKU) dimension is usually the last one\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nremove_action_per_unit_dim\nbool\nFalse\nIf there is only one action per unit, the action dimension can be removed by setting this to True\n\n\n\n\nsource\n\nMoveBatchToProductDim.__call__\n\n MoveBatchToProductDim.__call__ (input:numpy.ndarray)\n\nMoves the first dimension to the last place.", + "crumbs": [ + "Environments", + "Actionprocessors" + ] + }, + { + "objectID": "00_utils/torch_loss_functions.html", + "href": "00_utils/torch_loss_functions.html", + "title": "Torch loss functions", + "section": "", + "text": "source", + "crumbs": [ + "Utils", + "Torch loss functions" + ] + }, + { + "objectID": "00_utils/torch_loss_functions.html#torchquantileloss", + "href": "00_utils/torch_loss_functions.html#torchquantileloss", + "title": "Torch loss functions", + "section": "TorchQuantileLoss", + "text": "TorchQuantileLoss\n\n TorchQuantileLoss (reduction:str='mean')\n\nImplmentation of the quantile loss in Pytorch. Unlike the Numpy-based implementation [`quantile_loss`](https://opimwue.github.io/ddopai/00_utils/torch_loss_functions.html#quantile_loss) in the loss_functions module, this implementation this implementation reduces the results to a scalar value using the specified reduction method. This class is used to train Pytorch models using the quantile loss.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nreduction\nstr\nmean\n\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nTorchQuantileLoss.forward\n\n TorchQuantileLoss.forward (input:torch.Tensor, target:torch.Tensor,\n quantile:ddopai.utils.Parameter|numpy.ndarray)\n\nForward pass of the quantile loss function.\n\n\n\n\nType\nDetails\n\n\n\n\ninput\nTensor\n\n\n\ntarget\nTensor\n\n\n\nquantile\nddopai.utils.Parameter | numpy.ndarray\n\n\n\nReturns\nTensor\n\n\n\n\n\nsource\n\n\npinball_loss\n\n pinball_loss (input:torch.Tensor, target:torch.Tensor,\n underage:torch.Tensor, overage:torch.Tensor,\n reduction:str='mean')\n\n\nsource", + "crumbs": [ + "Utils", + "Torch loss functions" + ] + }, + { + "objectID": "00_utils/torch_loss_functions.html#torchpinballloss", + "href": "00_utils/torch_loss_functions.html#torchpinballloss", + "title": "Torch loss functions", + "section": "TorchPinballLoss", + "text": "TorchPinballLoss\n\n TorchPinballLoss (reduction:str='mean')\n\nImplmentation of the pinball loss in Pytorch using specific overage and underage cost. For the pinball loss based on quantiles directly, use the TorchQuantileLoss class. Unlike the Numpy-based implementation [`pinball_loss`](https://opimwue.github.io/ddopai/00_utils/torch_loss_functions.html#pinball_loss) in the loss_functions module, this implementation this implementation reduces the results to a scalar value using the specified reduction method. This class is used to train Pytorch models using the pinball loss.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nreduction\nstr\nmean\n\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nTorchPinballLoss.forward\n\n TorchPinballLoss.forward (input:torch.Tensor, target:torch.Tensor,\n underage:ddopai.utils.Parameter|numpy.ndarray,\n overage:ddopai.utils.Parameter|numpy.ndarray)\n\nForward pass of the pinball loss function.\n\n\n\n\nType\nDetails\n\n\n\n\ninput\nTensor\n\n\n\ntarget\nTensor\n\n\n\nunderage\nddopai.utils.Parameter | numpy.ndarray\n\n\n\noverage\nddopai.utils.Parameter | numpy.ndarray\n\n\n\nReturns\nTensor", + "crumbs": [ + "Utils", + "Torch loss functions" + ] + }, + { + "objectID": "00_utils/utils.html", + "href": "00_utils/utils.html", + "title": "General utils", + "section": "", + "text": "source", + "crumbs": [ + "Utils", + "General utils" + ] + }, + { + "objectID": "00_utils/utils.html#mdpinfo", + "href": "00_utils/utils.html#mdpinfo", + "title": "General utils", + "section": "MDPInfo", + "text": "MDPInfo\n\n MDPInfo (observation_space:gymnasium.spaces.space.Space,\n action_space:gymnasium.spaces.space.Space, gamma:float,\n horizon:int, dt:float=0.1, backend:Literal['numpy']='numpy')\n\n*This class is used to store the information of the environment. It is based on MushroomRL (https://github.com/MushroomRL). It can be accessed by agents that need the information of the environment, such as the state and action spaces.\nKey difference with MushroomRL is that the state and action spaces are gymnasium spaces.*\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nobservation_space\nSpace\n\n\n\n\naction_space\nSpace\n\n\n\n\ngamma\nfloat\n\n\n\n\nhorizon\nint\n\n\n\n\ndt\nfloat\n0.1\n\n\n\nbackend\nLiteral\nnumpy\nCurrently only numpy is supported\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nMDPInfo.size\n\n MDPInfo.size ()\n\nReturns: The sum of the number of discrete states and discrete actions. Only works for discrete spaces.\n\nsource\n\n\nMDPInfo.shape\n\n MDPInfo.shape ()\n\nReturns: The concatenation of the shape tuple of the state and action spaces.\n\nsource", + "crumbs": [ + "Utils", + "General utils" + ] + }, + { + "objectID": "00_utils/utils.html#datasetwrapper", + "href": "00_utils/utils.html#datasetwrapper", + "title": "General utils", + "section": "DatasetWrapper", + "text": "DatasetWrapper\n\n DatasetWrapper (dataloader:ddopai.dataloaders.base.BaseDataLoader,\n obsprocessors:List=None)\n\nThis class is used to wrap a Pytorch Dataset around the ddopai dataloader to enable the usage of the Pytorch Dataloader during training. This way, agents that are trained using Pytorch without interacting with the environment can directly train on the data generated by the dataloader.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataloader\nBaseDataLoader\n\nAny dataloader that inherits from BaseDataLoader\n\n\nobsprocessors\nList\nNone\nprocessors (to mimic the environment processors)\n\n\n\n\nsource\n\nDatasetWrapper.__getitem__\n\n DatasetWrapper.__getitem__ (idx)\n\nGet the item at the provided idx.\n\nsource\n\n\nDatasetWrapper.__len__\n\n DatasetWrapper.__len__ ()\n\nReturns the length of the dataset. Depends on the state of the dataloader (train, val, test).\n\nsource\n\n\nDatasetWrapperMeta\n\n DatasetWrapperMeta (dataloader:ddopai.dataloaders.base.BaseDataLoader,\n draw_parameter_function:<built-\n infunctioncallable>=None, distribution:Union[Literal[\n 'fixed','uniform'],List]='fixed',\n parameter_names:List[str]=None,\n bounds_low:Union[int,float,List]=0,\n bounds_high:Union[int,float,List]=1,\n obsprocessors:List=None)\n\nThis class is used to wrap a Pytorch Dataset around the ddopai dataloader to enable the usage of the Pytorch Dataloader during training. This way, agents that are trained using Pytorch without interacting with the environment can directly train on the data generated by the dataloader.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataloader\nBaseDataLoader\n\nAny dataloader that inherits from BaseDataLoader\n\n\ndraw_parameter_function\ncallable\nNone\nfunction to draw parameters from distribution\n\n\ndistribution\nUnion\nfixed\ndistribution for params during training, can be List for multiple parameters\n\n\nparameter_names\nList\nNone\nnames of the parameters\n\n\nbounds_low\nUnion\n0\nlower bound for params during training, can be List for multiple parameters\n\n\nbounds_high\nUnion\n1\nupper bound for params during training, can be List for multiple parameters\n\n\nobsprocessors\nList\nNone\nprocessors (to mimic the environment processors)\n\n\n\n\nsource", + "crumbs": [ + "Utils", + "General utils" + ] + }, + { + "objectID": "00_utils/utils.html#merge_dictionaries", + "href": "00_utils/utils.html#merge_dictionaries", + "title": "General utils", + "section": "merge_dictionaries", + "text": "merge_dictionaries\n\n merge_dictionaries (dict1, dict2)\n\nMerge two dictionaries. If a key is found in both dictionaries, raise a KeyError.\n\nsource", + "crumbs": [ + "Utils", + "General utils" + ] + }, + { + "objectID": "00_utils/utils.html#set_param", + "href": "00_utils/utils.html#set_param", + "title": "General utils", + "section": "set_param", + "text": "set_param\n\n set_param (obj, name:str,\n input:Union[__main__.Parameter,int,float,numpy.ndarray,List,No\n neType], shape:tuple=(1,), new:bool=False)\n\nSet a parameter for the class. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nobj\n\n\n\n\n\nname\nstr\n\nname of the parameter (will become the attribute name)\n\n\ninput\nUnion\n\ninput value of the parameter\n\n\nshape\ntuple\n(1,)\nshape of the parameter\n\n\nnew\nbool\nFalse\nwhether to create a new parameter or update an existing one", + "crumbs": [ + "Utils", + "General utils" + ] + }, + { + "objectID": "00_utils/loss_functions.html", + "href": "00_utils/loss_functions.html", + "title": "Loss functions", + "section": "", + "text": "source", + "crumbs": [ + "Utils", + "Loss functions" + ] + }, + { + "objectID": "00_utils/loss_functions.html#pinball_loss", + "href": "00_utils/loss_functions.html#pinball_loss", + "title": "Loss functions", + "section": "pinball_loss", + "text": "pinball_loss\n\n pinball_loss (Y_true:numpy.ndarray, Y_pred:numpy.ndarray,\n underage_cost:ddopai.utils.Parameter|numpy.ndarray,\n overage_cost:ddopai.utils.Parameter|numpy.ndarray)\n\nPinball loss calculating the cost of underestimating and overestimating the target value based on specific underage and overage costs. Used to evaulate the Newsvendor cost.\n\n\n\n\nType\nDetails\n\n\n\n\nY_true\nndarray\n\n\n\nY_pred\nndarray\n\n\n\nunderage_cost\nddopai.utils.Parameter | numpy.ndarray\n\n\n\noverage_cost\nddopai.utils.Parameter | numpy.ndarray\n\n\n\nReturns\nndarray\nreturns the cost per observation\n\n\n\n\nsource", + "crumbs": [ + "Utils", + "Loss functions" + ] + }, + { + "objectID": "00_utils/loss_functions.html#quantile_loss", + "href": "00_utils/loss_functions.html#quantile_loss", + "title": "Loss functions", + "section": "quantile_loss", + "text": "quantile_loss\n\n quantile_loss (Y_true:numpy.ndarray, Y_pred:numpy.ndarray,\n quantile:Union[float,ddopai.utils.Parameter])\n\nSimilar evaluation function to the pinball loss, but with the quantile of range [0, 1] as a parameter instead of SKU-specific cost levels for underage and overage.\n\n\n\n\nType\nDetails\n\n\n\n\nY_true\nndarray\n\n\n\nY_pred\nndarray\n\n\n\nquantile\nUnion\n\n\n\nReturns\nndarray\nreturns the cost per observation", + "crumbs": [ + "Utils", + "Loss functions" + ] + }, + { + "objectID": "20_environments/20_base_env/base_env.html", + "href": "20_environments/20_base_env/base_env.html", + "title": "Base Environment", + "section": "", + "text": "source", + "crumbs": [ + "Environments", + "Base Environment" + ] + }, + { + "objectID": "20_environments/20_base_env/base_env.html#baseenvironment", + "href": "20_environments/20_base_env/base_env.html#baseenvironment", + "title": "Base Environment", + "section": "BaseEnvironment", + "text": "BaseEnvironment\n\n BaseEnvironment (mdp_info:ddopai.utils.MDPInfo,\n postprocessors:list[object]|None=None, mode:str='train',\n return_truncation:str=True,\n horizon_train:int|str='use_all_data')\n\nBase class for environments enforcing a common interface that works with MushroomRL, as well as other RL libraries.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nmdp_info\nMDPInfo\n\nMDPInfo object to ensure compatibility with the agents\n\n\npostprocessors\nlist[object] | None\nNone\ndefault is empty list\n\n\nmode\nstr\ntrain\nInitial mode (train, val, test) of the environment\n\n\nreturn_truncation\nstr\nTrue\nwhether to return a truncated condition in step function\n\n\nhorizon_train\nint | str\nuse_all_data\nhorizon of the training data\n\n\nReturns\nNone\n\n\n\n\n\n\nImportant notes:\ninit method:\n\nWhen adding parameters to the environment, make sure to always add them via set_param(...). This ensures all parameters are of the correct types and shapes.\nDuring the init method, any Gymnasium environment expects the action and observation space to be defined. For clarity, avoid doing it directly in the init, but rather use the functions set_action_space() and set_observation_space() and call them in the ___init___ method.\n\ntrain, val, test, and horizon (episode length):\n\nWhen the __init__ method is called, the environment executes the train(), val() or test() methods. Therefore, they must be implemented in a way that they work right during set-up.\ntrain(), val() and test() methods are provided in the base class, but can also be overwritten if necessary. In any case, they must set the dataloader to the correct dataset to ensure no data leakage. They also need to update mdp_info to update the horizon (episode length) of the environment\nThe horizon for validation and testing will be equal to the length of those datasets. For training, there is a parameter horizon_train that either contains a string “use_all_data” or an integer. If it is the former, the horizon will be the length of the training dataset. If it is the latter, the environment will play an episode of length horizon_train starting at a random point of the training dataset.\n\nstep method:\n\nThe step method is the core of the environment, calculating the next state (observation) and reward given an action. Since some frameworks expect a truncation condition (standard implementation in Gymnasium now) while others (e.g., mushroom_rl), do not, the step function is implemented in the base class and handles this (via a flag in in the environment called return_truncation). DO NOT OVERWRITE the step function, but rather implement the step_(self, action) (underscore) method in the specific environment. This function shall always return a tuple of the form (observation, reward, terminated, truncated, info).\nFor clarity, the construction of the next state (we call it more general observation to include POMDPs) is done in a separate method called get_observation() that must be called inside the step function. See documentation below and the Newsvendor environment envs.inventory.NewsvendorEnv for an example.\nThe dataloader will typically return an X,Y pair (where X are some features and Y typically is demand) The X is necessary at the end of the step to construct the next observation to be returned to the agent. The Y is only relevant one step later to calculate the reward. Hence, Y is typically transferred to the next step method via an object variable like self.demand (see envs.inventory.NewsvendorEnv as an example).\n\nobservation pre-processors and action post-processors:\n\nSometimes, it is necessary to process the observartion before giving it to the agent (e.g., changing shape) or to process the action before giving it to the environment (e.g., rounding). To ensure compatibility with mushroom_rl, the pre-processors (also called observationprocessors) sit with the agent (they must be added to the agent and are applied in the agent’s draw_action() method). The post-processors (also called actionprocessors) sit with the environment and are applied in the environment’s step() method.\n\nreset method:\n\nThe reset method may depend strongly on the environment dynamics, so it must be implemented for the specific environment. It needs to fulfill two requirements: 1) it needs to differenticate between train, val, and test mode and 2) when setting the training mode, it needs to take the horizon_train parameter into account.\nAt the end of the function, first the reset_index() method should be called (either with a specific index as integer or the flag \"random\"as input) and then the get_observation() method to construct the first observation.\n\n\nsource\n\n\nBaseEnvironment.set_param\n\n BaseEnvironment.set_param (name:str, input:Union[ddopai.utils.Parameter,i\n nt,float,numpy.ndarray,List,NoneType],\n shape:tuple=(1,), new:bool=False)\n\nSet a parameter for the environment. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nname\nstr\n\nname of the parameter (will become the attribute name)\n\n\ninput\nUnion\n\ninput value of the parameter\n\n\nshape\ntuple\n(1,)\nshape of the parameter\n\n\nnew\nbool\nFalse\nwhether to create a new parameter or update an existing one\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nBaseEnvironment.return_truncation_handler\n\n BaseEnvironment.return_truncation_handler (observation, reward,\n terminated, truncated, info)\n\nHandle the return_truncation attribute of the environment. This function is called by the step function\n\nsource\n\n\nBaseEnvironment.step\n\n BaseEnvironment.step (action)\n\nStep function of the environment. Do not overwrite this function. Instead, write the step_ function. Note that the postprocessor is applied here.\n\nsource\n\n\nBaseEnvironment.add_postprocessor\n\n BaseEnvironment.add_postprocessor (postprocessor:object)\n\nAdd a postprocessor (also called actionprocessor) to the agent\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\npostprocessor\nobject\npost-processor object that can be called via the “call” method\n\n\n\n\nsource\n\n\nBaseEnvironment.step_\n\n BaseEnvironment.step_ (action)\n\nStep function of the environment. This function contains the logic of the environment and must be provided. It will be called by the step function that applies the actionprocessor and handles the return_truncation attribute.\n\nsource\n\n\nBaseEnvironment.mdp_info\n\n BaseEnvironment.mdp_info ()\n\nReturns: The MDPInfo object of the environment.\n\nsource\n\n\nBaseEnvironment.info\n\n BaseEnvironment.info ()\n\nReturns: Alternative call to the method for mushroom_rl.\n\nsource\n\n\nBaseEnvironment.mode\n\n BaseEnvironment.mode ()\n\nReturns: A string with the current mode (train, test val) of the environment.\n\nsource\n\n\nBaseEnvironment.set_action_space\n\n BaseEnvironment.set_action_space ()\n\nSet the action space of the environment.\n\nsource\n\n\nBaseEnvironment.set_observation_space\n\n BaseEnvironment.set_observation_space ()\n\nSet the observation space of the environment. In general, this can be also a dict space, but the agent must have the appropriate pre-processor.\n\nsource\n\n\nBaseEnvironment.get_observation\n\n BaseEnvironment.get_observation ()\n\nReturn the current observation. Typically constructed from the output of the dataloader and internal dynamics (such as inventory levels, pipeline vectors, etc.) of the environment.\n\nsource\n\n\nBaseEnvironment.reset\n\n BaseEnvironment.reset ()\n\nReset the environment. This function must be provided, using the function self.reset_index() to handle indexing. It needs to account for the current training mode train, val, or test and handle the horizon_train param. See the reset function for the NewsvendorEnv for an example.\n\nsource\n\n\nBaseEnvironment.set_index\n\n BaseEnvironment.set_index (index=None)\n\nHandle the index of the environment.\n\nsource\n\n\nBaseEnvironment.get_start_index\n\n BaseEnvironment.get_start_index (start_index:int|str=None)\n\nDetermine if the start index is random or 0, depending on the state of the environment and training process (over entire train set or in shorter episodes)\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nstart_index\nint | str\nNone\nindex to start from\n\n\nReturns\nint\n\n\n\n\n\n\nsource\n\n\nBaseEnvironment.reset_index\n\n BaseEnvironment.reset_index (start_index:Union[int,str])\n\nReset the index of the environment. If start_index is an integer, the index is set to this value. If start_index is “random”, the index is set to a random integer between 0 and the length of the training data.\n\nsource\n\n\nBaseEnvironment.update_mdp_info\n\n BaseEnvironment.update_mdp_info (gamma=None, horizon=None)\n\nUpdate the MDP info of the environment.\n\nsource\n\n\nBaseEnvironment.train\n\n BaseEnvironment.train (update_mdp_info=True)\n\nSet the environment in training mode by both setting the internal state self._train and the dataloader. If the horizon is set to “use_all_data”, the horizon is set to the length of the training data, otherwise it is set to the horizon_train attribute of the environment. Finally, the function updates the MDP info and resets with the new state.\n\nsource\n\n\nBaseEnvironment.val\n\n BaseEnvironment.val (update_mdp_info=True)\n\nSet the environment in validation mode by both setting the internal state self._val and the dataloader. The horizon of val is always set to the length of the validation data. Finally, the function updates the MDP info and resets with the new state.\n\nsource\n\n\nBaseEnvironment.test\n\n BaseEnvironment.test (update_mdp_info=True)\n\nSet the environment in testing mode by both setting the internal state self._test and the dataloader. The horizon of test is always set to the length of the test data. Finally, the function updates the MDP info and resets with the new state.\n\nsource\n\n\nBaseEnvironment.set_return_truncation\n\n BaseEnvironment.set_return_truncation (return_truncation:bool)\n\nSet the return_truncation attribute of the environment.\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\nreturn_truncation\nbool\nwhether or not to return the truncated condition in the step function\n\n\n\n\nsource\n\n\nBaseEnvironment.stop\n\n BaseEnvironment.stop ()\n\nStop the environment. This function is used to ensure compatibility with the Core of mushroom_rl.", + "crumbs": [ + "Environments", + "Base Environment" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/multi_period_envs.html", + "href": "20_environments/21_envs_inventory/multi_period_envs.html", + "title": "Multi-Period Inventory Management", + "section": "", + "text": "run_test = False\n\nif run_test:\n from sklearn.datasets import make_regression\n from sklearn.preprocessing import MinMaxScaler\n from ddopai.dataloaders.tabular import XYDataLoader\n\n def run_test_loop(env):\n truncated = False\n while not truncated:\n action = env.action_space.sample()\n obs, reward, terminated, truncated, info = env.step(action)\n print(\"##### STEP: \", env.index, \"#####\")\n print(\"reward:\", reward)\n print(\"info:\", info)\n print(\"next observation:\")\n for key, value in obs.items():\n print(\" \", key, \":\")\n print(value)\n print(\"truncated:\", truncated)\n\n # create a simple dataset bounded between 0 and 1.\n # We just scale all the data, pretending that it is the demand.\n # When using real data, one should only fit the scaler on the training data\n X, Y = make_regression(n_samples=8, n_features=2, n_targets=1, noise=0.1, random_state=42)\n if len(Y.shape) == 1:\n Y = Y.reshape(-1, 1)\n scaler = MinMaxScaler()\n X = scaler.fit_transform(X)\n Y = scaler.fit_transform(Y)\n\n dataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)\n\n env_kwargs = dict(\n\n q_bound_low = 0, # lower bound of the order quantity\n q_bound_high= 1, # upper bound of the order quantity\n\n underage_cost=0.5, # underage cost per unit\n overage_cost=0.5, # overage cost per unit (zero in most cases)\n\n fixed_ordering_cost=[2], # fixed ordering cost\n variable_ordering_cost=[0.5], # variable ordering cost per unit\n\n inventory_pipeline_params = dict(\n lead_time_mean=[2], \n lead_time_stochasticity=\"normal_relative\",\n lead_time_variance=[0.2],\n max_lead_time=[3],\n min_lead_time=[1],\n ),\n )\n\n test_env = MultiPeriodEnv(\n dataloader=dataloader,\n horizon_train=\"use_all_data\",\n **env_kwargs\n )\n\n obs = test_env.reset(start_index=0)\n print(\"#################### RESET ####################\")\n\n print(\"#################### RUN IN TRAIN MODE ####################\")\n run_test_loop(test_env)\n\n print(\"#################### RUN IN VAL MODE ####################\")\n test_env.val()\n run_test_loop(test_env)\n\n print(\"#################### RUN IN TEST MODE ####################\")\n test_env.test()\n run_test_loop(test_env)\n\n print(\"#################### RUN IN TRAIN MODE AGAIN ####################\")\n test_env.train()\n run_test_loop(test_env)\nsource", + "crumbs": [ + "Environments", + "Inventory environments", + "Multi-Period Inventory Management" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/multi_period_envs.html#multiperiodenv", + "href": "20_environments/21_envs_inventory/multi_period_envs.html#multiperiodenv", + "title": "Multi-Period Inventory Management", + "section": "MultiPeriodEnv", + "text": "MultiPeriodEnv\n\n MultiPeriodEnv\n (underage_cost:numpy.ndarray|ddopai.utils.Parameter|int|f\n loat=1, overage_cost:numpy.ndarray|ddopai.utils.Parameter\n |int|float=0, fixed_ordering_cost:numpy.ndarray|ddopai.ut\n ils.Parameter|int|float=0, variable_ordering_cost:numpy.n\n darray|ddopai.utils.Parameter|int|float=0, holding_cost:n\n umpy.ndarray|ddopai.utils.Parameter|int|float=1, start_in\n ventory:numpy.ndarray|ddopai.utils.Parameter|int|float=0,\n max_inventory:numpy.ndarray|ddopai.utils.Parameter|int|fl\n oat=inf, inventory_pipeline_params:dict|None=None, q_boun\n d_low:numpy.ndarray|ddopai.utils.Parameter|int|float=0, q\n _bound_high:numpy.ndarray|ddopai.utils.Parameter|int|floa\n t=inf,\n dataloader:ddopai.dataloaders.base.BaseDataLoader=None,\n num_SKUs:int|None=None, gamma:float=1,\n horizon_train:int|str=100,\n postprocessors:list[object]|None=None, mode:str='train',\n return_truncation:bool=True, step_info_verbosity=0)\n\nXXX\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nunderage_cost\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n1\nunderage cost per unit\n\n\noverage_cost\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n0\noverage cost per unit (zero in most cases)\n\n\nfixed_ordering_cost\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n0\nfixed ordering cost (applies per SKU, not jointly)\n\n\nvariable_ordering_cost\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n0\nvariable ordering cost per unit\n\n\nholding_cost\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n1\nholding cost per unit\n\n\nstart_inventory\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n0\ninitial inventory\n\n\nmax_inventory\nnumpy.ndarray | ddopai.utils.Parameter | int | float\ninf\nmaximum inventory\n\n\ninventory_pipeline_params\ndict | None\nNone\nparameters for the inventory pipeline, only lead_time_mean must be given.\n\n\nq_bound_low\nnumpy.ndarray | ddopai.utils.Parameter | int | float\n0\nlower bound of the order quantity\n\n\nq_bound_high\nnumpy.ndarray | ddopai.utils.Parameter | int | float\ninf\nupper bound of the order quantity\n\n\ndataloader\nBaseDataLoader\nNone\ndataloader\n\n\nnum_SKUs\nint | None\nNone\nif None, it will be inferred from the DataLoader\n\n\ngamma\nfloat\n1\ndiscount factor\n\n\nhorizon_train\nint | str\n100\nif “use_all_data”, then horizon is inferred from the DataLoader\n\n\npostprocessors\nlist[object] | None\nNone\ndefault is an empty list\n\n\nmode\nstr\ntrain\nInitial mode (train, val, test) of the environment\n\n\nreturn_truncation\nbool\nTrue\nwhether to return a truncated condition in step function\n\n\nstep_info_verbosity\nint\n0\n0: no info, 1: some info, 2: all info\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nMultiPeriodEnv.step_\n\n MultiPeriodEnv.step_ (action:numpy.ndarray)\n\nXXX.\n\n\n\n\nType\nDetails\n\n\n\n\naction\nndarray\norder quantity\n\n\nReturns\nTuple\n\n\n\n\nExample usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) with a distributional dataloader:\n\n# from ddopai.dataloaders.distribution import NormalDistributionDataLoader\n\n# def run_test_loop(env):\n# truncated = False\n# while not truncated:\n# action = env.action_space.sample()\n# obs, reward, terminated, truncated, info = env.step(action)\n# print(\"##### STEP: \", env.index, \"#####\")\n# print(\"reward:\", reward)\n# print(\"info:\", info)\n# print(\"next observation:\", obs)\n# print(\"truncated:\", truncated)\n\n# dataloader = NormalDistributionDataLoader(mean=[4, 3], std=[1, 2], num_units=2)\n\n# test_env = MultiPeriodEnv(underage_cost=1, overage_cost=2, dataloader=dataloader, horizon_train=3)\n\n# obs = test_env.reset(start_index=0)\n# print(\"##### RESET #####\")\n\n# run_test_loop(test_env)\n\nExample usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) using a fixed dataset:\n\n# from sklearn.datasets import make_regression\n# from sklearn.preprocessing import MinMaxScaler\n\n# from ddopai.dataloaders.tabular import XYDataLoader\n\n# # create a simple dataset bounded between 0 and 1.\n# # We just scale all the data, pretending that it is the demand.\n# # When using real data, one should only fit the scaler on the training data\n# X, Y = make_regression(n_samples=8, n_features=2, n_targets=2, noise=0.1, random_state=42)\n# scaler = MinMaxScaler()\n# X = scaler.fit_transform(X)\n# Y = scaler.fit_transform(Y)\n\n# dataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)\n# test_env = NewsvendorEnv(underage_cost=Parameter(np.array([1,1]), shape = (2,)), overage_cost=Parameter(np.array([0.5,0.5]), shape = (2,)), dataloader=dataloader, horizon_train=\"use_all_data\")\n\n# obs = test_env.reset(start_index=0)\n# print(\"#################### RESET ####################\")\n\n# print(\"#################### RUN IN TRAIN MODE ####################\")\n# run_test_loop(test_env)\n\n# print(\"#################### RUN IN VAL MODE ####################\")\n# test_env.val()\n# run_test_loop(test_env)\n\n# print(\"#################### RUN IN TEST MODE ####################\")\n# test_env.test()\n# run_test_loop(test_env)\n\n# print(\"#################### RUN IN TRAIN MODE AGAIN ####################\")\n# test_env.train()\n# run_test_loop(test_env)", + "crumbs": [ + "Environments", + "Inventory environments", + "Multi-Period Inventory Management" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/single_period_envs.html", + "href": "20_environments/21_envs_inventory/single_period_envs.html", + "title": "Single period inventory environments", + "section": "", + "text": "source", + "crumbs": [ + "Environments", + "Inventory environments", + "Single period inventory environments" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv", + "href": "20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv", + "title": "Single period inventory environments", + "section": "NewsvendorEnv", + "text": "NewsvendorEnv\n\n NewsvendorEnv\n (underage_cost:Union[numpy.ndarray,ddopai.utils.Parameter,\n int,float]=1, overage_cost:Union[numpy.ndarray,ddopai.util\n s.Parameter,int,float]=1, q_bound_low:Union[numpy.ndarray,\n ddopai.utils.Parameter,int,float]=0, q_bound_high:Union[nu\n mpy.ndarray,ddopai.utils.Parameter,int,float]=inf,\n dataloader:ddopai.dataloaders.base.BaseDataLoader=None,\n num_SKUs:int=None, gamma:float=1,\n horizon_train:int|str='use_all_data',\n postprocessors:list[object]|None=None, mode:str='train',\n return_truncation:str=True)\n\nClass implementing the Newsvendor problem, working for the single- and multi-item case. If underage_cost and overage_cost are scalars and there are multiple SKUs, then the same cost is used for all SKUs. If underage_cost and overage_cost are arrays, then they must have the same length as the number of SKUs. Num_SKUs can be set as parameter or inferred from the DataLoader.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nunderage_cost\nUnion\n1\nunderage cost per unit\n\n\noverage_cost\nUnion\n1\noverage cost per unit\n\n\nq_bound_low\nUnion\n0\nlower bound of the order quantity\n\n\nq_bound_high\nUnion\ninf\nupper bound of the order quantity\n\n\ndataloader\nBaseDataLoader\nNone\ndataloader\n\n\nnum_SKUs\nint\nNone\nif None it will be inferred from the DataLoader\n\n\ngamma\nfloat\n1\ndiscount factor\n\n\nhorizon_train\nint | str\nuse_all_data\nif “use_all_data” then horizon is inferred from the DataLoader\n\n\npostprocessors\nlist[object] | None\nNone\ndefault is empty list\n\n\nmode\nstr\ntrain\nInitial mode (train, val, test) of the environment\n\n\nreturn_truncation\nstr\nTrue\nwhether to return a truncated condition in step function\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nNewsvendorEnv.step_\n\n NewsvendorEnv.step_ (action:numpy.ndarray)\n\nStep function implementing the Newsvendor logic. Note that the dataloader will return an observation and a demand, which will be relevant in the next period. The observation will be returned directly, while the demand will be temporarily stored under self.demand and used in the next step.\n\n\n\n\nType\nDetails\n\n\n\n\naction\nndarray\norder quantity\n\n\nReturns\nTuple\n\n\n\n\n\nsource\n\n\nNewsvendorEnv.determine_cost\n\n NewsvendorEnv.determine_cost (action:numpy.ndarray)\n\nDetermine the cost per SKU given the action taken. The cost is the sum of underage and overage costs.\n\nsource\n\n\nNewsvendorEnv.update_cu_co\n\n NewsvendorEnv.update_cu_co (cu=None, co=None)\n\nExample usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) with a distributional dataloader:\n\nfrom ddopai.dataloaders.distribution import NormalDistributionDataLoader\n\ndef run_test_loop(env):\n truncated = False\n while not truncated:\n action = env.action_space.sample()\n obs, reward, terminated, truncated, info = env.step(action)\n print(\"##### STEP: \", env.index, \"#####\")\n print(\"reward:\", reward)\n print(\"info:\", info)\n print(\"next observation:\", obs)\n print(\"truncated:\", truncated)\n\ndataloader = NormalDistributionDataLoader(mean=[4, 3], std=[1, 2], num_units=2)\n\ntest_env = NewsvendorEnv(underage_cost=1, overage_cost=2, dataloader=dataloader, horizon_train=3)\n\nobs = test_env.reset(start_index=0)\nprint(\"##### RESET #####\")\n\nrun_test_loop(test_env)\n\n##### RESET #####\n##### STEP: 1 #####\nreward: -3.308623125291409\ninfo: {'demand': array([3.26212136, 0. ]), 'action': array([0.07685447, 0.06167812], dtype=float32), 'cost_per_SKU': array([3.18526689, 0.12335623])}\nnext observation: None\ntruncated: False\n##### STEP: 2 #####\nreward: -5.1194845977501835\ninfo: {'demand': array([3.07308089, 4.81774876]), 'action': array([0.38810197, 2.383243 ], dtype=float32), 'cost_per_SKU': array([2.68497893, 2.43450567])}\nnext observation: None\ntruncated: False\n##### STEP: 3 #####\nreward: -6.304068585907921\ninfo: {'demand': array([4.0327378, 2.9904675]), 'action': array([0.17957109, 0.5395656 ], dtype=float32), 'cost_per_SKU': array([3.85316671, 2.45090188])}\nnext observation: None\ntruncated: True\n\n\nExample usage of [`NewsvendorEnv`](https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html#newsvendorenv) using a fixed dataset:\n\nfrom sklearn.datasets import make_regression\nfrom sklearn.preprocessing import MinMaxScaler\n\nfrom ddopai.dataloaders.tabular import XYDataLoader\n\n\n# create a simple dataset bounded between 0 and 1.\n# We just scale all the data, pretending that it is the demand.\n# When using real data, one should only fit the scaler on the training data\nX, Y = make_regression(n_samples=8, n_features=2, n_targets=2, noise=0.1, random_state=42)\nscaler = MinMaxScaler()\nX = scaler.fit_transform(X)\nY = scaler.fit_transform(Y)\n\ndataloader = XYDataLoader(X, Y, val_index_start = 4, test_index_start = 6)\ntest_env = NewsvendorEnv(underage_cost=np.array([1,1]), overage_cost=np.array([0.5,0.5]), dataloader=dataloader, horizon_train=\"use_all_data\")\n\nobs = test_env.reset(start_index=0)\nprint(\"#################### RESET ####################\")\n\nprint(\"#################### RUN IN TRAIN MODE ####################\")\nrun_test_loop(test_env)\n\nprint(\"#################### RUN IN VAL MODE ####################\")\ntest_env.val()\nrun_test_loop(test_env)\n\nprint(\"#################### RUN IN TEST MODE ####################\")\ntest_env.test()\nrun_test_loop(test_env)\n\nprint(\"#################### RUN IN TRAIN MODE AGAIN ####################\")\ntest_env.train()\nrun_test_loop(test_env)\n\n#################### RESET ####################\n#################### RUN IN TRAIN MODE ####################\n##### STEP: 1 #####\nreward: -0.5507963668644685\ninfo: {'demand': array([0.41801109, 0.41814421]), 'action': array([0.70588326, 0.01128393], dtype=float32), 'cost_per_SKU': array([0.14393609, 0.40686028])}\nnext observation: [0.51654708 0.67238019]\ntruncated: False\n##### STEP: 2 #####\nreward: -0.8714066300571378\ninfo: {'demand': array([0.61617324, 0.52211535]), 'action': array([0.180223 , 1.3930281], dtype=float32), 'cost_per_SKU': array([0.43595024, 0.43545639])}\nnext observation: [0.71467365 0.37996181]\ntruncated: False\n##### STEP: 3 #####\nreward: -1.6119519129489481\ninfo: {'demand': array([0.45242345, 0.60924132]), 'action': array([1.8277601, 2.4578085], dtype=float32), 'cost_per_SKU': array([0.68766832, 0.92428359])}\nnext observation: [0.78011439 1. ]\ntruncated: True\n#################### RUN IN VAL MODE ####################\n##### STEP: 1 #####\nreward: -0.5815800605970438\ninfo: {'demand': array([0. , 0.16760013]), 'action': array([0.11117006, 1.2195902 ], dtype=float32), 'cost_per_SKU': array([0.05558503, 0.52599503])}\nnext observation: [0. 0.59527916]\ntruncated: False\n##### STEP: 2 #####\nreward: -0.5828876160320575\ninfo: {'demand': array([0.33549548, 0. ]), 'action': array([0.4501956, 1.0510751], dtype=float32), 'cost_per_SKU': array([0.05735007, 0.52553755])}\nnext observation: None\ntruncated: True\n#################### RUN IN TEST MODE ####################\n##### STEP: 1 #####\nreward: -0.7298214633019249\ninfo: {'demand': array([0.3316407 , 0.33063685]), 'action': array([0.06531169, 1.2576218 ], dtype=float32), 'cost_per_SKU': array([0.266329 , 0.46349246])}\nnext observation: [1. 0.71807281]\ntruncated: False\n##### STEP: 2 #####\nreward: -0.5407586979670338\ninfo: {'demand': array([0.8554925, 1. ]), 'action': array([0.5619696, 1.4944715], dtype=float32), 'cost_per_SKU': array([0.29352292, 0.24723577])}\nnext observation: None\ntruncated: True\n#################### RUN IN TRAIN MODE AGAIN ####################\n##### STEP: 1 #####\nreward: -0.9409223786788338\ninfo: {'demand': array([0.41801109, 0.41814421]), 'action': array([1.3812015, 1.3367985], dtype=float32), 'cost_per_SKU': array([0.48159521, 0.45932717])}\nnext observation: [0.51654708 0.67238019]\ntruncated: False\n##### STEP: 2 #####\nreward: -0.7144824568212446\ninfo: {'demand': array([0.61617324, 0.52211535]), 'action': array([0.07493836, 0.8686105 ], dtype=float32), 'cost_per_SKU': array([0.54123488, 0.17324757])}\nnext observation: [0.71467365 0.37996181]\ntruncated: False\n##### STEP: 3 #####\nreward: -1.2616030231212196\ninfo: {'demand': array([0.45242345, 0.60924132]), 'action': array([0.84109116, 2.7437797 ], dtype=float32), 'cost_per_SKU': array([0.19433385, 1.06726917])}\nnext observation: [0.78011439 1. ]\ntruncated: True", + "crumbs": [ + "Environments", + "Inventory environments", + "Single period inventory environments" + ] + }, + { + "objectID": "20_environments/21_envs_inventory/single_period_envs.html#newsvendorenvvariablesl", + "href": "20_environments/21_envs_inventory/single_period_envs.html#newsvendorenvvariablesl", + "title": "Single period inventory environments", + "section": "NewsvendorEnvVariableSL", + "text": "NewsvendorEnvVariableSL\n\n NewsvendorEnvVariableSL\n (sl_bound_low:Union[numpy.ndarray,ddopai.utils.P\n arameter,int,float]=0.1, sl_bound_high:Union[num\n py.ndarray,ddopai.utils.Parameter,int,float]=0.9\n , sl_distribution:Literal['fixed','uniform']='fi\n xed', evaluation_metric:Literal['pinball_loss','\n quantile_loss']='quantile_loss', sl_test_val:Uni\n on[numpy.ndarray,ddopai.utils.Parameter,int,floa\n t]=None, underage_cost:Union[numpy.ndarray,ddopa\n i.utils.Parameter,int,float]=1, overage_cost:Uni\n on[numpy.ndarray,ddopai.utils.Parameter,int,floa\n t]=1, q_bound_low:Union[numpy.ndarray,ddopai.uti\n ls.Parameter,int,float]=0, q_bound_high:Union[nu\n mpy.ndarray,ddopai.utils.Parameter,int,float]=in\n f, dataloader:ddopai.dataloaders.base.BaseDataLo\n ader=None, num_SKUs:int=None, gamma:float=1,\n horizon_train:int|str='use_all_data',\n postprocessors:list[object]|None=None,\n mode:str='train', return_truncation:str=True,\n SKUs_in_batch_dimension:bool=True)\n\nClass implementing the Newsvendor problem, working for the single- and multi-item case. If underage_cost and overage_cost are scalars and there are multiple SKUs, then the same cost is used for all SKUs. If underage_cost and overage_cost are arrays, then they must have the same length as the number of SKUs. Num_SKUs can be set as parameter or inferred from the DataLoader.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nsl_bound_low\nUnion\n0.1\nlower bound of the service level during training\n\n\nsl_bound_high\nUnion\n0.9\nupper bound of the service level during training\n\n\nsl_distribution\nLiteral\nfixed\ndistribution of the random service level during training, if fixed then the service level is fixed to sl_test_val\n\n\nevaluation_metric\nLiteral\nquantile_loss\nquantile loss is the generic quantile loss (independent of cost levels) while pinball loss uses the specific under- and overage costs\n\n\nsl_test_val\nUnion\nNone\nservice level during test and validation, alternatively use cu and co\n\n\nunderage_cost\nUnion\n1\nunderage cost per unit\n\n\noverage_cost\nUnion\n1\noverage cost per unit\n\n\nq_bound_low\nUnion\n0\nlower bound of the order quantity\n\n\nq_bound_high\nUnion\ninf\nupper bound of the order quantity\n\n\ndataloader\nBaseDataLoader\nNone\ndataloader\n\n\nnum_SKUs\nint\nNone\nif None it will be inferred from the DataLoader\n\n\ngamma\nfloat\n1\ndiscount factor\n\n\nhorizon_train\nint | str\nuse_all_data\nif “use_all_data” then horizon is inferred from the DataLoader\n\n\npostprocessors\nlist[object] | None\nNone\ndefault is empty list\n\n\nmode\nstr\ntrain\nInitial mode (train, val, test) of the environment\n\n\nreturn_truncation\nstr\nTrue\nwhether to return a truncated condition in step function\n\n\nSKUs_in_batch_dimension\nbool\nTrue\nwhether SKUs in the observation space are in the batch dimension (used for meta-learning)\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\nNewsvendorEnvVariableSL.determine_cost\n\n NewsvendorEnvVariableSL.determine_cost (action:numpy.ndarray)\n\nDetermine the cost per SKU given the action taken. The cost is the sum of underage and overage costs.\n\n\n\n\nType\nDetails\n\n\n\n\naction\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nNewsvendorEnvVariableSL.set_observation_space\n\n NewsvendorEnvVariableSL.set_observation_space (shape:tuple,\n low:Union[numpy.ndarray,fl\n oat]=-inf, high:Union[nump\n y.ndarray,float]=inf,\n samples_dim_included=True)\n\nSet the observation space of the environment. This is a standard function for simple observation spaces. For more complex observation spaces, this function should be overwritten. Note that it is assumped that the first dimension is n_samples that is not relevant for the observation space.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nshape\ntuple\n\nshape of the dataloader features\n\n\nlow\nUnion\n-inf\nlower bound of the observation space\n\n\nhigh\nUnion\ninf\nupper bound of the observation space\n\n\nsamples_dim_included\nbool\nTrue\nwhether the first dimension of the shape input is the number of samples\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nNewsvendorEnvVariableSL.draw_parameter\n\n NewsvendorEnvVariableSL.draw_parameter (distribution, sl_bound_low,\n sl_bound_high, samples)\n\n\n\n\n\nDetails\n\n\n\n\ndistribution\n\n\n\nsl_bound_low\n\n\n\nsl_bound_high\n\n\n\nsamples\n\n\n\n\n\nsource\n\n\nNewsvendorEnvVariableSL.get_observation\n\n NewsvendorEnvVariableSL.get_observation ()\n\nReturn the current observation. This function is for the simple case where the observation is only an x,y pair. For more complex observations, this function should be overwritten.\n\nsource\n\n\nNewsvendorEnvVariableSL.check_evaluation_metric\n\n NewsvendorEnvVariableSL.check_evaluation_metric ()\n\n\nsource\n\n\nNewsvendorEnvVariableSL.check_sl_distribution\n\n NewsvendorEnvVariableSL.check_sl_distribution ()\n\n\nsource\n\n\nNewsvendorEnvVariableSL.set_val_test_sl\n\n NewsvendorEnvVariableSL.set_val_test_sl (sl_test_val)\n\n\n\n\n\nDetails\n\n\n\n\nsl_test_val", + "crumbs": [ + "Environments", + "Inventory environments", + "Single period inventory environments" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_erm_agents.html", + "href": "30_agents/41_NV_agents/nv_erm_agents.html", + "title": "ERM agents", + "section": "", + "text": "source", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "ERM agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_erm_agents.html#sgdbaseagent", + "href": "30_agents/41_NV_agents/nv_erm_agents.html#sgdbaseagent", + "title": "ERM agents", + "section": "SGDBaseAgent", + "text": "SGDBaseAgent\n\n SGDBaseAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoader,\n input_shape:Tuple, output_shape:Tuple,\n dataset_params:Optional[dict]=None,\n dataloader_params:Optional[dict]=None,\n optimizer_params:Optional[dict]=None,\n learning_rate_scheduler_params:Optional[Dict]=None,\n obsprocessors:Optional[List]=None, device:str='cpu',\n agent_name:str|None=None, test_batch_size:int=1024,\n receive_batch_dim:bool=False)\n\nBase class for Agents that are trained using Stochastic Gradient Descent (SGD) on PyTorch models.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\ndataset_params\nOptional\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\nOptional\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\noptimizer_params\nOptional\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nlearning_rate_scheduler_params\nOptional\nNone\ndefault: None. If dict, then first key is “scheduler” and the rest are the parameters\n\n\nobsprocessors\nOptional\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nNone\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\n\n\nImportant notes:\nSGD-based agents are all agents that are trained via SGD such as Linear Models or Neural Networks. Some specific requirements are necessary to make them interface properly with the environment.\nTorch perprocessors:\n\nIn addition to the general Numpy-based pre-processor, we also provide pre-processors that work on tensor level within the fit_epoch method and the predict method. They can be used in addition to the numpy-based pre-processors or instead of them. It’s important to ensure that the shape of observations (after pre-processing) is the same for those from the environemnt and those from the dataloader during training.\n\nDataloader:\n\nAs for normal supervised learning via Torch, we make use of the Torch dataloader to load the data. Instead of defining a custom dataset class, we provide a Wrapper that can be used around our dataloader to make its output and interface the same as a Torch dataset. The dataloader is then initialized when the agent is created such that the agent has access to the same dataloader as the environment.\n\nTraining process:\n\nThe outper loop of the training process (epochs) is handled outside the agent by the [`run_experiment`](https://opimwue.github.io/ddopai/40_experiments/experiment_functions.html#run_experiment)functions (or can also be customized). The agent needs to have a fit_epoch method that tells the agent what to do within an epoch. This includes:\n\nGetting the data from the dataloader\nPre-processing the data\nForward pass\nLoss calculation\nBackward pass\n\n\n\nsource\n\n\nSGDBaseAgent.set_dataloader\n\n SGDBaseAgent.set_dataloader\n (dataloader:ddopai.dataloaders.base.BaseData\n Loader, dataset_params:dict,\n dataloader_params:dict)\n\nSet the dataloader for the agent by wrapping it into a Torch Dataset\n\n\n\n\nType\nDetails\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\ndataset_params\ndict\n\n\n\ndataloader_params\ndict\ndict with keys: batch_size, shuffle\n\n\nReturns\nNone\n\n\n\n\n\nsource\n\n\nSGDBaseAgent.set_loss_function\n\n SGDBaseAgent.set_loss_function ()\n\nSet loss function for the model\n\nsource\n\n\nSGDBaseAgent.set_model\n\n SGDBaseAgent.set_model (input_shape:Tuple, output_shape:Tuple)\n\nSet the model for the agent\n\nsource\n\n\nSGDBaseAgent.set_optimizer\n\n SGDBaseAgent.set_optimizer (optimizer_params:dict)\n\nSet the optimizer for the model\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\noptimizer_params\ndict\ndict with keys: optimizer, lr, weight_decay\n\n\n\n\nsource\n\n\nSGDBaseAgent.set_learning_rate_scheduler\n\n SGDBaseAgent.set_learning_rate_scheduler (learning_rate_scheduler_params)\n\nSet learning rate scheudler (can be None)\n\n\n\n\nDetails\n\n\n\n\nlearning_rate_scheduler_params\n\n\n\n\n\nsource\n\n\nSGDBaseAgent.fit_epoch\n\n SGDBaseAgent.fit_epoch ()\n\nFit the model for one epoch using the dataloader\n\nsource\n\n\nSGDBaseAgent.draw_action_\n\n SGDBaseAgent.draw_action_ (observation:numpy.ndarray)\n\nDraw an action based on the fitted model (see predict method)\n\n\n\n\nType\nDetails\n\n\n\n\nobservation\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nSGDBaseAgent.predict\n\n SGDBaseAgent.predict (X:numpy.ndarray)\n\nDo one forward pass of the model and return the prediction\n\n\n\n\nType\nDetails\n\n\n\n\nX\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nSGDBaseAgent.train\n\n SGDBaseAgent.train ()\n\nset the internal state of the agent and its model to train\n\nsource\n\n\nSGDBaseAgent.eval\n\n SGDBaseAgent.eval ()\n\nset the internal state of the agent and its model to eval\n\nsource\n\n\nSGDBaseAgent.to\n\n SGDBaseAgent.to (device:str)\n\nMove the model to the specified device\n\n\n\n\nType\nDetails\n\n\n\n\ndevice\nstr\n\n\n\n\n\nsource\n\n\nSGDBaseAgent.save\n\n SGDBaseAgent.save (path:str, overwrite:bool=True)\n\nSave the PyTorch model to a file in the specified directory.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\npath\nstr\n\nThe directory where the file will be saved.\n\n\noverwrite\nbool\nTrue\nAllow overwriting; if False, a FileExistsError will be raised if the file exists.\n\n\n\n\nsource\n\n\nSGDBaseAgent.load\n\n SGDBaseAgent.load (path:str)\n\nLoad the PyTorch model from a file.\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\npath\nstr\nOnly the path to the folder is needed, not the file itself\n\n\n\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "ERM agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_erm_agents.html#nvbaseagent", + "href": "30_agents/41_NV_agents/nv_erm_agents.html#nvbaseagent", + "title": "ERM agents", + "section": "NVBaseAgent", + "text": "NVBaseAgent\n\n NVBaseAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoader,\n cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter, input_shape:Tuple,\n output_shape:Tuple, optimizer_params:dict|None=None,\n learning_rate_scheduler_params=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None=None, test_batch_size:int=1024,\n receive_batch_dim:bool=False,\n loss_function:Literal['quantile','pinball']='quantile')\n\nBase agent for the Newsvendor problem implementing the loss function for the Empirical Risk Minimization (ERM) approach based on quantile loss.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nlearning_rate_scheduler_params\nNoneType\nNone\nTODO: add base class for learning rate scheduler for typing\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nNone\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nsource\n\nNVBaseAgent.set_loss_function\n\n NVBaseAgent.set_loss_function ()\n\nSet the loss function for the model to the quantile loss. For training the model uses quantile loss and not the pinball loss with specific cu and co values to ensure similar scale of the feedback signal during training.\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "ERM agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_erm_agents.html#newsvendorlermagent", + "href": "30_agents/41_NV_agents/nv_erm_agents.html#newsvendorlermagent", + "title": "ERM agents", + "section": "NewsvendorlERMAgent", + "text": "NewsvendorlERMAgent\n\n NewsvendorlERMAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoader,\n cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter,\n input_shape:Tuple, output_shape:Tuple,\n optimizer_params:dict|None=None,\n learning_rate_scheduler_params=None,\n model_params:dict|None=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None='lERM',\n test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_function:Literal[\n 'quantile','pinball']='quantile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a linear (regression) model. Note that this implementation finds the optimal regression parameters via SGD.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nlearning_rate_scheduler_params\nNoneType\nNone\nTODO: add base class for learning rate scheduler for typing\n\n\nmodel_params\ndict | None\nNone\ndefault: {“relu_output”: False}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nlERM\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nFurther information:\nReferences\n----------\n\n.. [1] Gah-Yi Ban, Cynthia Rudin, \"The Big Data Newsvendor: Practical Insights\n from Machine Learning\", 2018.\n\nsource\n\n\nNewsvendorlERMAgent.set_model\n\n NewsvendorlERMAgent.set_model (input_shape, output_shape)\n\nSet the model for the agent to a linear model\nExample usage:\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\n\nval_index_start = 800 #90_000\ntest_index_start = 900 #100_000\n\nX = np.random.rand(1000, 2)\nY = np.random.rand(1000, 1)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start)\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n)\n\nagent = NewsvendorlERMAgent(environment.mdp_info,\n dataloader,\n cu=np.array([0.42857]),\n co=np.array([1.0]),\n input_shape=(2,),\n output_shape=(1,),\n optimizer_params= {\"optimizer\": \"Adam\", \"lr\": 0.01, \"weight_decay\": 0.0}, # other optimizers: \"SGD\", \"RMSprop\"\n learning_rate_scheduler_params = None, # TODO add base class for learning rate scheduler for typing\n model_params = {\"relu_output\": False}, #\n dataloader_params={\"batch_size\": 32, \"shuffle\": True},\n device = \"cpu\", # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nrun_experiment(agent, environment, 2, run_id = \"test\") # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\ninput shape (2,)\n\n\nINFO:root:Network architecture:\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n action_fn=lambda data: sys.getsizeof(data.storage()),\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nLinearModel [1, 1] --\n├─Linear: 1-1 [1, 1] 3\n├─Identity: 1-2 [1, 1] --\n==========================================================================================\nTotal params: 3\nTrainable params: 3\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.00\nEstimated Total Size (MB): 0.00\n==========================================================================================\n\n\nINFO:root:Starting experiment\nINFO:root:Initial evaluation: R=-29.736253318797445, J=-28.287550833928687\nINFO:root:Starting training with epochs fit\n\n\n-23.17678889235405 -22.124720267178684\nExperiment directory: results/test\n\n\n100%|██████████| 25/25 [00:00<00:00, 903.73it/s]\n100%|██████████| 25/25 [00:00<00:00, 1999.34it/s]\n100%|██████████| 2/2 [00:00<00:00, 35.22it/s]\nINFO:root:Finished training with epochs fit\nINFO:root:Evaluation after training: R=-15.499745268755348, J=-14.77032101771835\n\n\n-16.54230338871762 -15.75806274718322\n\n\n\nsource", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "ERM agents" + ] + }, + { + "objectID": "30_agents/41_NV_agents/nv_erm_agents.html#newsvendordlagent", + "href": "30_agents/41_NV_agents/nv_erm_agents.html#newsvendordlagent", + "title": "ERM agents", + "section": "NewsvendorDLAgent", + "text": "NewsvendorDLAgent\n\n NewsvendorDLAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoader,\n cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter,\n input_shape:Tuple, output_shape:Tuple,\n learning_rate_scheduler_params:Optional[Dict]=None,\n optimizer_params:dict|None=None,\n model_params:dict|None=None,\n dataloader_params:dict|None=None,\n dataset_params:dict|None=None, device:str='cpu',\n obsprocessors:list|None=None,\n agent_name:str|None='DLNV', test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_function:Literal['q\n uantile','pinball']='quantile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a deep learning model.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\nlearning_rate_scheduler_params\nOptional\nNone\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nmodel_params\ndict | None\nNone\ndefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\nagent_name\nstr | None\nDLNV\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nFurther information:\nReferences\n----------\n\n.. [1] Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takáˇc,\n \"Applying Deep Learning to the Newsvendor Problem\", 2018.\n\nsource\n\n\nNewsvendorDLAgent.set_model\n\n NewsvendorDLAgent.set_model (input_shape, output_shape)\n\nSet the model for the agent to an MLP\nExample usage:\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start)\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n)\n\nmodel_params = {\n \"hidden_layers\": [64, 64],\n}\n\nagent = NewsvendorDLAgent(environment.mdp_info,\n dataloader,\n cu=np.array([0.42857]),\n co=np.array([1.0]),\n input_shape=(2,),\n output_shape=(1,),\n optimizer_params= {\"optimizer\": \"Adam\", \"lr\": 0.01, \"weight_decay\": 0.0}, # other optimizers: \"SGD\", \"RMSprop\"\n learning_rate_scheduler_params = None, # TODO add base class for learning rate scheduler for typing\n model_params = model_params, #\n dataloader_params={\"batch_size\": 32, \"shuffle\": True},\n device = \"cpu\" # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nrun_experiment(agent, environment, 2, run_id = \"test\") # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nINFO:root:Network architecture:\n\n\ninput shape (2,)\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLP [1, 1] --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 192\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,417\nTrainable params: 4,417\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n\n\nINFO:root:Starting experiment\nINFO:root:Initial evaluation: R=-20.030297947350757, J=-19.11491558256756\nINFO:root:Starting training with epochs fit\n\n\n-22.66337395888819 -21.548795898866043\nExperiment directory: results/test\n\n\n100%|██████████| 25/25 [00:00<00:00, 1212.35it/s]\n100%|██████████| 25/25 [00:00<00:00, 1277.10it/s]\n100%|██████████| 2/2 [00:00<00:00, 32.30it/s]\nINFO:root:Finished training with epochs fit\nINFO:root:Evaluation after training: R=-15.082729205825588, J=-14.380392673719802\n\n\n-16.096224629924393 -15.338865711420437\n\n\n\nsource\n\n\nBaseMetaAgent\n\n BaseMetaAgent ()\n\nInitialize self. See help(type(self)) for accurate signature.\n\nsource\n\n\nNewsvendorlERMMetaAgent\n\n NewsvendorlERMMetaAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoade\n r, cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter,\n input_shape:Tuple, output_shape:Tuple,\n optimizer_params:dict|None=None,\n learning_rate_scheduler_params=None,\n model_params:dict|None=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None='lERMMeta',\n test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_function:Lite\n ral['quantile','pinball']='quantile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a linear (regression) model. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\nParameters for lERM agent\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nlearning_rate_scheduler_params\nNoneType\nNone\nTODO: add base class for learning rate scheduler for typing\n\n\nmodel_params\ndict | None\nNone\ndefault: {“relu_output”: False}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nlERMMeta\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nsource\n\n\nNewsvendorDLMetaAgent\n\n NewsvendorDLMetaAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseDataLoader,\n cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter,\n input_shape:Tuple, output_shape:Tuple,\n learning_rate_scheduler_params=None,\n optimizer_params:dict|None=None,\n model_params:dict|None=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n device:str='cpu', obsprocessors:list|None=None,\n agent_name:str|None='DLNV',\n test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_function:Litera\n l['quantile','pinball']='quantile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a Neural Network. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\nlearning_rate_scheduler_params\nNoneType\nNone\nTODO: add base class for learning rate scheduler for typing\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nmodel_params\ndict | None\nNone\ndefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\nagent_name\nstr | None\nDLNV\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nsource\n\n\nNewsvendorDLTransformerAgent\n\n NewsvendorDLTransformerAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.BaseData\n Loader,\n cu:numpy.ndarray|ddopai.utils.Parameter,\n co:numpy.ndarray|ddopai.utils.Parameter,\n input_shape:Tuple, output_shape:Tuple, lear\n ning_rate_scheduler_params:Optional[Dict]=N\n one, optimizer_params:dict|None=None,\n model_params:dict|None=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n device:str='cpu',\n obsprocessors:list|None=None,\n agent_name:str|None='DLNV',\n test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_function\n :Literal['quantile','pinball']='quantile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a deep learning model with a Transformer architecture.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\nlearning_rate_scheduler_params\nOptional\nNone\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nmodel_params\ndict | None\nNone\ndefault: {“max_context_length”: 128, “n_layer”: 3, “n_head”: 8, “n_embd_per_head”: 32, “rope_scaling”: None, “min_multiple”: 256, “gating”: True, “drop_prob”: 0.0, “final_activation”: “identity”}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\nagent_name\nstr | None\nDLNV\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile\n\n\n\n\n\nsource\n\n\nNewsvendorDLTransformerMetaAgent\n\n NewsvendorDLTransformerMetaAgent (environment_info:ddopai.utils.MDPInfo,\n dataloader:ddopai.dataloaders.base.Base\n DataLoader, cu:numpy.ndarray|ddopai.uti\n ls.Parameter, co:numpy.ndarray|ddopai.u\n tils.Parameter, input_shape:Tuple,\n output_shape:Tuple, learning_rate_sched\n uler_params:Optional[Dict]=None,\n optimizer_params:dict|None=None,\n model_params:dict|None=None,\n dataset_params:dict|None=None,\n dataloader_params:dict|None=None,\n device:str='cpu',\n obsprocessors:list|None=None,\n agent_name:str|None='DLNV',\n test_batch_size:int=1024,\n receive_batch_dim:bool=False, loss_func\n tion:Literal['quantile','pinball']='qua\n ntile')\n\nNewsvendor agent implementing Empirical Risk Minimization (ERM) approach based on a Neural Network using the attention mechanism. In addition to the features, the agent also gets the sl as input to be able to forecast the optimal order quantity for different sl values. Depending on the training pipeline, this model can be adapted to become a full meta-learning algorithm cross products and cross sls.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\ndataloader\nBaseDataLoader\n\n\n\n\ncu\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\nco\nnumpy.ndarray | ddopai.utils.Parameter\n\n\n\n\ninput_shape\nTuple\n\n\n\n\noutput_shape\nTuple\n\n\n\n\nlearning_rate_scheduler_params\nOptional\nNone\n\n\n\noptimizer_params\ndict | None\nNone\ndefault: {“optimizer”: “Adam”, “lr”: 0.01, “weight_decay”: 0.0}\n\n\nmodel_params\ndict | None\nNone\ndefault: {“hidden_layers”: [64, 64], “drop_prob”: 0.0, “batch_norm”: False, “relu_output”: False}\n\n\ndataset_params\ndict | None\nNone\nparameters needed to convert the dataloader to a torch dataset\n\n\ndataloader_params\ndict | None\nNone\ndefault: {“batch_size”: 32, “shuffle”: True}\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\nagent_name\nstr | None\nDLNV\n\n\n\ntest_batch_size\nint\n1024\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\nloss_function\nLiteral\nquantile", + "crumbs": [ + "Agents", + "Newsvendor_agents", + "ERM agents" + ] + }, + { + "objectID": "30_agents/ml_utils.html", + "href": "30_agents/ml_utils.html", + "title": "ML utils", + "section": "", + "text": "source\n\nLRSchedulerPerStep\n\n LRSchedulerPerStep (optimizer:torch.optim.optimizer.Optimizer,\n base_learning_rate:float=0.0001, warmup:int=4000)\n\nLearning rate scheduler from Attention is all you need paper (https://arxiv.org/abs/1706.03762) One ajustment: Added base LR as tunable parameter rather than setting it automated based on model dimension\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\noptimizer\nOptimizer\n\nOptimizer to adjust learning rate for\n\n\nbase_learning_rate\nfloat\n0.0001\n\n\n\nwarmup\nint\n4000", + "crumbs": [ + "Agents", + "ML utils" + ] + }, + { + "objectID": "30_agents/51_RL_agents/sac_agents.html", + "href": "30_agents/51_RL_agents/sac_agents.html", + "title": "SAC agents", + "section": "", + "text": "source\n\nSACBaseAgent\n\n SACBaseAgent (environment_info:ddopai.utils.MDPInfo,\n learning_rate_actor:float=0.0003,\n learning_rate_critic:float|None=None,\n initial_replay_size:int=64, max_replay_size:int=50000,\n batch_size:int=64, warmup_transitions:int=100,\n lr_alpha:float=0.0003, tau:float=0.005,\n log_std_min:float=-20.0, log_std_max:float=2.0,\n use_log_alpha_loss=False, target_entropy:float|None=None,\n drop_prob:float=0.0, batch_norm:bool=False,\n init_method:str='xavier_uniform', optimizer:str='Adam',\n loss:str='MSE', obsprocessors:list|None=None,\n device:str='cpu', agent_name:str|None='SAC',\n network_actor_mu_params:dict=None,\n network_actor_sigma_params:dict=None,\n network_critic_params:dict=None)\n\nBase agent for the Soft Actor-Critic (SAC) algorithm.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nlearning_rate_actor\nfloat\n0.0003\n\n\n\nlearning_rate_critic\nfloat | None\nNone\nIf none, then it is set to learning_rate_actor\n\n\ninitial_replay_size\nint\n64\n\n\n\nmax_replay_size\nint\n50000\n\n\n\nbatch_size\nint\n64\n\n\n\nwarmup_transitions\nint\n100\n\n\n\nlr_alpha\nfloat\n0.0003\n\n\n\ntau\nfloat\n0.005\n\n\n\nlog_std_min\nfloat\n-20.0\n\n\n\nlog_std_max\nfloat\n2.0\n\n\n\nuse_log_alpha_loss\nbool\nFalse\n\n\n\ntarget_entropy\nfloat | None\nNone\n\n\n\ndrop_prob\nfloat\n0.0\n\n\n\nbatch_norm\nbool\nFalse\n\n\n\ninit_method\nstr\nxavier_uniform\n“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”\n\n\noptimizer\nstr\nAdam\n“Adam” or “SGD” or “RMSprop”\n\n\nloss\nstr\nMSE\ncurrently only MSE is supported\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nSAC\n\n\n\nnetwork_actor_mu_params\ndict\nNone\n\n\n\nnetwork_actor_sigma_params\ndict\nNone\n\n\n\nnetwork_critic_params\ndict\nNone\n\n\n\n\n\nsource\n\n\nSACAgent\n\n SACAgent (environment_info:ddopai.utils.MDPInfo, hidden_layers:List=None,\n activation:str='relu', learning_rate_actor:float=0.0003,\n learning_rate_critic:float|None=None,\n initial_replay_size:int=64, max_replay_size:int=50000,\n batch_size:int=64, warmup_transitions:int=100,\n lr_alpha:float=0.0003, tau:float=0.005,\n log_std_min:float=-20.0, log_std_max:float=2.0,\n use_log_alpha_loss=False, target_entropy:float|None=None,\n drop_prob:float=0.0, batch_norm:bool=False,\n init_method:str='xavier_uniform', optimizer:str='Adam',\n loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None='SAC', observation_space_shape=None,\n action_space_shape=None)\n\nXXX\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nhidden_layers\nList\nNone\nif None, then default is [64, 64]\n\n\nactivation\nstr\nrelu\n“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”\n\n\nlearning_rate_actor\nfloat\n0.0003\n\n\n\nlearning_rate_critic\nfloat | None\nNone\nIf none, then it is set to learning_rate_actor\n\n\ninitial_replay_size\nint\n64\n\n\n\nmax_replay_size\nint\n50000\n\n\n\nbatch_size\nint\n64\n\n\n\nwarmup_transitions\nint\n100\n\n\n\nlr_alpha\nfloat\n0.0003\n\n\n\ntau\nfloat\n0.005\n\n\n\nlog_std_min\nfloat\n-20.0\n\n\n\nlog_std_max\nfloat\n2.0\n\n\n\nuse_log_alpha_loss\nbool\nFalse\n\n\n\ntarget_entropy\nfloat | None\nNone\n\n\n\ndrop_prob\nfloat\n0.0\n\n\n\nbatch_norm\nbool\nFalse\n\n\n\ninit_method\nstr\nxavier_uniform\n“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”\n\n\noptimizer\nstr\nAdam\n“Adam” or “SGD” or “RMSprop”\n\n\nloss\nstr\nMSE\ncurrently only MSE is supported\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nSAC\n\n\n\nobservation_space_shape\nNoneType\nNone\noptional when it cannot be inferred from environment_info (e.g. for dict spaces)\n\n\naction_space_shape\nNoneType\nNone\noptional when it cannot be inferred from environment_info (e.g. for dict spaces)\n\n\n\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\nINFO:numexpr.utils:Note: NumExpr detected 10 cores but \"NUMEXPR_MAX_THREADS\" not set, so enforcing safe limit of 8.\nINFO:numexpr.utils:NumExpr defaulting to 8 threads.\n\n\n\nval_index_start = 8000 #90_000\ntest_index_start = 9000 #100_000\n\nX = np.random.standard_normal((10000, 2))\nY = np.random.standard_normal((10000, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\nY = X[:,0].reshape(-1, 1)\n# truncate Y at 0:\nY = np.maximum(Y, 0)\n# normalize Y max to 1\nY = Y/np.max(Y)\n\n# print(np.max(Y))\n# print(X.shape, Y.shape)\n\nclip_action = ClipAction(0., 1.)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params = {'lag_window': 0, 'include_y': False, 'pre_calc': True})\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n q_bound_high = 1.0,\n q_bound_low = -0.1,\n postprocessors = [clip_action],\n)\n\nagent = SACAgent(environment.mdp_info,\n obsprocessors = None, # default: []\n device=\"cpu\", # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nenvironment.train()\nagent.train()\nenvironment.print=False\n\n# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = \"test\", save_best=True, print_freq=1) # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32\n gym.logger.warn(f\"Box bound precision lowered by casting to {self.dtype}\")\nINFO:root:Actor network (mu network):\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n action_fn=lambda data: sys.getsizeof(data.storage()),\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPActor [1, 1] --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 192\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,417\nTrainable params: 4,417\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n\n\nINFO:root:################################################################################\nINFO:root:Critic network:\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPStateAction -- --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 256\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,481\nTrainable params: 4,481\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n-245.3059010258002 -154.16627214771364\n-245.3059010258002 -154.16627214771364\n\n\n\nsource\n\n\nSACRNNAgent\n\n SACRNNAgent (environment_info:ddopai.utils.MDPInfo,\n hidden_layers_RNN:int=1, num_hidden_units_RNN:int=64,\n RNN_cell:str='GRU', hidden_layers_MLP:List=None,\n hidden_layers_input_MLP:List=None, activation:str='relu',\n learning_rate_actor:float=0.0003,\n learning_rate_critic:float|None=None,\n initial_replay_size:int=64, max_replay_size:int=50000,\n batch_size:int=64, warmup_transitions:int=100,\n lr_alpha:float=0.0003, tau:float=0.005,\n log_std_min:float=-20.0, log_std_max:float=2.0,\n use_log_alpha_loss=False, target_entropy:float|None=None,\n drop_prob:float=0.0, batch_norm:bool=False,\n init_method:str='xavier_uniform', optimizer:str='Adam',\n loss:str='MSE', obsprocessors:list|None=None,\n device:str='cpu', agent_name:str|None='SAC',\n observation_space_shape=None, action_space_shape=None)\n\nXXX\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nhidden_layers_RNN\nint\n1\nInitial RNN layers\n\n\nnum_hidden_units_RNN\nint\n64\nInitial number of hidden units in RNN layers\n\n\nRNN_cell\nstr\nGRU\n“LSTM”, “GRU”, “RNN”\n\n\nhidden_layers_MLP\nList\nNone\nMLP layers behind RNN: if None, then default is [64, 64]\n\n\nhidden_layers_input_MLP\nList\nNone\nMLP layers for non-time features. Default is None\n\n\nactivation\nstr\nrelu\n“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”\n\n\nlearning_rate_actor\nfloat\n0.0003\n\n\n\nlearning_rate_critic\nfloat | None\nNone\nIf none, then it is set to learning_rate_actor\n\n\ninitial_replay_size\nint\n64\n\n\n\nmax_replay_size\nint\n50000\n\n\n\nbatch_size\nint\n64\n\n\n\nwarmup_transitions\nint\n100\n\n\n\nlr_alpha\nfloat\n0.0003\n\n\n\ntau\nfloat\n0.005\n\n\n\nlog_std_min\nfloat\n-20.0\n\n\n\nlog_std_max\nfloat\n2.0\n\n\n\nuse_log_alpha_loss\nbool\nFalse\n\n\n\ntarget_entropy\nfloat | None\nNone\n\n\n\ndrop_prob\nfloat\n0.0\n\n\n\nbatch_norm\nbool\nFalse\n\n\n\ninit_method\nstr\nxavier_uniform\n“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”\n\n\noptimizer\nstr\nAdam\n“Adam” or “SGD” or “RMSprop”\n\n\nloss\nstr\nMSE\ncurrently only MSE is supported\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nSAC\n\n\n\nobservation_space_shape\nNoneType\nNone\noptional when it cannot be inferred from environment_info (e.g. for dict spaces)\n\n\naction_space_shape\nNoneType\nNone\noptional when it cannot be inferred from environment_info (e.g. for dict spaces)\n\n\n\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\n\nval_index_start = 8000 #90_000\ntest_index_start = 9000 #100_000\n\nX = np.random.standard_normal((10000, 2))\nY = np.random.standard_normal((10000, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\nY = X[:,0].reshape(-1, 1)\n# truncate Y at 0:\nY = np.maximum(Y, 0)\n# normalize Y max to 1\nY = Y/np.max(Y)\n\nclip_action = ClipAction(0., 1.)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params = {'lag_window': 5, 'include_y': True, 'pre_calc': True})\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n q_bound_high = 1.0,\n q_bound_low = -0.1,\n postprocessors = [clip_action],\n)\n\nagent = SACRNNAgent(environment.mdp_info,\n obsprocessors = None, # default: []\n device=\"cpu\", # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nenvironment.train()\nagent.train()\nenvironment.print=False\n\n# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = \"test\", save_best=True, print_freq=1) # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32\n gym.logger.warn(f\"Box bound precision lowered by casting to {self.dtype}\")\nINFO:root:Actor network (mu network):\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nRNNActor [1, 1] --\n├─RNNMLPHybrid: 1-1 [1, 1] --\n│ └─Sequential: 2-1 [1, 6, 64] --\n│ │ └─SpecificRNNWrapper: 3-1 [1, 6, 64] 13,248\n│ │ └─ReLU: 3-2 [1, 6, 64] --\n│ └─Sequential: 2-2 [1, 1] --\n│ │ └─Linear: 3-3 [1, 64] 4,160\n│ │ └─ReLU: 3-4 [1, 64] --\n│ │ └─Dropout: 3-5 [1, 64] --\n│ │ └─Linear: 3-6 [1, 64] 4,160\n│ │ └─ReLU: 3-7 [1, 64] --\n│ │ └─Dropout: 3-8 [1, 64] --\n│ │ └─Linear: 3-9 [1, 1] 65\n==========================================================================================\nTotal params: 21,633\nTrainable params: 21,633\nNon-trainable params: 0\nTotal mult-adds (M): 0.09\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.09\nEstimated Total Size (MB): 0.09\n==========================================================================================\n\n\nINFO:root:################################################################################\nINFO:root:Critic network:\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nRNNStateAction -- --\n├─RNNMLPHybrid: 1-1 [1, 1] --\n│ └─Sequential: 2-1 [1, 6, 64] --\n│ │ └─SpecificRNNWrapper: 3-1 [1, 6, 64] 13,248\n│ │ └─ReLU: 3-2 [1, 6, 64] --\n│ └─Sequential: 2-2 [1, 1] --\n│ │ └─Linear: 3-3 [1, 64] 4,224\n│ │ └─ReLU: 3-4 [1, 64] --\n│ │ └─Dropout: 3-5 [1, 64] --\n│ │ └─Linear: 3-6 [1, 64] 4,160\n│ │ └─ReLU: 3-7 [1, 64] --\n│ │ └─Dropout: 3-8 [1, 64] --\n│ │ └─Linear: 3-9 [1, 1] 65\n==========================================================================================\nTotal params: 21,697\nTrainable params: 21,697\nNon-trainable params: 0\nTotal mult-adds (M): 0.09\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.09\nEstimated Total Size (MB): 0.09\n==========================================================================================\n-383.1306977574299 -243.60956423506602\n-383.1306977574299 -243.60956423506602", + "crumbs": [ + "Agents", + "Reinforcement Learning agents", + "SAC agents" + ] + }, + { + "objectID": "30_agents/51_RL_agents/ppo_agents.html", + "href": "30_agents/51_RL_agents/ppo_agents.html", + "title": "PPO agents", + "section": "", + "text": "source\n\nPPOAgent\n\n PPOAgent (environment_info:ddopai.utils.MDPInfo,\n learning_rate_actor:float=0.0003,\n learning_rate_critic:float|None=None, batch_size:int=64,\n hidden_layers:List=None, activation:str='relu',\n std_0:float=0.1, n_epochs_policy:int=4, eps_ppo:float=0.2,\n lam:float=0.95, ent_coeff:float=0.0, n_steps_per_fit=1000,\n drop_prob:float=0.0, batch_norm:bool=False,\n init_method:str='xavier_uniform', optimizer:str='Adam',\n loss:str='MSE', obsprocessors:list|None=None, device:str='cpu',\n agent_name:str|None='SAC')\n\nXXX\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nlearning_rate_actor\nfloat\n0.0003\n\n\n\nlearning_rate_critic\nfloat | None\nNone\nIf none, then it is set to learning_rate_actor\n\n\nbatch_size\nint\n64\n\n\n\nhidden_layers\nList\nNone\nif None, then default is [64, 64]\n\n\nactivation\nstr\nrelu\n“relu”, “sigmoid”, “tanh”, “leakyrelu”, “elu”\n\n\nstd_0\nfloat\n0.1\ntau: float = 0.005,\n\n\nn_epochs_policy\nint\n4\n\n\n\neps_ppo\nfloat\n0.2\n\n\n\nlam\nfloat\n0.95\n\n\n\nent_coeff\nfloat\n0.0\n\n\n\nn_steps_per_fit\nint\n1000\n\n\n\ndrop_prob\nfloat\n0.0\n\n\n\nbatch_norm\nbool\nFalse\n\n\n\ninit_method\nstr\nxavier_uniform\n“xavier_uniform”, “xavier_normal”, “he_normal”, “he_uniform”, “normal”, “uniform”\n\n\noptimizer\nstr\nAdam\n“Adam” or “SGD” or “RMSprop”\n\n\nloss\nstr\nMSE\ncurrently only MSE is supported\n\n\nobsprocessors\nlist | None\nNone\ndefault: []\n\n\ndevice\nstr\ncpu\n“cuda” or “cpu”\n\n\nagent_name\nstr | None\nSAC\n\n\n\n\n\nfrom ddopai.envs.inventory.single_period import NewsvendorEnv\nfrom ddopai.dataloaders.tabular import XYDataLoader\nfrom ddopai.experiments.experiment_functions import run_experiment, test_agent\n\n\nval_index_start = 8000 #90_000\ntest_index_start = 9000 #100_000\n\nX = np.random.standard_normal((10000, 2))\nY = np.random.standard_normal((10000, 1))\nY += 2*X[:,0].reshape(-1, 1) + 3*X[:,1].reshape(-1, 1)\nY = X[:,0].reshape(-1, 1)\n# truncate Y at 0:\nY = np.maximum(Y, 0)\n# normalize Y max to 1\nY = Y/np.max(Y)\n\nprint(np.max(Y))\n\nprint(X.shape, Y.shape)\n\nclip_action = ClipAction(0., 1.)\n\ndataloader = XYDataLoader(X, Y, val_index_start, test_index_start, lag_window_params = {'lag_window': 0, 'include_y': False, 'pre_calc': True})\n\nenvironment = NewsvendorEnv(\n dataloader = dataloader,\n underage_cost = 0.42857,\n overage_cost = 1.0,\n gamma = 0.999,\n horizon_train = 365,\n q_bound_high = 1.0,\n q_bound_low = -0.1,\n postprocessors = [clip_action],\n)\n\nagent = PPOAgent(environment.mdp_info,\n obsprocessors = None, # default: []\n device=\"cpu\", # \"cuda\" or \"cpu\"\n)\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\nenvironment.train()\nagent.train()\nenvironment.print=False\n\n# run_experiment(agent, environment, n_epochs=50, n_steps=1000, run_id = \"test\", save_best=True, print_freq=1) # fit agent via run_experiment function\n\nenvironment.test()\nagent.eval()\n\nR, J = test_agent(agent, environment)\n\nprint(R, J)\n\n1.0\n(10000, 2) (10000, 1)\n\n\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/gymnasium/spaces/box.py:130: UserWarning: WARN: Box bound precision lowered by casting to float32\n gym.logger.warn(f\"Box bound precision lowered by casting to {self.dtype}\")\nINFO:root:Actor network:\n/Users/magnus/miniforge3/envs/inventory_gym_2/lib/python3.11/site-packages/torchinfo/torchinfo.py:462: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n action_fn=lambda data: sys.getsizeof(data.storage()),\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPActor [1, 1] --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 192\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,417\nTrainable params: 4,417\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n\n\nINFO:root:Critic network:\n\n\n==========================================================================================\nLayer (type:depth-idx) Output Shape Param #\n==========================================================================================\nMLPState [1, 1] --\n├─Sequential: 1-1 [1, 1] --\n│ └─Linear: 2-1 [1, 64] 192\n│ └─ReLU: 2-2 [1, 64] --\n│ └─Dropout: 2-3 [1, 64] --\n│ └─Linear: 2-4 [1, 64] 4,160\n│ └─ReLU: 2-5 [1, 64] --\n│ └─Dropout: 2-6 [1, 64] --\n│ └─Linear: 2-7 [1, 1] 65\n│ └─Identity: 2-8 [1, 1] --\n==========================================================================================\nTotal params: 4,417\nTrainable params: 4,417\nNon-trainable params: 0\nTotal mult-adds (M): 0.00\n==========================================================================================\nInput size (MB): 0.00\nForward/backward pass size (MB): 0.00\nParams size (MB): 0.02\nEstimated Total Size (MB): 0.02\n==========================================================================================\n-44.039980104932894 -28.64890791879266\n-44.039980104932894 -28.64890791879266", + "crumbs": [ + "Agents", + "Reinforcement Learning agents", + "PPO agents" + ] + }, + { + "objectID": "30_agents/40_base_agents/base_agents.html", + "href": "30_agents/40_base_agents/base_agents.html", + "title": "Base agents", + "section": "", + "text": "source", + "crumbs": [ + "Agents", + "Base agents" + ] + }, + { + "objectID": "30_agents/40_base_agents/base_agents.html#baseagent", + "href": "30_agents/40_base_agents/base_agents.html#baseagent", + "title": "Base agents", + "section": "BaseAgent", + "text": "BaseAgent\n\n BaseAgent (environment_info:ddopai.utils.MDPInfo,\n obsprocessors:list[object]|None=None,\n agent_name:str|None=None, receive_batch_dim:bool=False)\n\nBase class for all agents to enforce a common interface. See below for more detailed description of the requriements.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment_info\nMDPInfo\n\n\n\n\nobsprocessors\nlist[object] | None\nNone\ndefault is empty list\n\n\nagent_name\nstr | None\nNone\n\n\n\nreceive_batch_dim\nbool\nFalse\n\n\n\n\n\nImportant notes:\nAgents are, next to the environments, the core element of this library. The agents are the algorithms that take actions in the environment. They can be any type of algorithms ranging from optimization, supervised learning to reinforcement learning and any combination. Key for all the different agents to work is a common interface that allows them to interact with the environment.\nDraw action:\n\nThe draw_action function is the main interface with the environment. It receives an observation as Numpy array and returns an action as Numpy array. The function draw_action is defined in the [`BaseAgent`](https://opimwue.github.io/ddopai/30_agents/40_base_agents/base_agents.html#baseagent) and should not be overwritten as it properly applies pre- and post-processing (see below).\nAgents always expect the observation to be of shape (batch_size, observation_dim) or (batch_size, time_dim, observation_dim) to allow batch-processing during training. Most environment do not have a batch dimension as they apply the step function to a single observation. Hence, the agent will by default add an extra dimension to the observation. If this is not desired, the agent has an attribute “receive_batch_dim” that can be set to True to tell the agent that the observation already has a batch dimension.\nTo create an agent, the function draw_action_ (note the underscore!) needs to be defined that gets the pre-processed observation and returns the action for post-processing. This function should be overwritten in the derived class.\n\nobservation pre-processors and action post-processors:\n\nSometimes, it is necessary to process the observartion before giving it to the agent (e.g., changing shape) or to process the action before giving it to the environment (e.g., rounding). To ensure compatibility with mushroom_rl, the pre-processors sit with the agent (they must be added to the agent and are applied in the agent’s draw_action() method). The post-processors sit with the environment and are applied in the environment’s step() method.\nTo differenciate the pre-processors here from the pre-processors used directly inside mushroom_rl, we call them obsprocessors, short for observation pre-processors.\nDuring definition, one can already add the obsprocessors as lists (to the argument obsprocessors). After instantiation, processors are to be added using the add_obsprocessor method.\nNote that processors are applied in the order they are added.\n\nTraining:\n\nThe [`run_experiment`](https://opimwue.github.io/ddopai/40_experiments/experiment_functions.html#run_experiment)function in this library currently supports three types of training processes:\n\ntrain_directly: The agent is trained by calling agent.fit(X, Y) directly. In this case, the agent must have a fit function that takes the input and target data.\ntrain_epochs: The agent is iteratively trained on the training data (e.g., via SGD). In this case, the function fit_epoch must be implemented. fit_epoch does not get any argument, rather the dataloader from the environment needs to be given to the agent during initialization. The agent will then call the dataloader interatively to get the training data.\nenv_interaction: The agent is trained by interacting with the environment (e.g., like all reinforcement learning agents). This case build on the Core class from MushroomRL.\n\n\nLoading and saving:\n\nAll agents must implement a save and load function that allows to save and load the agent’s parameters. See the Newsvendor ERM and (w)SAA agents for examples of different ways to save and load agents.\n\nDymamic class loading:\n\nThis package allows to load agents dynamically with the [`select_agent`](https://opimwue.github.io/ddopai/40_experiments/meta_experiment_functions.html#select_agent) function that takes a string as input and returns the corresponding agent class. When creating new agents, make sure to add them to 10_AGENT_CLASSES.ipynb under the base agents folder with an appropriate name.\n\n\nsource\n\n\nBaseAgent.draw_action\n\n BaseAgent.draw_action (observation:numpy.ndarray)\n\nMain interfrace to the environemnt. Applies preprocessors to the observation. Internal logic of the agent to be implemented in draw_action_ method.\n\n\n\n\nType\nDetails\n\n\n\n\nobservation\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nBaseAgent.draw_action_\n\n BaseAgent.draw_action_ (observation:numpy.ndarray)\n\nGenerate an action based on the observation - this is the core method that needs to be implemented by all agents.\n\n\n\n\nType\nDetails\n\n\n\n\nobservation\nndarray\n\n\n\nReturns\nndarray\n\n\n\n\n\nsource\n\n\nBaseAgent.add_obsprocessor\n\n BaseAgent.add_obsprocessor (obsprocessor:object)\n\nAdd a preprocessor to the agent\n\n\n\n\n\n\n\n\n\nType\nDetails\n\n\n\n\nobsprocessor\nobject\npre-processor object that can be called via the “call” method\n\n\n\n\nsource\n\n\nBaseAgent.train\n\n BaseAgent.train ()\n\nSet the internal state of the agent to train\n\nsource\n\n\nBaseAgent.eval\n\n BaseAgent.eval ()\n\nSet the internal state of the agent to eval. Note that for agents we do not differentiate between val and test modes.\n\nsource\n\n\nBaseAgent.add_batch_dim\n\n BaseAgent.add_batch_dim (input:numpy.ndarray|dict[str,numpy.ndarray])\n\nAdd a batch dimension to the input array if it doesn’t already have one. This is necessary because most environments do not have a batch dimension, but agents typically expect one. If the environment does have a batch dimension, the agent can set the receive_batch_dim attribute to True to skip this step.\n\n\n\n\nType\nDetails\n\n\n\n\ninput\nnumpy.ndarray | dict[str, numpy.ndarray]\n\n\n\nReturns\nnumpy.ndarray | dict[str, numpy.ndarray]\n\n\n\n\n\nsource\n\n\nBaseAgent.save\n\n BaseAgent.save ()\n\nSave the agent’s parameters to a file.\n\nsource\n\n\nBaseAgent.load\n\n BaseAgent.load ()\n\nLoad the agent’s parameters from a file.\n\nsource\n\n\nBaseAgent.update_model_params\n\n BaseAgent.update_model_params (default_params:dict, custom_params:dict)\n\noverride default parameters with custom parameters in a dictionary\n\n\n\n\nType\nDetails\n\n\n\n\ndefault_params\ndict\n\n\n\ncustom_params\ndict\n\n\n\nReturns\ndict\n\n\n\n\n\nsource\n\n\nBaseAgent.convert_to_numpy_array\n\n BaseAgent.convert_to_numpy_array (input:Union[numpy.ndarray,List,float,in\n t,ddopai.utils.Parameter,NoneType])\n\nconvert input to numpy array or keep as Parameter\n\n\n\n\nType\nDetails\n\n\n\n\ninput\nUnion", + "crumbs": [ + "Agents", + "Base agents" + ] + }, + { + "objectID": "30_agents/obsprocessors.html", + "href": "30_agents/obsprocessors.html", + "title": "Obsprocessors", + "section": "", + "text": "source", + "crumbs": [ + "Agents", + "Obsprocessors" + ] + }, + { + "objectID": "30_agents/obsprocessors.html#flattentimedimnumpy", + "href": "30_agents/obsprocessors.html#flattentimedimnumpy", + "title": "Obsprocessors", + "section": "FlattenTimeDimNumpy", + "text": "FlattenTimeDimNumpy\n\n FlattenTimeDimNumpy (allow_2d:Optional[bool]=False,\n batch_dim_included:Optional[bool]=True)\n\nPreprocessor to flatten the time and feature dimension of the input. Used, e.g., to convert time-series data for models that cannot process a time dimension such as MLPs or Regression models.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nallow_2d\nOptional\nFalse\n\n\n\nbatch_dim_included\nOptional\nTrue\n\n\n\n\n\nsource\n\nFlattenTimeDimNumpy.check_input\n\n FlattenTimeDimNumpy.check_input (input:numpy.ndarray)\n\nCheck that the input is a Numpy array with the correct shape.\n\n\n\n\nType\nDetails\n\n\n\n\ninput\nndarray\n\n\n\n\n\nsource\n\n\nFlattenTimeDimNumpy.__call__\n\n FlattenTimeDimNumpy.__call__ (input:numpy.ndarray)\n\nProcess the input array by keeping the batch dimension and flattening the time and feature dimensions.\n\nsource\n\n\nConvertDictSpace\n\n ConvertDictSpace (keep_time_dim:Optional[bool]=False,\n hybrid_space_params:Optional[Dict]=None)\n\n*A utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension.\nNote, this class is only used to preprocess output from the environment without batch dimension.*\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nkeep_time_dim\nOptional\nFalse\nIf time timension should be flattened as well.\n\n\nhybrid_space_params\nOptional\nNone\ndict with keys “time” that is a list of observation keys that should keep the time dimension.\n\n\n\n\nsource\n\n\nAddParamsToFeaturesLEGACY\n\n AddParamsToFeaturesLEGACY (environment:object,\n keep_time_dim:Optional[bool]=False,\n hybrid:Optional[bool]=False,\n receive_batch_dim:Optional[bool]=False)\n\nA utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension. # TODO: Currently is mixes too many cases like batched input, hybrid input etc. Seperate into more specific obsprocessors.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment\nobject\n\nThe environment object, needed to check if val or train mode,\n\n\nkeep_time_dim\nOptional\nFalse\nIf time timension should be flattened as well.\n\n\nhybrid\nOptional\nFalse\nIf the param dim should be added as separate vector or concatenated to the features.\n\n\nreceive_batch_dim\nOptional\nFalse\nIf the input contains a batch dimension.\n\n\n\n\nsource\n\n\nAddParamsToFeatures\n\n AddParamsToFeatures (environment:object,\n keep_time_dim:Optional[bool]=False,\n receive_batch_dim:Optional[bool]=False)\n\nA utility class to process a dictionary of numpy arrays (from dict space), with options to preserve or flatten the time dimension. It always adds the parameters to the appropriate dimension. For composite spaces (partially time-series, partially not), use the separate AddParamsToFeaturesComposite class.\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nenvironment\nobject\n\nThe environment object, needed to check if val or train mode,\n\n\nkeep_time_dim\nOptional\nFalse\nIf time timension should be flattened as well.\n\n\nreceive_batch_dim\nOptional\nFalse\nIf the input contains a batch dimension.", + "crumbs": [ + "Agents", + "Obsprocessors" + ] + }, + { + "objectID": "30_agents/60_approximators/approximators.html", + "href": "30_agents/60_approximators/approximators.html", + "title": "Approximators", + "section": "", + "text": "source\n\nBaseModule\n\n BaseModule ()\n\n*Base class for all neural network modules.\nYour models should also subclass this class.\nModules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nclass Model(nn.Module):\n def __init__(self) -> None:\n super().__init__()\n self.conv1 = nn.Conv2d(1, 20, 5)\n self.conv2 = nn.Conv2d(20, 20, 5)\n\n def forward(self, x):\n x = F.relu(self.conv1(x))\n return F.relu(self.conv2(x))\nSubmodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.\n.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.\n:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*\n\nsource\n\n\nLinearModel\n\n LinearModel (input_size:int, output_size:int, relu_output:bool=False)\n\nLinear regression model\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_size\nint\n\nnumber of features\n\n\noutput_size\nint\n\nnumber of outputs/actions\n\n\nrelu_output\nbool\nFalse\nwhether to apply ReLU activation to the output\n\n\n\n\nsource\n\n\nMLP\n\n MLP (input_size:int, output_size:int, hidden_layers:list,\n drop_prob:float=0.0, batch_norm:bool=False, relu_output:bool=False)\n\nMultilayer perceptron model\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_size\nint\n\nnumber of features\n\n\noutput_size\nint\n\nnumber of outputs/actions\n\n\nhidden_layers\nlist\n\nlist of number of neurons in each hidden layer\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nbatch_norm\nbool\nFalse\nwhether to apply batch normalization\n\n\nrelu_output\nbool\nFalse\nwhether to apply ReLU activation to the output\n\n\n\n\nsource\n\n\nTransformer\n\n Transformer (input_size:int, output_size:int, max_context_length:int=128,\n n_layer:int=3, n_head:int=8, n_embd_per_head:int=32,\n rope_scaling:Optional[Dict]=None, min_multiple=256,\n gating=True, drop_prob:float=0.0, final_activation:Literal['\n relu','sigmoid','tanh','elu','leakyrelu','identity']='identi\n ty')\n\nMultilayer perceptron model\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ninput_size\nint\n\nnumber of (time steps, features)\n\n\noutput_size\nint\n\nnumber of outputs/actions\n\n\nmax_context_length\nint\n128\nmaximum context lenght during inference\n\n\nn_layer\nint\n3\nnumber of layers in the transformer\n\n\nn_head\nint\n8\nnumber of heads per layer\n\n\nn_embd_per_head\nint\n32\nnumber of embedding per head\n\n\nrope_scaling\nOptional\nNone\nwhether to use rope scaling, not implemented yet\n\n\nmin_multiple\nint\n256\nminimum multiple for neurons in the MLP block of the transformer\n\n\ngating\nbool\nTrue\nWhether to apply the gating mechanism from the original Llama model (used in LagLlama)\n\n\ndrop_prob\nfloat\n0.0\ndropout probability\n\n\nfinal_activation\nLiteral\nidentity\nfinal activation function\n\n\n\n\nsource\n\n\napply_rotary_pos_emb\n\n apply_rotary_pos_emb (q, k, cos, sin, position_ids)\n\n\nsource\n\n\nrotate_half\n\n rotate_half (x)\n\nRotates half the hidden dims of the input.\n\nsource\n\n\nLlamaRotaryEmbedding\n\n LlamaRotaryEmbedding (dim, max_position_embeddings=2048, base=10000,\n device=None)\n\nRotary positional embeddings (RoPE) based on https://arxiv.org/abs/2104.09864 Code following the implementation in https://github.com/time-series-foundation-models/lag-llama\n\nsource\n\n\nfind_multiple\n\n find_multiple (n:int, k:int)\n\n\nsource\n\n\nCausalSelfAttention\n\n CausalSelfAttention (n_embd_per_head, n_head, block_size, dropout)\n\nCauseal self-attention module Based on the implementation in https://github.com/time-series-foundation-models/lag-llama, without usage of kv_cache since we always make a prediction for only the next step\n\nsource\n\n\nMLP_block\n\n MLP_block (n_embd_per_head, n_head, min_multiple=256, gating=True)\n\n*Base class for all neural network modules.\nYour models should also subclass this class.\nModules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nclass Model(nn.Module):\n def __init__(self) -> None:\n super().__init__()\n self.conv1 = nn.Conv2d(1, 20, 5)\n self.conv2 = nn.Conv2d(20, 20, 5)\n\n def forward(self, x):\n x = F.relu(self.conv1(x))\n return F.relu(self.conv2(x))\nSubmodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.\n.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.\n:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*\n\nsource\n\n\nRMSNorm\n\n RMSNorm (size:int, dim:int=-1, eps:float=1e-05)\n\n*Root Mean Square Layer Normalization as implemented in https://github.com/time-series-foundation-models/lag-llama.\nDerived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.*\n\nsource\n\n\nBlock\n\n Block (n_embd_per_head, n_head, block_size, dropout, min_multiple=256,\n gating=True)\n\n*Base class for all neural network modules.\nYour models should also subclass this class.\nModules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nclass Model(nn.Module):\n def __init__(self) -> None:\n super().__init__()\n self.conv1 = nn.Conv2d(1, 20, 5)\n self.conv2 = nn.Conv2d(20, 20, 5)\n\n def forward(self, x):\n x = F.relu(self.conv1(x))\n return F.relu(self.conv2(x))\nSubmodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.\n.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.\n:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*", + "crumbs": [ + "Agents", + "Approximators", + "Approximators" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html", + "href": "40_experiments/meta_experiment_functions.html", + "title": "Meta experiment functions", + "section": "", + "text": "Some warnings are irrelevant for this library\n\n\nsource\n\n\n\n set_warnings (logging_level)\n\nSet warnings to be ignored for the given logging level or higher.", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#warnings", + "href": "40_experiments/meta_experiment_functions.html#warnings", + "title": "Meta experiment functions", + "section": "", + "text": "Some warnings are irrelevant for this library\n\n\nsource\n\n\n\n set_warnings (logging_level)\n\nSet warnings to be ignored for the given logging level or higher.", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#load-files-and-set-up-tracking", + "href": "40_experiments/meta_experiment_functions.html#load-files-and-set-up-tracking", + "title": "Meta experiment functions", + "section": "Load files and set-up tracking", + "text": "Load files and set-up tracking\n\nFist part of experiment: Log into wandb and load config files\n\n\nsource\n\nprep_experiment\n\n prep_experiment (project_name:str,\n libraries_to_track:List[str]=['ddopai'],\n config_train_name:str='config_train',\n config_agent_name:str='config_agent',\n config_env_name:str='config_env')\n\nFirst stpes to always execute when starting an experiment (using wandb for tracking)\n\nsource\n\n\ninit_wandb\n\n init_wandb (project_name:str)\n\ninit wandb\n\n\n\n\nType\nDetails\n\n\n\n\nproject_name\nstr\n\n\n\n\n\nsource\n\n\ntrack_libraries_and_git\n\n track_libraries_and_git (libraries_to_track:List[str],\n tracking:bool=True, tracking_tool='wandb')\n\nTrack the versions of the libraries and the git hash of the repository.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nlibraries_to_track\nList\n\n\n\n\ntracking\nbool\nTrue\n\n\n\ntracking_tool\nstr\nwandb\nCurrenty only wandb is supported\n\n\nReturns\nNone\n\n\n\n\n\n\nsource\n\n\nimport_config\n\n import_config (filename:str, path:str=None)\n\nImport a config file in YAML format\n\n\n\n\n\n\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nfilename\nstr\n\nName of the file, must be a yaml file\n\n\npath\nstr\nNone\nOptional path to the file if it is not in the current directory\n\n\nReturns\nDict\n\n\n\n\n\n\nsource\n\n\ntransfer_additional_target_to_env\n\n transfer_additional_target_to_env (config_env:Dict, config_agent:Dict)\n\nTransfer the lag window from the agent configuration to the environment configuration\n\n\n\n\nType\nDetails\n\n\n\n\nconfig_env\nDict\n\n\n\nconfig_agent\nDict\n\n\n\nReturns\nNone\n\n\n\n\n\nsource\n\n\ntransfer_lag_window_to_env\n\n transfer_lag_window_to_env (config_env:Dict, config_agent:Dict)\n\nTransfer the lag window from the agent configuration to the environment configuration\n\n\n\n\nType\nDetails\n\n\n\n\nconfig_env\nDict\n\n\n\nconfig_agent\nDict\n\n\n\nReturns\nNone", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#import-data", + "href": "40_experiments/meta_experiment_functions.html#import-data", + "title": "Meta experiment functions", + "section": "Import data", + "text": "Import data\n\nImport data from the ddop package\n\n\nsource\n\nget_ddop_data\n\n get_ddop_data (config_env:Dict, overwrite:bool=False)\n\nStandard function to load data provided by the ddop package\n\nsource\n\n\ndownload_data\n\n download_data (config_env:Dict, overwrite:bool=False)\n\nDownload standard dataset from ddop repository using the DatasetLoader class\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\nconfig_env\nDict\n\n\n\n\noverwrite\nbool\nFalse\n\n\n\nReturns\nTuple\n\n\n\n\n\n\nsource\n\n\nset_indices\n\n set_indices (config_env:Dict, X:numpy.ndarray)\n\nSet the indices for the validation and test set\n\n\n\n\nType\nDetails\n\n\n\n\nconfig_env\nDict\n\n\n\nX\nndarray\n\n\n\nReturns\nTuple", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#set-up-environment", + "href": "40_experiments/meta_experiment_functions.html#set-up-environment", + "title": "Meta experiment functions", + "section": "Set up environment", + "text": "Set up environment\n\nSome functions to set-up the environment\n\n\nsource\n\nset_up_env\n\n set_up_env (env_class, raw_data:Tuple, val_index_start:int,\n test_index_start:int, config_env:Dict, postprocessors:List)\n\nSet up the environment\n\n\n\n\nType\nDetails\n\n\n\n\nenv_class\n\n\n\n\nraw_data\nTuple\n\n\n\nval_index_start\nint\n\n\n\ntest_index_start\nint\n\n\n\nconfig_env\nDict\n\n\n\npostprocessors\nList\n\n\n\nReturns\nobject", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#set-up-training", + "href": "40_experiments/meta_experiment_functions.html#set-up-training", + "title": "Meta experiment functions", + "section": "Set up training", + "text": "Set up training\n\nSome functions to set-up the environment\n\n\nsource\n\nset_up_earlystoppinghandler\n\n set_up_earlystoppinghandler (config_train:Dict)\n\nSet up the early stopping handler\n\n\n\n\nType\nDetails\n\n\n\n\nconfig_train\nDict\n\n\n\nReturns\nobject", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#testing", + "href": "40_experiments/meta_experiment_functions.html#testing", + "title": "Meta experiment functions", + "section": "Testing", + "text": "Testing\n\nSome functions to test the final model.\n\n\nsource\n\nprep_and_run_test\n\n prep_and_run_test (agent, environment, agent_dir:str=None,\n save_dataset:bool=True, save_features:bool=False,\n dataset_dir:str=None, eval_step_info=False,\n tracking='wandb')\n\nTest the agent in the environment.", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#clean-up", + "href": "40_experiments/meta_experiment_functions.html#clean-up", + "title": "Meta experiment functions", + "section": "Clean-up", + "text": "Clean-up\n\nFunction to clean-up the experiment script\n\n\nsource\n\nclean_up\n\n clean_up (agent, environment)\n\nClean up agent and environment to free up GPU memory", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "40_experiments/meta_experiment_functions.html#helper-functions", + "href": "40_experiments/meta_experiment_functions.html#helper-functions", + "title": "Meta experiment functions", + "section": "Helper functions", + "text": "Helper functions\n\nSome functions that are needed to run an experiment\n\n\nsource\n\nselect_agent\n\n select_agent (agent_name:str)\n\nSelect an agent class from a list of agent names and return the class\n\n\n\n\nType\nDetails\n\n\n\n\nagent_name\nstr\n\n\n\nReturns\ntype\n\n\n\n\n\nsource\n\n\nmerge_with_namespace\n\n merge_with_namespace (target_dict, source_dict, target_dict_name)\n\n*Merge source_dict into target_dict, using the keys as namespaces. For example, if target_dict_name is “agent”, the key “agent-epsilon” in source_dict will be merged into target_dict[“epsilon”]. The function is to merge hyperparameters from a config file with the default hyperparameters from the yaml files\nArgs: target_dict (dict): Target dictionary source_dict (dict): Source dictionary target_dict_name (str): Name of the target dictionary\nReturns: dict: Merged dictionary*", + "crumbs": [ + "Experiment functions", + "Meta experiment functions" + ] + }, + { + "objectID": "90_datasets/meta_kaggle_m5.html", + "href": "90_datasets/meta_kaggle_m5.html", + "title": "Dataset Preparation for Kaggle M5 dataset for Meta-Learning", + "section": "", + "text": "source\n\nKaggleM5DatasetLoader\n\n KaggleM5DatasetLoader (data_path, overwrite=False,\n product_as_feature=False)\n\nClass to download the Kaggle M5 dataset and apply some preprocessing steps to prepare it for application in inventory management.\n\nrun_test = False\nif run_test:\n data_path = \"/Users/magnus/Documents/02_PhD/Reinforcement_Learning/general_purpose_drl/Newsvendor/kaggle_data\" # For testing purposes, please specify the path to the data on your machine\n if data_path is not None:\n loader = KaggleM5DatasetLoader(data_path, overwrite=False, product_as_feature=False)\n demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()\n\nINFO:root:Using existing data from disk\nINFO:root:Importing data\nINFO:root:Preprocessing data\nINFO:root:--Creating catogory mapping and features\nINFO:root:--Preparing sales time series data\nINFO:root:--Preparing calendric information\nINFO:root:--Preparing snap features\nINFO:root:--Preparing price information\nINFO:root:--Creating indicator table if products are available for purchase\nINFO:root:--Preparing final outputs and ensure consistency of time and feature dimensions", + "crumbs": [ + "Datasets", + "Dataset Preparation for Kaggle M5 dataset for Meta-Learning" + ] + }, + { + "objectID": "90_datasets/meta_bakery.html", + "href": "90_datasets/meta_bakery.html", + "title": "Dataset Preparation for Bakery dataset for Meta-Learning", + "section": "", + "text": "source\n\nBakeryDatasetLoader\n\n BakeryDatasetLoader (data_path, overwrite=False,\n product_as_feature=False, store_as_features=False)\n\nClass to download the Kaggle M5 dataset and apply some preprocessing steps to prepare it for application in inventory management.\n\nrun_test = True\nif run_test:\n data_path = \"/Users/magnus/Documents/02_PhD/03_Newsvendor_foundation_model/experiments/datasets/raw/bakery\" # For testing purposes, please specify the path to the data on your machine\n if data_path is not None:\n loader = BakeryDatasetLoader(data_path, overwrite=False, product_as_feature=False)\n demand, SKU_features, time_features, time_SKU_features, mask = loader.load_dataset()\n\nINFO:root:Importing data\nINFO:root:Preprocessing data\nINFO:root:--Creating catogory mapping and features\nINFO:root:--Preparing calendric information\nINFO:root:--Preparing state-specific features\n\n\n date weekday month year\n0 2016-01-02 FRI JAN 2016\n1 2016-01-03 SAT JAN 2016\n2 2016-01-04 SUN JAN 2016\n3 2016-01-05 MON JAN 2016\n4 2016-01-06 TUE JAN 2016\n... ... ... ... ...\n1210 2019-04-26 THU APR 2019\n1211 2019-04-27 FRI APR 2019\n1212 2019-04-28 SAT APR 2019\n1213 2019-04-29 SUN APR 2019\n1214 2019-04-30 MON APR 2019\n\n[1215 rows x 4 columns]\n date weekday month year trend\n0 2016-01-02 FRI JAN 2016 0\n1 2016-01-03 SAT JAN 2016 1\n2 2016-01-04 SUN JAN 2016 2\n3 2016-01-05 MON JAN 2016 3\n4 2016-01-06 TUE JAN 2016 4\n... ... ... ... ... ...\n1210 2019-04-26 THU APR 2019 1210\n1211 2019-04-27 FRI APR 2019 1211\n1212 2019-04-28 SAT APR 2019 1212\n1213 2019-04-29 SUN APR 2019 1213\n1214 2019-04-30 MON APR 2019 1214\n\n[1215 rows x 5 columns]\n\n\n\ndemand", + "crumbs": [ + "Datasets", + "Dataset Preparation for Bakery dataset for Meta-Learning" + ] + }, + { + "objectID": "10_dataloaders/base_dataloader.html", + "href": "10_dataloaders/base_dataloader.html", + "title": "Base dataloader", + "section": "", + "text": "source", + "crumbs": [ + "Dataloaders", + "Base dataloader" + ] + }, + { + "objectID": "10_dataloaders/base_dataloader.html#basedataloader", + "href": "10_dataloaders/base_dataloader.html#basedataloader", + "title": "Base dataloader", + "section": "BaseDataLoader", + "text": "BaseDataLoader\n\n BaseDataLoader ()\n\nBase class for data loaders. The idea of the data loader is to provide all external information to the environment (including lagged data, demand etc.). Internal data influenced by past decisions (like inventory levels) is to be added from within the environment\nTrain-Val-Test split:\n\nThe dataloader contains all data, including the training, validation and test sets.\nRetrieval of the dataset types is achieved by setting the internal state to train, validation or test using appropriate functions. Then the index will automatically be adjusted to the correct dataset (see below on data retrieval).\nDuring training, both the agent and experiment function may have to know the length of the dataset. Therefore, the functions len_train, len_val and len_test with decorator @property must be defined\n\nData retrieval:\n\nData retrieval is done with the ___getitem___ function. The function takes an index and returns the data at that index, typically as and X and Y pair.\nFor non-distribution-based dataloaders, the __init__ function must have arguments val_index_start and test_index_start from which the attributes val_index_start and test_index_start and train_index_endare set. The __getitem__ function must then check the index and return the correct data based on the internal state of the dataloader.\n\n\nsource\n\nBaseDataLoader.__len__\n\n BaseDataLoader.__len__ ()\n\nReturns the length of the dataset. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the dataset.\n\nsource\n\n\nBaseDataLoader.__getitem__\n\n BaseDataLoader.__getitem__ (idx)\n\nReturns always a tuple of X and Y data. If no X data is available, return None.\n\nsource\n\n\nBaseDataLoader.X_shape\n\n BaseDataLoader.X_shape ()\n\nReturns the shape of the X data. It should follow the format (n_samples, n_features). If the data has a time dimension with a fixed length, the shape should be (n_samples, n_time_steps, n_features). If the data is generated from a distribtition, n_samples should be set to 1.\n\nsource\n\n\nBaseDataLoader.Y_shape\n\n BaseDataLoader.Y_shape ()\n\nReturns the shape of the Y data. It should follow the format (n_samples, n_SKUs). If the variable of interst is only a single SKU, the shape should be (n_samples, 1). If the data is generated from a distribtition, n_samples should be set to 1.\n\nsource\n\n\nBaseDataLoader.get_all_X\n\n BaseDataLoader.get_all_X (dataset_type:str='train')\n\nReturns the entire features dataset. If no X data is available, return None. Return either the train, val, test, or all data.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataset_type\nstr\ntrain\ncan be ‘train’, ‘val’, ‘test’, ‘all’\n\n\n\n\nsource\n\n\nBaseDataLoader.get_all_Y\n\n BaseDataLoader.get_all_Y (dataset_type:str='train')\n\nReturns the entire target dataset. If no Y data is available, return None. Return either the train, val, test, or all data.\n\n\n\n\nType\nDefault\nDetails\n\n\n\n\ndataset_type\nstr\ntrain\ncan be ‘train’, ‘val’, ‘test’, ‘all’\n\n\n\n\nsource\n\n\nBaseDataLoader.len_train\n\n BaseDataLoader.len_train ()\n\nReturns the length of the training set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the training set.\n\nsource\n\n\nBaseDataLoader.len_val\n\n BaseDataLoader.len_val ()\n\n*Returns the length of the validation set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the validation set.\nIf no valiation set is defined, raise an error.*\n\nsource\n\n\nBaseDataLoader.len_test\n\n BaseDataLoader.len_test ()\n\n*Returns the length of the test set. For dataloaders based on distributions, this should return an error that the length is not defined, otherwise it should return the number of samples in the test set.\nIf no test set is defined, raise an error.*\n\nsource\n\n\nBaseDataLoader.train\n\n BaseDataLoader.train ()\n\nSet the internal state of the dataloader to train\n\nsource\n\n\nBaseDataLoader.val\n\n BaseDataLoader.val ()\n\nSet the internal state of the dataloader to validation\n\nsource\n\n\nBaseDataLoader.test\n\n BaseDataLoader.test ()\n\nSet the internal state of the dataloader to test", + "crumbs": [ + "Dataloaders", + "Base dataloader" + ] + } +] \ No newline at end of file diff --git a/site_libs/bootstrap/bootstrap-icons.css b/site_libs/bootstrap/bootstrap-icons.css new file mode 100644 index 0000000..285e444 --- /dev/null +++ b/site_libs/bootstrap/bootstrap-icons.css @@ -0,0 +1,2078 @@ +/*! + * Bootstrap Icons v1.11.1 (https://icons.getbootstrap.com/) + * Copyright 2019-2023 The Bootstrap Authors + * Licensed under MIT (https://github.com/twbs/icons/blob/main/LICENSE) + */ + +@font-face { + font-display: block; + font-family: "bootstrap-icons"; + src: +url("./bootstrap-icons.woff?2820a3852bdb9a5832199cc61cec4e65") format("woff"); +} + +.bi::before, +[class^="bi-"]::before, +[class*=" bi-"]::before { + display: inline-block; + font-family: bootstrap-icons !important; + font-style: normal; + font-weight: normal !important; + font-variant: normal; + text-transform: none; + line-height: 1; + vertical-align: -.125em; + -webkit-font-smoothing: antialiased; + -moz-osx-font-smoothing: grayscale; +} + +.bi-123::before { content: "\f67f"; } +.bi-alarm-fill::before { content: "\f101"; } +.bi-alarm::before { content: "\f102"; } +.bi-align-bottom::before { content: "\f103"; } +.bi-align-center::before { content: "\f104"; } +.bi-align-end::before { content: "\f105"; } +.bi-align-middle::before { content: "\f106"; } +.bi-align-start::before { content: "\f107"; } +.bi-align-top::before { content: "\f108"; } +.bi-alt::before { content: "\f109"; } +.bi-app-indicator::before { content: "\f10a"; } +.bi-app::before { content: "\f10b"; } +.bi-archive-fill::before { content: "\f10c"; } +.bi-archive::before { content: "\f10d"; } +.bi-arrow-90deg-down::before { content: "\f10e"; } +.bi-arrow-90deg-left::before { content: "\f10f"; } +.bi-arrow-90deg-right::before { content: "\f110"; } +.bi-arrow-90deg-up::before { content: "\f111"; } +.bi-arrow-bar-down::before { content: "\f112"; } +.bi-arrow-bar-left::before { content: "\f113"; } +.bi-arrow-bar-right::before { content: "\f114"; } +.bi-arrow-bar-up::before { content: "\f115"; } +.bi-arrow-clockwise::before { content: "\f116"; } +.bi-arrow-counterclockwise::before { content: "\f117"; } +.bi-arrow-down-circle-fill::before { content: "\f118"; } +.bi-arrow-down-circle::before { content: "\f119"; } +.bi-arrow-down-left-circle-fill::before { content: "\f11a"; } +.bi-arrow-down-left-circle::before { content: "\f11b"; } +.bi-arrow-down-left-square-fill::before { content: "\f11c"; } +.bi-arrow-down-left-square::before { content: "\f11d"; } +.bi-arrow-down-left::before { content: "\f11e"; } +.bi-arrow-down-right-circle-fill::before { content: "\f11f"; } +.bi-arrow-down-right-circle::before { content: "\f120"; } +.bi-arrow-down-right-square-fill::before { content: "\f121"; } +.bi-arrow-down-right-square::before { content: "\f122"; } +.bi-arrow-down-right::before { content: "\f123"; } +.bi-arrow-down-short::before { content: "\f124"; } +.bi-arrow-down-square-fill::before { content: "\f125"; } +.bi-arrow-down-square::before { content: "\f126"; } +.bi-arrow-down-up::before { content: "\f127"; } +.bi-arrow-down::before { content: "\f128"; } +.bi-arrow-left-circle-fill::before { content: "\f129"; } +.bi-arrow-left-circle::before { content: "\f12a"; } +.bi-arrow-left-right::before { content: "\f12b"; } +.bi-arrow-left-short::before { content: "\f12c"; } +.bi-arrow-left-square-fill::before { content: "\f12d"; } +.bi-arrow-left-square::before { content: "\f12e"; } +.bi-arrow-left::before { content: "\f12f"; } +.bi-arrow-repeat::before { content: "\f130"; } +.bi-arrow-return-left::before { content: "\f131"; } +.bi-arrow-return-right::before { content: "\f132"; } +.bi-arrow-right-circle-fill::before { content: "\f133"; } +.bi-arrow-right-circle::before { content: "\f134"; } +.bi-arrow-right-short::before { content: "\f135"; } +.bi-arrow-right-square-fill::before { content: "\f136"; } +.bi-arrow-right-square::before { content: "\f137"; } +.bi-arrow-right::before { content: "\f138"; } +.bi-arrow-up-circle-fill::before { content: "\f139"; } +.bi-arrow-up-circle::before { content: "\f13a"; } +.bi-arrow-up-left-circle-fill::before { content: "\f13b"; } +.bi-arrow-up-left-circle::before { content: "\f13c"; } +.bi-arrow-up-left-square-fill::before { content: "\f13d"; } +.bi-arrow-up-left-square::before { content: "\f13e"; } +.bi-arrow-up-left::before { content: "\f13f"; } +.bi-arrow-up-right-circle-fill::before { content: "\f140"; } +.bi-arrow-up-right-circle::before { content: "\f141"; } +.bi-arrow-up-right-square-fill::before { content: "\f142"; } +.bi-arrow-up-right-square::before { content: "\f143"; } +.bi-arrow-up-right::before { content: "\f144"; } +.bi-arrow-up-short::before { content: "\f145"; } +.bi-arrow-up-square-fill::before { content: "\f146"; } +.bi-arrow-up-square::before { content: "\f147"; } +.bi-arrow-up::before { content: "\f148"; } +.bi-arrows-angle-contract::before { content: "\f149"; } +.bi-arrows-angle-expand::before { content: "\f14a"; } +.bi-arrows-collapse::before { content: "\f14b"; } +.bi-arrows-expand::before { content: "\f14c"; } +.bi-arrows-fullscreen::before { content: "\f14d"; } +.bi-arrows-move::before { content: "\f14e"; } +.bi-aspect-ratio-fill::before { content: "\f14f"; } +.bi-aspect-ratio::before { content: "\f150"; } +.bi-asterisk::before { content: "\f151"; } +.bi-at::before { content: "\f152"; } +.bi-award-fill::before { content: "\f153"; } +.bi-award::before { content: "\f154"; } +.bi-back::before { content: "\f155"; } +.bi-backspace-fill::before { content: "\f156"; } +.bi-backspace-reverse-fill::before { content: "\f157"; } +.bi-backspace-reverse::before { content: "\f158"; } +.bi-backspace::before { content: "\f159"; } +.bi-badge-3d-fill::before { content: "\f15a"; } +.bi-badge-3d::before { content: "\f15b"; } +.bi-badge-4k-fill::before { content: "\f15c"; } +.bi-badge-4k::before { content: "\f15d"; } +.bi-badge-8k-fill::before { content: "\f15e"; } +.bi-badge-8k::before { content: "\f15f"; } +.bi-badge-ad-fill::before { content: "\f160"; } +.bi-badge-ad::before { content: "\f161"; } +.bi-badge-ar-fill::before { content: "\f162"; } +.bi-badge-ar::before { content: "\f163"; } +.bi-badge-cc-fill::before { content: "\f164"; } +.bi-badge-cc::before { content: "\f165"; } +.bi-badge-hd-fill::before { content: "\f166"; } +.bi-badge-hd::before { content: "\f167"; } +.bi-badge-tm-fill::before { content: "\f168"; } +.bi-badge-tm::before { content: "\f169"; } +.bi-badge-vo-fill::before { content: "\f16a"; } +.bi-badge-vo::before { content: "\f16b"; } +.bi-badge-vr-fill::before { content: "\f16c"; } +.bi-badge-vr::before { content: "\f16d"; } +.bi-badge-wc-fill::before { content: "\f16e"; } +.bi-badge-wc::before { content: "\f16f"; } +.bi-bag-check-fill::before { content: "\f170"; } +.bi-bag-check::before { content: "\f171"; } +.bi-bag-dash-fill::before { content: "\f172"; } +.bi-bag-dash::before { content: "\f173"; } +.bi-bag-fill::before { content: "\f174"; } +.bi-bag-plus-fill::before { content: "\f175"; } +.bi-bag-plus::before { content: "\f176"; } +.bi-bag-x-fill::before { content: "\f177"; } +.bi-bag-x::before { content: "\f178"; } +.bi-bag::before { content: "\f179"; } +.bi-bar-chart-fill::before { content: "\f17a"; } +.bi-bar-chart-line-fill::before { content: "\f17b"; } +.bi-bar-chart-line::before { content: "\f17c"; } +.bi-bar-chart-steps::before { content: "\f17d"; } +.bi-bar-chart::before { content: "\f17e"; } +.bi-basket-fill::before { content: "\f17f"; } +.bi-basket::before { content: "\f180"; } +.bi-basket2-fill::before { content: "\f181"; } +.bi-basket2::before { content: "\f182"; } +.bi-basket3-fill::before { content: "\f183"; } +.bi-basket3::before { content: "\f184"; } +.bi-battery-charging::before { content: "\f185"; } +.bi-battery-full::before { content: "\f186"; } +.bi-battery-half::before { content: "\f187"; } +.bi-battery::before { content: "\f188"; } +.bi-bell-fill::before { content: "\f189"; } +.bi-bell::before { content: "\f18a"; } +.bi-bezier::before { content: "\f18b"; } +.bi-bezier2::before { content: "\f18c"; } +.bi-bicycle::before { content: "\f18d"; } +.bi-binoculars-fill::before { content: "\f18e"; } +.bi-binoculars::before { content: "\f18f"; } +.bi-blockquote-left::before { content: "\f190"; } +.bi-blockquote-right::before { content: "\f191"; } +.bi-book-fill::before { content: "\f192"; } +.bi-book-half::before { content: "\f193"; } +.bi-book::before { content: "\f194"; } +.bi-bookmark-check-fill::before { content: "\f195"; } +.bi-bookmark-check::before { content: "\f196"; } +.bi-bookmark-dash-fill::before { content: "\f197"; } +.bi-bookmark-dash::before { content: "\f198"; } +.bi-bookmark-fill::before { content: "\f199"; } +.bi-bookmark-heart-fill::before { content: "\f19a"; } +.bi-bookmark-heart::before { content: "\f19b"; } +.bi-bookmark-plus-fill::before { content: "\f19c"; } +.bi-bookmark-plus::before { content: "\f19d"; } +.bi-bookmark-star-fill::before { content: "\f19e"; } +.bi-bookmark-star::before { content: "\f19f"; } +.bi-bookmark-x-fill::before { content: "\f1a0"; } +.bi-bookmark-x::before { content: "\f1a1"; } +.bi-bookmark::before { content: "\f1a2"; } +.bi-bookmarks-fill::before { content: "\f1a3"; } +.bi-bookmarks::before { content: "\f1a4"; } +.bi-bookshelf::before { content: "\f1a5"; } +.bi-bootstrap-fill::before { content: "\f1a6"; } +.bi-bootstrap-reboot::before { content: "\f1a7"; } +.bi-bootstrap::before { content: "\f1a8"; } +.bi-border-all::before { content: "\f1a9"; } +.bi-border-bottom::before { content: "\f1aa"; } +.bi-border-center::before { content: "\f1ab"; } +.bi-border-inner::before { content: "\f1ac"; } +.bi-border-left::before { content: "\f1ad"; } +.bi-border-middle::before { content: "\f1ae"; } +.bi-border-outer::before { content: "\f1af"; } +.bi-border-right::before { content: "\f1b0"; } +.bi-border-style::before { content: "\f1b1"; } +.bi-border-top::before { content: "\f1b2"; } +.bi-border-width::before { content: "\f1b3"; } +.bi-border::before { content: "\f1b4"; } +.bi-bounding-box-circles::before { content: "\f1b5"; } +.bi-bounding-box::before { content: "\f1b6"; } +.bi-box-arrow-down-left::before { content: "\f1b7"; } +.bi-box-arrow-down-right::before { content: "\f1b8"; } +.bi-box-arrow-down::before { content: "\f1b9"; } +.bi-box-arrow-in-down-left::before { content: "\f1ba"; } +.bi-box-arrow-in-down-right::before { content: "\f1bb"; } +.bi-box-arrow-in-down::before { content: "\f1bc"; } +.bi-box-arrow-in-left::before { content: "\f1bd"; } +.bi-box-arrow-in-right::before { content: "\f1be"; } +.bi-box-arrow-in-up-left::before { content: "\f1bf"; } +.bi-box-arrow-in-up-right::before { content: "\f1c0"; } +.bi-box-arrow-in-up::before { content: "\f1c1"; } +.bi-box-arrow-left::before { content: "\f1c2"; } +.bi-box-arrow-right::before { content: "\f1c3"; } +.bi-box-arrow-up-left::before { content: "\f1c4"; } +.bi-box-arrow-up-right::before { content: "\f1c5"; } +.bi-box-arrow-up::before { content: "\f1c6"; } +.bi-box-seam::before { content: "\f1c7"; } +.bi-box::before { content: "\f1c8"; } +.bi-braces::before { content: "\f1c9"; } +.bi-bricks::before { content: "\f1ca"; } +.bi-briefcase-fill::before { content: "\f1cb"; } +.bi-briefcase::before { content: "\f1cc"; } +.bi-brightness-alt-high-fill::before { content: "\f1cd"; } +.bi-brightness-alt-high::before { content: "\f1ce"; } +.bi-brightness-alt-low-fill::before { content: "\f1cf"; } +.bi-brightness-alt-low::before { content: "\f1d0"; } +.bi-brightness-high-fill::before { content: "\f1d1"; } +.bi-brightness-high::before { content: "\f1d2"; } +.bi-brightness-low-fill::before { content: "\f1d3"; } +.bi-brightness-low::before { content: "\f1d4"; } +.bi-broadcast-pin::before { content: "\f1d5"; } +.bi-broadcast::before { content: "\f1d6"; } +.bi-brush-fill::before { content: "\f1d7"; } +.bi-brush::before { content: "\f1d8"; } +.bi-bucket-fill::before { content: "\f1d9"; } +.bi-bucket::before { content: "\f1da"; } +.bi-bug-fill::before { content: "\f1db"; } +.bi-bug::before { content: "\f1dc"; } +.bi-building::before { content: "\f1dd"; } +.bi-bullseye::before { content: "\f1de"; } +.bi-calculator-fill::before { content: "\f1df"; } +.bi-calculator::before { content: "\f1e0"; } +.bi-calendar-check-fill::before { content: "\f1e1"; } +.bi-calendar-check::before { content: "\f1e2"; } +.bi-calendar-date-fill::before { content: "\f1e3"; } +.bi-calendar-date::before { content: "\f1e4"; } +.bi-calendar-day-fill::before { content: "\f1e5"; } +.bi-calendar-day::before { content: "\f1e6"; } +.bi-calendar-event-fill::before { content: "\f1e7"; } +.bi-calendar-event::before { content: "\f1e8"; } +.bi-calendar-fill::before { content: "\f1e9"; } +.bi-calendar-minus-fill::before { content: "\f1ea"; } +.bi-calendar-minus::before { content: "\f1eb"; } +.bi-calendar-month-fill::before { content: "\f1ec"; } +.bi-calendar-month::before { content: "\f1ed"; } +.bi-calendar-plus-fill::before { content: "\f1ee"; } +.bi-calendar-plus::before { content: "\f1ef"; } +.bi-calendar-range-fill::before { content: "\f1f0"; } +.bi-calendar-range::before { content: "\f1f1"; } +.bi-calendar-week-fill::before { content: "\f1f2"; } +.bi-calendar-week::before { content: "\f1f3"; } +.bi-calendar-x-fill::before { content: "\f1f4"; } +.bi-calendar-x::before { content: "\f1f5"; } +.bi-calendar::before { content: "\f1f6"; } +.bi-calendar2-check-fill::before { content: "\f1f7"; } +.bi-calendar2-check::before { content: "\f1f8"; } +.bi-calendar2-date-fill::before { content: "\f1f9"; } +.bi-calendar2-date::before { content: "\f1fa"; } +.bi-calendar2-day-fill::before { content: "\f1fb"; } +.bi-calendar2-day::before { content: "\f1fc"; } +.bi-calendar2-event-fill::before { content: "\f1fd"; } +.bi-calendar2-event::before { content: "\f1fe"; } +.bi-calendar2-fill::before { content: "\f1ff"; } +.bi-calendar2-minus-fill::before { content: "\f200"; } +.bi-calendar2-minus::before { content: "\f201"; } +.bi-calendar2-month-fill::before { content: "\f202"; } +.bi-calendar2-month::before { content: "\f203"; } +.bi-calendar2-plus-fill::before { content: "\f204"; } +.bi-calendar2-plus::before { content: "\f205"; } +.bi-calendar2-range-fill::before { content: "\f206"; } +.bi-calendar2-range::before { content: "\f207"; } +.bi-calendar2-week-fill::before { content: "\f208"; } +.bi-calendar2-week::before { content: "\f209"; } +.bi-calendar2-x-fill::before { content: "\f20a"; } +.bi-calendar2-x::before { content: "\f20b"; } +.bi-calendar2::before { content: "\f20c"; } +.bi-calendar3-event-fill::before { content: "\f20d"; } +.bi-calendar3-event::before { content: "\f20e"; } +.bi-calendar3-fill::before { content: "\f20f"; } +.bi-calendar3-range-fill::before { content: "\f210"; } +.bi-calendar3-range::before { content: "\f211"; } +.bi-calendar3-week-fill::before { content: "\f212"; } +.bi-calendar3-week::before { content: "\f213"; } +.bi-calendar3::before { content: "\f214"; } +.bi-calendar4-event::before { content: "\f215"; } +.bi-calendar4-range::before { content: "\f216"; } +.bi-calendar4-week::before { content: "\f217"; } +.bi-calendar4::before { content: "\f218"; } +.bi-camera-fill::before { content: "\f219"; } +.bi-camera-reels-fill::before { content: "\f21a"; } +.bi-camera-reels::before { content: "\f21b"; } +.bi-camera-video-fill::before { content: "\f21c"; } +.bi-camera-video-off-fill::before { content: "\f21d"; } +.bi-camera-video-off::before { content: "\f21e"; } +.bi-camera-video::before { content: "\f21f"; } +.bi-camera::before { content: "\f220"; } +.bi-camera2::before { content: "\f221"; } +.bi-capslock-fill::before { content: "\f222"; } +.bi-capslock::before { content: "\f223"; } +.bi-card-checklist::before { content: "\f224"; } +.bi-card-heading::before { content: "\f225"; } +.bi-card-image::before { content: "\f226"; } +.bi-card-list::before { content: "\f227"; } +.bi-card-text::before { content: "\f228"; } +.bi-caret-down-fill::before { content: "\f229"; } +.bi-caret-down-square-fill::before { content: "\f22a"; } +.bi-caret-down-square::before { content: "\f22b"; } +.bi-caret-down::before { content: "\f22c"; } +.bi-caret-left-fill::before { content: "\f22d"; } +.bi-caret-left-square-fill::before { content: "\f22e"; } +.bi-caret-left-square::before { content: "\f22f"; } +.bi-caret-left::before { content: "\f230"; } +.bi-caret-right-fill::before { content: "\f231"; } +.bi-caret-right-square-fill::before { content: "\f232"; } +.bi-caret-right-square::before { content: "\f233"; } +.bi-caret-right::before { content: "\f234"; } +.bi-caret-up-fill::before { content: "\f235"; } +.bi-caret-up-square-fill::before { content: "\f236"; } +.bi-caret-up-square::before { content: "\f237"; } +.bi-caret-up::before { content: "\f238"; } +.bi-cart-check-fill::before { content: "\f239"; } +.bi-cart-check::before { content: "\f23a"; } +.bi-cart-dash-fill::before { content: "\f23b"; } +.bi-cart-dash::before { content: "\f23c"; } +.bi-cart-fill::before { content: "\f23d"; } +.bi-cart-plus-fill::before { content: "\f23e"; } +.bi-cart-plus::before { content: "\f23f"; } +.bi-cart-x-fill::before { content: "\f240"; } +.bi-cart-x::before { content: "\f241"; } +.bi-cart::before { content: "\f242"; } +.bi-cart2::before { content: "\f243"; } +.bi-cart3::before { content: "\f244"; } +.bi-cart4::before { content: "\f245"; } +.bi-cash-stack::before { content: "\f246"; } +.bi-cash::before { content: "\f247"; } +.bi-cast::before { content: "\f248"; } +.bi-chat-dots-fill::before { content: "\f249"; } +.bi-chat-dots::before { content: "\f24a"; } +.bi-chat-fill::before { content: "\f24b"; } +.bi-chat-left-dots-fill::before { content: "\f24c"; } +.bi-chat-left-dots::before { content: "\f24d"; } +.bi-chat-left-fill::before { content: "\f24e"; } +.bi-chat-left-quote-fill::before { content: "\f24f"; } +.bi-chat-left-quote::before { content: "\f250"; } +.bi-chat-left-text-fill::before { content: "\f251"; } +.bi-chat-left-text::before { content: "\f252"; } +.bi-chat-left::before { content: "\f253"; } +.bi-chat-quote-fill::before { content: "\f254"; } +.bi-chat-quote::before { content: "\f255"; } +.bi-chat-right-dots-fill::before { content: "\f256"; } +.bi-chat-right-dots::before { content: "\f257"; } +.bi-chat-right-fill::before { content: "\f258"; } +.bi-chat-right-quote-fill::before { content: "\f259"; } +.bi-chat-right-quote::before { content: "\f25a"; } +.bi-chat-right-text-fill::before { content: "\f25b"; } +.bi-chat-right-text::before { content: "\f25c"; } +.bi-chat-right::before { content: "\f25d"; } +.bi-chat-square-dots-fill::before { content: "\f25e"; } +.bi-chat-square-dots::before { content: "\f25f"; } +.bi-chat-square-fill::before { content: "\f260"; } +.bi-chat-square-quote-fill::before { content: "\f261"; } +.bi-chat-square-quote::before { content: "\f262"; } +.bi-chat-square-text-fill::before { content: "\f263"; } +.bi-chat-square-text::before { content: "\f264"; } +.bi-chat-square::before { content: "\f265"; } +.bi-chat-text-fill::before { content: "\f266"; } +.bi-chat-text::before { content: "\f267"; } +.bi-chat::before { content: "\f268"; } +.bi-check-all::before { content: "\f269"; } +.bi-check-circle-fill::before { content: "\f26a"; } +.bi-check-circle::before { content: "\f26b"; } +.bi-check-square-fill::before { content: "\f26c"; } +.bi-check-square::before { content: "\f26d"; } +.bi-check::before { content: "\f26e"; } +.bi-check2-all::before { content: "\f26f"; } +.bi-check2-circle::before { content: "\f270"; } +.bi-check2-square::before { content: "\f271"; } +.bi-check2::before { content: "\f272"; } +.bi-chevron-bar-contract::before { content: "\f273"; } +.bi-chevron-bar-down::before { content: "\f274"; } +.bi-chevron-bar-expand::before { content: "\f275"; } +.bi-chevron-bar-left::before { content: "\f276"; } +.bi-chevron-bar-right::before { content: "\f277"; } +.bi-chevron-bar-up::before { content: "\f278"; } +.bi-chevron-compact-down::before { content: "\f279"; } +.bi-chevron-compact-left::before { content: "\f27a"; } +.bi-chevron-compact-right::before { content: "\f27b"; } +.bi-chevron-compact-up::before { content: "\f27c"; } +.bi-chevron-contract::before { content: "\f27d"; } +.bi-chevron-double-down::before { content: "\f27e"; } +.bi-chevron-double-left::before { content: "\f27f"; } +.bi-chevron-double-right::before { content: "\f280"; } +.bi-chevron-double-up::before { content: "\f281"; } +.bi-chevron-down::before { content: "\f282"; } +.bi-chevron-expand::before { content: "\f283"; } +.bi-chevron-left::before { content: "\f284"; } +.bi-chevron-right::before { content: "\f285"; } +.bi-chevron-up::before { content: "\f286"; } +.bi-circle-fill::before { content: "\f287"; } +.bi-circle-half::before { content: "\f288"; } +.bi-circle-square::before { content: "\f289"; } +.bi-circle::before { content: "\f28a"; } +.bi-clipboard-check::before { content: "\f28b"; } +.bi-clipboard-data::before { content: "\f28c"; } +.bi-clipboard-minus::before { content: "\f28d"; } +.bi-clipboard-plus::before { content: "\f28e"; } +.bi-clipboard-x::before { content: "\f28f"; } +.bi-clipboard::before { content: "\f290"; } +.bi-clock-fill::before { content: "\f291"; } +.bi-clock-history::before { content: "\f292"; } +.bi-clock::before { content: "\f293"; } +.bi-cloud-arrow-down-fill::before { content: "\f294"; } +.bi-cloud-arrow-down::before { content: "\f295"; } +.bi-cloud-arrow-up-fill::before { content: "\f296"; } +.bi-cloud-arrow-up::before { content: "\f297"; } +.bi-cloud-check-fill::before { content: "\f298"; } +.bi-cloud-check::before { content: "\f299"; } +.bi-cloud-download-fill::before { content: "\f29a"; } +.bi-cloud-download::before { content: "\f29b"; } +.bi-cloud-drizzle-fill::before { content: "\f29c"; } +.bi-cloud-drizzle::before { content: "\f29d"; } +.bi-cloud-fill::before { content: "\f29e"; } +.bi-cloud-fog-fill::before { content: "\f29f"; } +.bi-cloud-fog::before { content: "\f2a0"; } +.bi-cloud-fog2-fill::before { content: "\f2a1"; } +.bi-cloud-fog2::before { content: "\f2a2"; } +.bi-cloud-hail-fill::before { content: "\f2a3"; } +.bi-cloud-hail::before { content: "\f2a4"; } +.bi-cloud-haze-fill::before { content: "\f2a6"; } +.bi-cloud-haze::before { content: "\f2a7"; } +.bi-cloud-haze2-fill::before { content: "\f2a8"; } +.bi-cloud-lightning-fill::before { content: "\f2a9"; } +.bi-cloud-lightning-rain-fill::before { content: "\f2aa"; } +.bi-cloud-lightning-rain::before { content: "\f2ab"; } +.bi-cloud-lightning::before { content: "\f2ac"; } +.bi-cloud-minus-fill::before { content: "\f2ad"; } +.bi-cloud-minus::before { content: "\f2ae"; } +.bi-cloud-moon-fill::before { content: "\f2af"; } +.bi-cloud-moon::before { content: "\f2b0"; } +.bi-cloud-plus-fill::before { content: "\f2b1"; } +.bi-cloud-plus::before { content: "\f2b2"; } +.bi-cloud-rain-fill::before { content: "\f2b3"; } +.bi-cloud-rain-heavy-fill::before { content: "\f2b4"; } +.bi-cloud-rain-heavy::before { content: "\f2b5"; } +.bi-cloud-rain::before { content: "\f2b6"; } +.bi-cloud-slash-fill::before { content: "\f2b7"; } +.bi-cloud-slash::before { content: "\f2b8"; } +.bi-cloud-sleet-fill::before { content: "\f2b9"; } +.bi-cloud-sleet::before { content: "\f2ba"; } +.bi-cloud-snow-fill::before { content: "\f2bb"; } +.bi-cloud-snow::before { content: "\f2bc"; } +.bi-cloud-sun-fill::before { content: "\f2bd"; } +.bi-cloud-sun::before { content: "\f2be"; } +.bi-cloud-upload-fill::before { content: "\f2bf"; } +.bi-cloud-upload::before { content: "\f2c0"; } +.bi-cloud::before { content: "\f2c1"; } +.bi-clouds-fill::before { content: "\f2c2"; } +.bi-clouds::before { content: "\f2c3"; } +.bi-cloudy-fill::before { content: "\f2c4"; } +.bi-cloudy::before { content: "\f2c5"; } +.bi-code-slash::before { content: "\f2c6"; } +.bi-code-square::before { content: "\f2c7"; } +.bi-code::before { content: "\f2c8"; } +.bi-collection-fill::before { content: "\f2c9"; } +.bi-collection-play-fill::before { content: "\f2ca"; } +.bi-collection-play::before { content: "\f2cb"; } +.bi-collection::before { content: "\f2cc"; } +.bi-columns-gap::before { content: "\f2cd"; } +.bi-columns::before { content: "\f2ce"; } +.bi-command::before { content: "\f2cf"; } +.bi-compass-fill::before { content: "\f2d0"; } +.bi-compass::before { content: "\f2d1"; } +.bi-cone-striped::before { content: "\f2d2"; } +.bi-cone::before { content: "\f2d3"; } +.bi-controller::before { content: "\f2d4"; } +.bi-cpu-fill::before { content: "\f2d5"; } +.bi-cpu::before { content: "\f2d6"; } +.bi-credit-card-2-back-fill::before { content: "\f2d7"; } +.bi-credit-card-2-back::before { content: "\f2d8"; } +.bi-credit-card-2-front-fill::before { content: "\f2d9"; } +.bi-credit-card-2-front::before { content: "\f2da"; } +.bi-credit-card-fill::before { content: "\f2db"; } +.bi-credit-card::before { content: "\f2dc"; } +.bi-crop::before { content: "\f2dd"; } +.bi-cup-fill::before { content: "\f2de"; } +.bi-cup-straw::before { content: "\f2df"; } +.bi-cup::before { content: "\f2e0"; } +.bi-cursor-fill::before { content: "\f2e1"; } +.bi-cursor-text::before { content: "\f2e2"; } +.bi-cursor::before { content: "\f2e3"; } +.bi-dash-circle-dotted::before { content: "\f2e4"; } +.bi-dash-circle-fill::before { content: "\f2e5"; } +.bi-dash-circle::before { content: "\f2e6"; } +.bi-dash-square-dotted::before { content: "\f2e7"; } +.bi-dash-square-fill::before { content: "\f2e8"; } +.bi-dash-square::before { content: "\f2e9"; } +.bi-dash::before { content: "\f2ea"; } +.bi-diagram-2-fill::before { content: "\f2eb"; } +.bi-diagram-2::before { content: "\f2ec"; } +.bi-diagram-3-fill::before { content: "\f2ed"; } +.bi-diagram-3::before { content: "\f2ee"; } +.bi-diamond-fill::before { content: "\f2ef"; } +.bi-diamond-half::before { content: "\f2f0"; } +.bi-diamond::before { content: "\f2f1"; } +.bi-dice-1-fill::before { content: "\f2f2"; } +.bi-dice-1::before { content: "\f2f3"; } +.bi-dice-2-fill::before { content: "\f2f4"; } +.bi-dice-2::before { content: "\f2f5"; } +.bi-dice-3-fill::before { content: "\f2f6"; } +.bi-dice-3::before { content: "\f2f7"; } +.bi-dice-4-fill::before { content: "\f2f8"; } +.bi-dice-4::before { content: "\f2f9"; } +.bi-dice-5-fill::before { content: "\f2fa"; } +.bi-dice-5::before { content: "\f2fb"; } +.bi-dice-6-fill::before { content: "\f2fc"; } +.bi-dice-6::before { content: "\f2fd"; } +.bi-disc-fill::before { content: "\f2fe"; } +.bi-disc::before { content: "\f2ff"; } +.bi-discord::before { content: "\f300"; } +.bi-display-fill::before { content: "\f301"; } +.bi-display::before { content: "\f302"; } +.bi-distribute-horizontal::before { content: "\f303"; } +.bi-distribute-vertical::before { content: "\f304"; } +.bi-door-closed-fill::before { content: "\f305"; } +.bi-door-closed::before { content: "\f306"; } +.bi-door-open-fill::before { content: "\f307"; } +.bi-door-open::before { content: "\f308"; } +.bi-dot::before { content: "\f309"; } +.bi-download::before { content: "\f30a"; } +.bi-droplet-fill::before { content: "\f30b"; } +.bi-droplet-half::before { content: "\f30c"; } +.bi-droplet::before { content: "\f30d"; } +.bi-earbuds::before { content: "\f30e"; } +.bi-easel-fill::before { content: "\f30f"; } +.bi-easel::before { content: "\f310"; } +.bi-egg-fill::before { content: "\f311"; } +.bi-egg-fried::before { content: "\f312"; } +.bi-egg::before { content: "\f313"; } +.bi-eject-fill::before { content: "\f314"; } +.bi-eject::before { content: "\f315"; } +.bi-emoji-angry-fill::before { content: "\f316"; } +.bi-emoji-angry::before { content: "\f317"; } +.bi-emoji-dizzy-fill::before { content: "\f318"; } +.bi-emoji-dizzy::before { content: "\f319"; } +.bi-emoji-expressionless-fill::before { content: "\f31a"; } +.bi-emoji-expressionless::before { content: "\f31b"; } +.bi-emoji-frown-fill::before { content: "\f31c"; } +.bi-emoji-frown::before { content: "\f31d"; } +.bi-emoji-heart-eyes-fill::before { content: "\f31e"; } +.bi-emoji-heart-eyes::before { content: "\f31f"; } +.bi-emoji-laughing-fill::before { content: "\f320"; } +.bi-emoji-laughing::before { content: "\f321"; } +.bi-emoji-neutral-fill::before { content: "\f322"; } +.bi-emoji-neutral::before { content: "\f323"; } +.bi-emoji-smile-fill::before { content: "\f324"; } +.bi-emoji-smile-upside-down-fill::before { content: "\f325"; } +.bi-emoji-smile-upside-down::before { content: "\f326"; } +.bi-emoji-smile::before { content: "\f327"; } +.bi-emoji-sunglasses-fill::before { content: "\f328"; } +.bi-emoji-sunglasses::before { content: "\f329"; } +.bi-emoji-wink-fill::before { content: "\f32a"; } +.bi-emoji-wink::before { content: "\f32b"; } +.bi-envelope-fill::before { content: "\f32c"; } +.bi-envelope-open-fill::before { content: "\f32d"; } +.bi-envelope-open::before { content: "\f32e"; } +.bi-envelope::before { content: "\f32f"; } +.bi-eraser-fill::before { content: "\f330"; } +.bi-eraser::before { content: "\f331"; } +.bi-exclamation-circle-fill::before { content: "\f332"; } +.bi-exclamation-circle::before { content: "\f333"; } +.bi-exclamation-diamond-fill::before { content: "\f334"; } +.bi-exclamation-diamond::before { content: "\f335"; } +.bi-exclamation-octagon-fill::before { content: "\f336"; } +.bi-exclamation-octagon::before { content: "\f337"; } +.bi-exclamation-square-fill::before { content: "\f338"; } +.bi-exclamation-square::before { content: "\f339"; } +.bi-exclamation-triangle-fill::before { content: "\f33a"; } +.bi-exclamation-triangle::before { content: "\f33b"; } +.bi-exclamation::before { content: "\f33c"; } +.bi-exclude::before { content: "\f33d"; } +.bi-eye-fill::before { content: "\f33e"; } +.bi-eye-slash-fill::before { content: "\f33f"; } +.bi-eye-slash::before { content: "\f340"; } +.bi-eye::before { content: "\f341"; } +.bi-eyedropper::before { content: "\f342"; } +.bi-eyeglasses::before { content: "\f343"; } +.bi-facebook::before { content: "\f344"; } +.bi-file-arrow-down-fill::before { content: "\f345"; } +.bi-file-arrow-down::before { content: "\f346"; } +.bi-file-arrow-up-fill::before { content: "\f347"; } +.bi-file-arrow-up::before { content: "\f348"; } +.bi-file-bar-graph-fill::before { content: "\f349"; } +.bi-file-bar-graph::before { content: "\f34a"; } +.bi-file-binary-fill::before { content: "\f34b"; } +.bi-file-binary::before { content: "\f34c"; } +.bi-file-break-fill::before { content: "\f34d"; } +.bi-file-break::before { content: "\f34e"; } +.bi-file-check-fill::before { content: "\f34f"; } +.bi-file-check::before { content: "\f350"; } +.bi-file-code-fill::before { content: "\f351"; } +.bi-file-code::before { content: "\f352"; } +.bi-file-diff-fill::before { content: "\f353"; } +.bi-file-diff::before { content: "\f354"; } +.bi-file-earmark-arrow-down-fill::before { content: "\f355"; } +.bi-file-earmark-arrow-down::before { content: "\f356"; } +.bi-file-earmark-arrow-up-fill::before { content: "\f357"; } +.bi-file-earmark-arrow-up::before { content: "\f358"; } +.bi-file-earmark-bar-graph-fill::before { content: "\f359"; } +.bi-file-earmark-bar-graph::before { content: "\f35a"; } +.bi-file-earmark-binary-fill::before { content: "\f35b"; } +.bi-file-earmark-binary::before { content: "\f35c"; } +.bi-file-earmark-break-fill::before { content: "\f35d"; } +.bi-file-earmark-break::before { content: "\f35e"; } +.bi-file-earmark-check-fill::before { content: "\f35f"; } +.bi-file-earmark-check::before { content: "\f360"; } +.bi-file-earmark-code-fill::before { content: "\f361"; } +.bi-file-earmark-code::before { content: "\f362"; } +.bi-file-earmark-diff-fill::before { content: "\f363"; } +.bi-file-earmark-diff::before { content: "\f364"; } +.bi-file-earmark-easel-fill::before { content: "\f365"; } +.bi-file-earmark-easel::before { content: "\f366"; } +.bi-file-earmark-excel-fill::before { content: "\f367"; } +.bi-file-earmark-excel::before { content: "\f368"; } +.bi-file-earmark-fill::before { content: "\f369"; } +.bi-file-earmark-font-fill::before { content: "\f36a"; } +.bi-file-earmark-font::before { content: "\f36b"; } +.bi-file-earmark-image-fill::before { content: "\f36c"; } +.bi-file-earmark-image::before { content: "\f36d"; } +.bi-file-earmark-lock-fill::before { content: "\f36e"; } +.bi-file-earmark-lock::before { content: "\f36f"; } +.bi-file-earmark-lock2-fill::before { content: "\f370"; } +.bi-file-earmark-lock2::before { content: "\f371"; } +.bi-file-earmark-medical-fill::before { content: "\f372"; } +.bi-file-earmark-medical::before { content: "\f373"; } +.bi-file-earmark-minus-fill::before { content: "\f374"; } +.bi-file-earmark-minus::before { content: "\f375"; } +.bi-file-earmark-music-fill::before { content: "\f376"; } +.bi-file-earmark-music::before { content: "\f377"; } +.bi-file-earmark-person-fill::before { content: "\f378"; } +.bi-file-earmark-person::before { content: "\f379"; } +.bi-file-earmark-play-fill::before { content: "\f37a"; } +.bi-file-earmark-play::before { content: "\f37b"; } +.bi-file-earmark-plus-fill::before { content: "\f37c"; } +.bi-file-earmark-plus::before { content: "\f37d"; } +.bi-file-earmark-post-fill::before { content: "\f37e"; } +.bi-file-earmark-post::before { content: "\f37f"; } +.bi-file-earmark-ppt-fill::before { content: "\f380"; } +.bi-file-earmark-ppt::before { content: "\f381"; } +.bi-file-earmark-richtext-fill::before { content: "\f382"; } +.bi-file-earmark-richtext::before { content: "\f383"; } +.bi-file-earmark-ruled-fill::before { content: "\f384"; } +.bi-file-earmark-ruled::before { content: "\f385"; } +.bi-file-earmark-slides-fill::before { content: "\f386"; } +.bi-file-earmark-slides::before { content: "\f387"; } +.bi-file-earmark-spreadsheet-fill::before { content: "\f388"; } +.bi-file-earmark-spreadsheet::before { content: "\f389"; } +.bi-file-earmark-text-fill::before { content: "\f38a"; } +.bi-file-earmark-text::before { content: "\f38b"; } +.bi-file-earmark-word-fill::before { content: "\f38c"; } +.bi-file-earmark-word::before { content: "\f38d"; } +.bi-file-earmark-x-fill::before { content: "\f38e"; } +.bi-file-earmark-x::before { content: "\f38f"; } +.bi-file-earmark-zip-fill::before { content: "\f390"; } +.bi-file-earmark-zip::before { content: "\f391"; } +.bi-file-earmark::before { content: "\f392"; } +.bi-file-easel-fill::before { content: "\f393"; } +.bi-file-easel::before { content: "\f394"; } +.bi-file-excel-fill::before { content: "\f395"; } +.bi-file-excel::before { content: "\f396"; } +.bi-file-fill::before { content: "\f397"; } +.bi-file-font-fill::before { content: "\f398"; } +.bi-file-font::before { content: "\f399"; } +.bi-file-image-fill::before { content: "\f39a"; } +.bi-file-image::before { content: "\f39b"; } +.bi-file-lock-fill::before { content: "\f39c"; } +.bi-file-lock::before { content: "\f39d"; } +.bi-file-lock2-fill::before { content: "\f39e"; } +.bi-file-lock2::before { content: "\f39f"; } +.bi-file-medical-fill::before { content: "\f3a0"; } +.bi-file-medical::before { content: "\f3a1"; } +.bi-file-minus-fill::before { content: "\f3a2"; } +.bi-file-minus::before { content: "\f3a3"; } +.bi-file-music-fill::before { content: "\f3a4"; } +.bi-file-music::before { content: "\f3a5"; } +.bi-file-person-fill::before { content: "\f3a6"; } +.bi-file-person::before { content: "\f3a7"; } +.bi-file-play-fill::before { content: "\f3a8"; } +.bi-file-play::before { content: "\f3a9"; } +.bi-file-plus-fill::before { content: "\f3aa"; } +.bi-file-plus::before { content: "\f3ab"; } +.bi-file-post-fill::before { content: "\f3ac"; } +.bi-file-post::before { content: "\f3ad"; } +.bi-file-ppt-fill::before { content: "\f3ae"; } +.bi-file-ppt::before { content: "\f3af"; } +.bi-file-richtext-fill::before { content: "\f3b0"; } +.bi-file-richtext::before { content: "\f3b1"; } +.bi-file-ruled-fill::before { content: "\f3b2"; } +.bi-file-ruled::before { content: "\f3b3"; } +.bi-file-slides-fill::before { content: "\f3b4"; } +.bi-file-slides::before { content: "\f3b5"; } +.bi-file-spreadsheet-fill::before { content: "\f3b6"; } +.bi-file-spreadsheet::before { content: "\f3b7"; } +.bi-file-text-fill::before { content: "\f3b8"; } +.bi-file-text::before { content: "\f3b9"; } +.bi-file-word-fill::before { content: "\f3ba"; } +.bi-file-word::before { content: "\f3bb"; } +.bi-file-x-fill::before { content: "\f3bc"; } +.bi-file-x::before { content: "\f3bd"; } +.bi-file-zip-fill::before { content: "\f3be"; } +.bi-file-zip::before { content: "\f3bf"; } +.bi-file::before { content: "\f3c0"; } +.bi-files-alt::before { content: "\f3c1"; } +.bi-files::before { content: "\f3c2"; } +.bi-film::before { content: "\f3c3"; } +.bi-filter-circle-fill::before { content: "\f3c4"; } +.bi-filter-circle::before { content: "\f3c5"; } +.bi-filter-left::before { content: "\f3c6"; } +.bi-filter-right::before { content: "\f3c7"; } +.bi-filter-square-fill::before { content: "\f3c8"; } +.bi-filter-square::before { content: "\f3c9"; } +.bi-filter::before { content: "\f3ca"; } +.bi-flag-fill::before { content: "\f3cb"; } +.bi-flag::before { content: "\f3cc"; } +.bi-flower1::before { content: "\f3cd"; } +.bi-flower2::before { content: "\f3ce"; } +.bi-flower3::before { content: "\f3cf"; } +.bi-folder-check::before { content: "\f3d0"; } +.bi-folder-fill::before { content: "\f3d1"; } +.bi-folder-minus::before { content: "\f3d2"; } +.bi-folder-plus::before { content: "\f3d3"; } +.bi-folder-symlink-fill::before { content: "\f3d4"; } +.bi-folder-symlink::before { content: "\f3d5"; } +.bi-folder-x::before { content: "\f3d6"; } +.bi-folder::before { content: "\f3d7"; } +.bi-folder2-open::before { content: "\f3d8"; } +.bi-folder2::before { content: "\f3d9"; } +.bi-fonts::before { content: "\f3da"; } +.bi-forward-fill::before { content: "\f3db"; } +.bi-forward::before { content: "\f3dc"; } +.bi-front::before { content: "\f3dd"; } +.bi-fullscreen-exit::before { content: "\f3de"; } +.bi-fullscreen::before { content: "\f3df"; } +.bi-funnel-fill::before { content: "\f3e0"; } +.bi-funnel::before { content: "\f3e1"; } +.bi-gear-fill::before { content: "\f3e2"; } +.bi-gear-wide-connected::before { content: "\f3e3"; } +.bi-gear-wide::before { content: "\f3e4"; } +.bi-gear::before { content: "\f3e5"; } +.bi-gem::before { content: "\f3e6"; } +.bi-geo-alt-fill::before { content: "\f3e7"; } +.bi-geo-alt::before { content: "\f3e8"; } +.bi-geo-fill::before { content: "\f3e9"; } +.bi-geo::before { content: "\f3ea"; } +.bi-gift-fill::before { content: "\f3eb"; } +.bi-gift::before { content: "\f3ec"; } +.bi-github::before { content: "\f3ed"; } +.bi-globe::before { content: "\f3ee"; } +.bi-globe2::before { content: "\f3ef"; } +.bi-google::before { content: "\f3f0"; } +.bi-graph-down::before { content: "\f3f1"; } +.bi-graph-up::before { content: "\f3f2"; } +.bi-grid-1x2-fill::before { content: "\f3f3"; } +.bi-grid-1x2::before { content: "\f3f4"; } +.bi-grid-3x2-gap-fill::before { content: "\f3f5"; } +.bi-grid-3x2-gap::before { content: "\f3f6"; } +.bi-grid-3x2::before { content: "\f3f7"; } +.bi-grid-3x3-gap-fill::before { content: "\f3f8"; } +.bi-grid-3x3-gap::before { content: "\f3f9"; } +.bi-grid-3x3::before { content: "\f3fa"; } +.bi-grid-fill::before { content: "\f3fb"; } +.bi-grid::before { content: "\f3fc"; } +.bi-grip-horizontal::before { content: "\f3fd"; } +.bi-grip-vertical::before { content: "\f3fe"; } +.bi-hammer::before { content: "\f3ff"; } +.bi-hand-index-fill::before { content: "\f400"; } +.bi-hand-index-thumb-fill::before { content: "\f401"; } +.bi-hand-index-thumb::before { content: "\f402"; } +.bi-hand-index::before { content: "\f403"; } +.bi-hand-thumbs-down-fill::before { content: "\f404"; } +.bi-hand-thumbs-down::before { content: "\f405"; } +.bi-hand-thumbs-up-fill::before { content: "\f406"; } +.bi-hand-thumbs-up::before { content: "\f407"; } +.bi-handbag-fill::before { content: "\f408"; } +.bi-handbag::before { content: "\f409"; } +.bi-hash::before { content: "\f40a"; } +.bi-hdd-fill::before { content: "\f40b"; } +.bi-hdd-network-fill::before { content: "\f40c"; } +.bi-hdd-network::before { content: "\f40d"; } +.bi-hdd-rack-fill::before { content: "\f40e"; } +.bi-hdd-rack::before { content: "\f40f"; } +.bi-hdd-stack-fill::before { content: "\f410"; } +.bi-hdd-stack::before { content: "\f411"; } +.bi-hdd::before { content: "\f412"; } +.bi-headphones::before { content: "\f413"; } +.bi-headset::before { content: "\f414"; } +.bi-heart-fill::before { content: "\f415"; } +.bi-heart-half::before { content: "\f416"; } +.bi-heart::before { content: "\f417"; } +.bi-heptagon-fill::before { content: "\f418"; } +.bi-heptagon-half::before { content: "\f419"; } +.bi-heptagon::before { content: "\f41a"; } +.bi-hexagon-fill::before { content: "\f41b"; } +.bi-hexagon-half::before { content: "\f41c"; } +.bi-hexagon::before { content: "\f41d"; } +.bi-hourglass-bottom::before { content: "\f41e"; } +.bi-hourglass-split::before { content: "\f41f"; } +.bi-hourglass-top::before { content: "\f420"; } +.bi-hourglass::before { content: "\f421"; } +.bi-house-door-fill::before { content: "\f422"; } +.bi-house-door::before { content: "\f423"; } +.bi-house-fill::before { content: "\f424"; } +.bi-house::before { content: "\f425"; } +.bi-hr::before { content: "\f426"; } +.bi-hurricane::before { content: "\f427"; } +.bi-image-alt::before { content: "\f428"; } +.bi-image-fill::before { content: "\f429"; } +.bi-image::before { content: "\f42a"; } +.bi-images::before { content: "\f42b"; } +.bi-inbox-fill::before { content: "\f42c"; } +.bi-inbox::before { content: "\f42d"; } +.bi-inboxes-fill::before { content: "\f42e"; } +.bi-inboxes::before { content: "\f42f"; } +.bi-info-circle-fill::before { content: "\f430"; } +.bi-info-circle::before { content: "\f431"; } +.bi-info-square-fill::before { content: "\f432"; } +.bi-info-square::before { content: "\f433"; } +.bi-info::before { content: "\f434"; } +.bi-input-cursor-text::before { content: "\f435"; } +.bi-input-cursor::before { content: "\f436"; } +.bi-instagram::before { content: "\f437"; } +.bi-intersect::before { content: "\f438"; } +.bi-journal-album::before { content: "\f439"; } +.bi-journal-arrow-down::before { content: "\f43a"; } +.bi-journal-arrow-up::before { content: "\f43b"; } +.bi-journal-bookmark-fill::before { content: "\f43c"; } +.bi-journal-bookmark::before { content: "\f43d"; } +.bi-journal-check::before { content: "\f43e"; } +.bi-journal-code::before { content: "\f43f"; } +.bi-journal-medical::before { content: "\f440"; } +.bi-journal-minus::before { content: "\f441"; } +.bi-journal-plus::before { content: "\f442"; } +.bi-journal-richtext::before { content: "\f443"; } +.bi-journal-text::before { content: "\f444"; } +.bi-journal-x::before { content: "\f445"; } +.bi-journal::before { content: "\f446"; } +.bi-journals::before { content: "\f447"; } +.bi-joystick::before { content: "\f448"; } +.bi-justify-left::before { content: "\f449"; } +.bi-justify-right::before { content: "\f44a"; } +.bi-justify::before { content: "\f44b"; } +.bi-kanban-fill::before { content: "\f44c"; } +.bi-kanban::before { content: "\f44d"; } +.bi-key-fill::before { content: "\f44e"; } +.bi-key::before { content: "\f44f"; } +.bi-keyboard-fill::before { content: "\f450"; } +.bi-keyboard::before { content: "\f451"; } +.bi-ladder::before { content: "\f452"; } +.bi-lamp-fill::before { content: "\f453"; } +.bi-lamp::before { content: "\f454"; } +.bi-laptop-fill::before { content: "\f455"; } +.bi-laptop::before { content: "\f456"; } +.bi-layer-backward::before { content: "\f457"; } +.bi-layer-forward::before { content: "\f458"; } +.bi-layers-fill::before { content: "\f459"; } +.bi-layers-half::before { content: "\f45a"; } +.bi-layers::before { content: "\f45b"; } +.bi-layout-sidebar-inset-reverse::before { content: "\f45c"; } +.bi-layout-sidebar-inset::before { content: "\f45d"; } +.bi-layout-sidebar-reverse::before { content: "\f45e"; } +.bi-layout-sidebar::before { content: "\f45f"; } +.bi-layout-split::before { content: "\f460"; } +.bi-layout-text-sidebar-reverse::before { content: "\f461"; } +.bi-layout-text-sidebar::before { content: "\f462"; } +.bi-layout-text-window-reverse::before { content: "\f463"; } +.bi-layout-text-window::before { content: "\f464"; } +.bi-layout-three-columns::before { content: "\f465"; } +.bi-layout-wtf::before { content: "\f466"; } +.bi-life-preserver::before { content: "\f467"; } +.bi-lightbulb-fill::before { content: "\f468"; } +.bi-lightbulb-off-fill::before { content: "\f469"; } +.bi-lightbulb-off::before { content: "\f46a"; } +.bi-lightbulb::before { content: "\f46b"; } +.bi-lightning-charge-fill::before { content: "\f46c"; } +.bi-lightning-charge::before { content: "\f46d"; } +.bi-lightning-fill::before { content: "\f46e"; } +.bi-lightning::before { content: "\f46f"; } +.bi-link-45deg::before { content: "\f470"; } +.bi-link::before { content: "\f471"; } +.bi-linkedin::before { content: "\f472"; } +.bi-list-check::before { content: "\f473"; } +.bi-list-nested::before { content: "\f474"; } +.bi-list-ol::before { content: "\f475"; } +.bi-list-stars::before { content: "\f476"; } +.bi-list-task::before { content: "\f477"; } +.bi-list-ul::before { content: "\f478"; } +.bi-list::before { content: "\f479"; } +.bi-lock-fill::before { content: "\f47a"; } +.bi-lock::before { content: "\f47b"; } +.bi-mailbox::before { content: "\f47c"; } +.bi-mailbox2::before { content: "\f47d"; } +.bi-map-fill::before { content: "\f47e"; } +.bi-map::before { content: "\f47f"; } +.bi-markdown-fill::before { content: "\f480"; } +.bi-markdown::before { content: "\f481"; } +.bi-mask::before { content: "\f482"; } +.bi-megaphone-fill::before { content: "\f483"; } +.bi-megaphone::before { content: "\f484"; } +.bi-menu-app-fill::before { content: "\f485"; } +.bi-menu-app::before { content: "\f486"; } +.bi-menu-button-fill::before { content: "\f487"; } +.bi-menu-button-wide-fill::before { content: "\f488"; } +.bi-menu-button-wide::before { content: "\f489"; } +.bi-menu-button::before { content: "\f48a"; } +.bi-menu-down::before { content: "\f48b"; } +.bi-menu-up::before { content: "\f48c"; } +.bi-mic-fill::before { content: "\f48d"; } +.bi-mic-mute-fill::before { content: "\f48e"; } +.bi-mic-mute::before { content: "\f48f"; } +.bi-mic::before { content: "\f490"; } +.bi-minecart-loaded::before { content: "\f491"; } +.bi-minecart::before { content: "\f492"; } +.bi-moisture::before { content: "\f493"; } +.bi-moon-fill::before { content: "\f494"; } +.bi-moon-stars-fill::before { content: "\f495"; } +.bi-moon-stars::before { content: "\f496"; } +.bi-moon::before { content: "\f497"; } +.bi-mouse-fill::before { content: "\f498"; } +.bi-mouse::before { content: "\f499"; } +.bi-mouse2-fill::before { content: "\f49a"; } +.bi-mouse2::before { content: "\f49b"; } +.bi-mouse3-fill::before { content: "\f49c"; } +.bi-mouse3::before { content: "\f49d"; } +.bi-music-note-beamed::before { content: "\f49e"; } +.bi-music-note-list::before { content: "\f49f"; } +.bi-music-note::before { content: "\f4a0"; } +.bi-music-player-fill::before { content: "\f4a1"; } +.bi-music-player::before { content: "\f4a2"; } +.bi-newspaper::before { content: "\f4a3"; } +.bi-node-minus-fill::before { content: "\f4a4"; } +.bi-node-minus::before { content: "\f4a5"; } +.bi-node-plus-fill::before { content: "\f4a6"; } +.bi-node-plus::before { content: "\f4a7"; } +.bi-nut-fill::before { content: "\f4a8"; } +.bi-nut::before { content: "\f4a9"; } +.bi-octagon-fill::before { content: "\f4aa"; } +.bi-octagon-half::before { content: "\f4ab"; } +.bi-octagon::before { content: "\f4ac"; } +.bi-option::before { content: "\f4ad"; } +.bi-outlet::before { content: "\f4ae"; } +.bi-paint-bucket::before { content: "\f4af"; } +.bi-palette-fill::before { content: "\f4b0"; } +.bi-palette::before { content: "\f4b1"; } +.bi-palette2::before { content: "\f4b2"; } +.bi-paperclip::before { content: "\f4b3"; } +.bi-paragraph::before { content: "\f4b4"; } +.bi-patch-check-fill::before { content: "\f4b5"; } +.bi-patch-check::before { content: "\f4b6"; } +.bi-patch-exclamation-fill::before { content: "\f4b7"; } +.bi-patch-exclamation::before { content: "\f4b8"; } +.bi-patch-minus-fill::before { content: "\f4b9"; } +.bi-patch-minus::before { content: "\f4ba"; } +.bi-patch-plus-fill::before { content: "\f4bb"; } +.bi-patch-plus::before { content: "\f4bc"; } +.bi-patch-question-fill::before { content: "\f4bd"; } +.bi-patch-question::before { content: "\f4be"; } +.bi-pause-btn-fill::before { content: "\f4bf"; } +.bi-pause-btn::before { content: "\f4c0"; } +.bi-pause-circle-fill::before { content: "\f4c1"; } +.bi-pause-circle::before { content: "\f4c2"; } +.bi-pause-fill::before { content: "\f4c3"; } +.bi-pause::before { content: "\f4c4"; } +.bi-peace-fill::before { content: "\f4c5"; } +.bi-peace::before { content: "\f4c6"; } +.bi-pen-fill::before { content: "\f4c7"; } +.bi-pen::before { content: "\f4c8"; } +.bi-pencil-fill::before { content: "\f4c9"; } +.bi-pencil-square::before { content: "\f4ca"; } +.bi-pencil::before { content: "\f4cb"; } +.bi-pentagon-fill::before { content: "\f4cc"; } +.bi-pentagon-half::before { content: "\f4cd"; } +.bi-pentagon::before { content: "\f4ce"; } +.bi-people-fill::before { content: "\f4cf"; } +.bi-people::before { content: "\f4d0"; } +.bi-percent::before { content: "\f4d1"; } +.bi-person-badge-fill::before { content: "\f4d2"; } +.bi-person-badge::before { content: "\f4d3"; } +.bi-person-bounding-box::before { content: "\f4d4"; } +.bi-person-check-fill::before { content: "\f4d5"; } +.bi-person-check::before { content: "\f4d6"; } +.bi-person-circle::before { content: "\f4d7"; } +.bi-person-dash-fill::before { content: "\f4d8"; } +.bi-person-dash::before { content: "\f4d9"; } +.bi-person-fill::before { content: "\f4da"; } +.bi-person-lines-fill::before { content: "\f4db"; } +.bi-person-plus-fill::before { content: "\f4dc"; } +.bi-person-plus::before { content: "\f4dd"; } +.bi-person-square::before { content: "\f4de"; } +.bi-person-x-fill::before { content: "\f4df"; } +.bi-person-x::before { content: "\f4e0"; } +.bi-person::before { content: "\f4e1"; } +.bi-phone-fill::before { content: "\f4e2"; } +.bi-phone-landscape-fill::before { content: "\f4e3"; } +.bi-phone-landscape::before { content: "\f4e4"; } +.bi-phone-vibrate-fill::before { content: "\f4e5"; } +.bi-phone-vibrate::before { content: "\f4e6"; } +.bi-phone::before { content: "\f4e7"; } +.bi-pie-chart-fill::before { content: "\f4e8"; } +.bi-pie-chart::before { content: "\f4e9"; } +.bi-pin-angle-fill::before { content: "\f4ea"; } +.bi-pin-angle::before { content: "\f4eb"; } +.bi-pin-fill::before { content: "\f4ec"; } +.bi-pin::before { content: "\f4ed"; } +.bi-pip-fill::before { content: "\f4ee"; } +.bi-pip::before { content: "\f4ef"; } +.bi-play-btn-fill::before { content: "\f4f0"; } +.bi-play-btn::before { content: "\f4f1"; } +.bi-play-circle-fill::before { content: "\f4f2"; } +.bi-play-circle::before { content: "\f4f3"; } +.bi-play-fill::before { content: "\f4f4"; } +.bi-play::before { content: "\f4f5"; } +.bi-plug-fill::before { content: "\f4f6"; } +.bi-plug::before { content: "\f4f7"; } +.bi-plus-circle-dotted::before { content: "\f4f8"; } +.bi-plus-circle-fill::before { content: "\f4f9"; } +.bi-plus-circle::before { content: "\f4fa"; } +.bi-plus-square-dotted::before { content: "\f4fb"; } +.bi-plus-square-fill::before { content: "\f4fc"; } +.bi-plus-square::before { content: "\f4fd"; } +.bi-plus::before { content: "\f4fe"; } +.bi-power::before { content: "\f4ff"; } +.bi-printer-fill::before { content: "\f500"; } +.bi-printer::before { content: "\f501"; } +.bi-puzzle-fill::before { content: "\f502"; } +.bi-puzzle::before { content: "\f503"; } +.bi-question-circle-fill::before { content: "\f504"; } +.bi-question-circle::before { content: "\f505"; } +.bi-question-diamond-fill::before { content: "\f506"; } +.bi-question-diamond::before { content: "\f507"; } +.bi-question-octagon-fill::before { content: "\f508"; } +.bi-question-octagon::before { content: "\f509"; } +.bi-question-square-fill::before { content: "\f50a"; } +.bi-question-square::before { content: "\f50b"; } +.bi-question::before { content: "\f50c"; } +.bi-rainbow::before { content: "\f50d"; } +.bi-receipt-cutoff::before { content: "\f50e"; } +.bi-receipt::before { content: "\f50f"; } +.bi-reception-0::before { content: "\f510"; } +.bi-reception-1::before { content: "\f511"; } +.bi-reception-2::before { content: "\f512"; } +.bi-reception-3::before { content: "\f513"; } +.bi-reception-4::before { content: "\f514"; } +.bi-record-btn-fill::before { content: "\f515"; } +.bi-record-btn::before { content: "\f516"; } +.bi-record-circle-fill::before { content: "\f517"; } +.bi-record-circle::before { content: "\f518"; } +.bi-record-fill::before { content: "\f519"; } +.bi-record::before { content: "\f51a"; } +.bi-record2-fill::before { content: "\f51b"; } +.bi-record2::before { content: "\f51c"; } +.bi-reply-all-fill::before { content: "\f51d"; } +.bi-reply-all::before { content: "\f51e"; } +.bi-reply-fill::before { content: "\f51f"; } +.bi-reply::before { content: "\f520"; } +.bi-rss-fill::before { content: "\f521"; } +.bi-rss::before { content: "\f522"; } +.bi-rulers::before { content: "\f523"; } +.bi-save-fill::before { content: "\f524"; } +.bi-save::before { content: "\f525"; } +.bi-save2-fill::before { content: "\f526"; } +.bi-save2::before { content: "\f527"; } +.bi-scissors::before { content: "\f528"; } +.bi-screwdriver::before { content: "\f529"; } +.bi-search::before { content: "\f52a"; } +.bi-segmented-nav::before { content: "\f52b"; } +.bi-server::before { content: "\f52c"; } +.bi-share-fill::before { content: "\f52d"; } +.bi-share::before { content: "\f52e"; } +.bi-shield-check::before { content: "\f52f"; } +.bi-shield-exclamation::before { content: "\f530"; } +.bi-shield-fill-check::before { content: "\f531"; } +.bi-shield-fill-exclamation::before { content: "\f532"; } +.bi-shield-fill-minus::before { content: "\f533"; } +.bi-shield-fill-plus::before { content: "\f534"; } +.bi-shield-fill-x::before { content: "\f535"; } +.bi-shield-fill::before { content: "\f536"; } +.bi-shield-lock-fill::before { content: "\f537"; } +.bi-shield-lock::before { content: "\f538"; } +.bi-shield-minus::before { content: "\f539"; } +.bi-shield-plus::before { content: "\f53a"; } +.bi-shield-shaded::before { content: "\f53b"; } +.bi-shield-slash-fill::before { content: "\f53c"; } +.bi-shield-slash::before { content: "\f53d"; } +.bi-shield-x::before { content: "\f53e"; } +.bi-shield::before { content: "\f53f"; } +.bi-shift-fill::before { content: "\f540"; } +.bi-shift::before { content: "\f541"; } +.bi-shop-window::before { content: "\f542"; } +.bi-shop::before { content: "\f543"; } +.bi-shuffle::before { content: "\f544"; } +.bi-signpost-2-fill::before { content: "\f545"; } +.bi-signpost-2::before { content: "\f546"; } +.bi-signpost-fill::before { content: "\f547"; } +.bi-signpost-split-fill::before { content: "\f548"; } +.bi-signpost-split::before { content: "\f549"; } +.bi-signpost::before { content: "\f54a"; } +.bi-sim-fill::before { content: "\f54b"; } +.bi-sim::before { content: "\f54c"; } +.bi-skip-backward-btn-fill::before { content: "\f54d"; } +.bi-skip-backward-btn::before { content: "\f54e"; } +.bi-skip-backward-circle-fill::before { content: "\f54f"; } +.bi-skip-backward-circle::before { content: "\f550"; } +.bi-skip-backward-fill::before { content: "\f551"; } +.bi-skip-backward::before { content: "\f552"; } +.bi-skip-end-btn-fill::before { content: "\f553"; } +.bi-skip-end-btn::before { content: "\f554"; } +.bi-skip-end-circle-fill::before { content: "\f555"; } +.bi-skip-end-circle::before { content: "\f556"; } +.bi-skip-end-fill::before { content: "\f557"; } +.bi-skip-end::before { content: "\f558"; } +.bi-skip-forward-btn-fill::before { content: "\f559"; } +.bi-skip-forward-btn::before { content: "\f55a"; } +.bi-skip-forward-circle-fill::before { content: "\f55b"; } +.bi-skip-forward-circle::before { content: "\f55c"; } +.bi-skip-forward-fill::before { content: "\f55d"; } +.bi-skip-forward::before { content: "\f55e"; } +.bi-skip-start-btn-fill::before { content: "\f55f"; } +.bi-skip-start-btn::before { content: "\f560"; } +.bi-skip-start-circle-fill::before { content: "\f561"; } +.bi-skip-start-circle::before { content: "\f562"; } +.bi-skip-start-fill::before { content: "\f563"; } +.bi-skip-start::before { content: "\f564"; } +.bi-slack::before { content: "\f565"; } +.bi-slash-circle-fill::before { content: "\f566"; } +.bi-slash-circle::before { content: "\f567"; } +.bi-slash-square-fill::before { content: "\f568"; } +.bi-slash-square::before { content: "\f569"; } +.bi-slash::before { content: "\f56a"; } +.bi-sliders::before { content: "\f56b"; } +.bi-smartwatch::before { content: "\f56c"; } +.bi-snow::before { content: "\f56d"; } +.bi-snow2::before { content: "\f56e"; } +.bi-snow3::before { content: "\f56f"; } +.bi-sort-alpha-down-alt::before { content: "\f570"; } +.bi-sort-alpha-down::before { content: "\f571"; } +.bi-sort-alpha-up-alt::before { content: "\f572"; } +.bi-sort-alpha-up::before { content: "\f573"; } +.bi-sort-down-alt::before { content: "\f574"; } +.bi-sort-down::before { content: "\f575"; } +.bi-sort-numeric-down-alt::before { content: "\f576"; } +.bi-sort-numeric-down::before { content: "\f577"; } +.bi-sort-numeric-up-alt::before { content: "\f578"; } +.bi-sort-numeric-up::before { content: "\f579"; } +.bi-sort-up-alt::before { content: "\f57a"; } +.bi-sort-up::before { content: "\f57b"; } +.bi-soundwave::before { content: "\f57c"; } +.bi-speaker-fill::before { content: "\f57d"; } +.bi-speaker::before { content: "\f57e"; } +.bi-speedometer::before { content: "\f57f"; } +.bi-speedometer2::before { content: "\f580"; } +.bi-spellcheck::before { content: "\f581"; } +.bi-square-fill::before { content: "\f582"; } +.bi-square-half::before { content: "\f583"; } +.bi-square::before { content: "\f584"; } +.bi-stack::before { content: "\f585"; } +.bi-star-fill::before { content: "\f586"; } +.bi-star-half::before { content: "\f587"; } +.bi-star::before { content: "\f588"; } +.bi-stars::before { content: "\f589"; } +.bi-stickies-fill::before { content: "\f58a"; } +.bi-stickies::before { content: "\f58b"; } +.bi-sticky-fill::before { content: "\f58c"; } +.bi-sticky::before { content: "\f58d"; } +.bi-stop-btn-fill::before { content: "\f58e"; } +.bi-stop-btn::before { content: "\f58f"; } +.bi-stop-circle-fill::before { content: "\f590"; } +.bi-stop-circle::before { content: "\f591"; } +.bi-stop-fill::before { content: "\f592"; } +.bi-stop::before { content: "\f593"; } +.bi-stoplights-fill::before { content: "\f594"; } +.bi-stoplights::before { content: "\f595"; } +.bi-stopwatch-fill::before { content: "\f596"; } +.bi-stopwatch::before { content: "\f597"; } +.bi-subtract::before { content: "\f598"; } +.bi-suit-club-fill::before { content: "\f599"; } +.bi-suit-club::before { content: "\f59a"; } +.bi-suit-diamond-fill::before { content: "\f59b"; } +.bi-suit-diamond::before { content: "\f59c"; } +.bi-suit-heart-fill::before { content: "\f59d"; } +.bi-suit-heart::before { content: "\f59e"; } +.bi-suit-spade-fill::before { content: "\f59f"; } +.bi-suit-spade::before { content: "\f5a0"; } +.bi-sun-fill::before { content: "\f5a1"; } +.bi-sun::before { content: "\f5a2"; } +.bi-sunglasses::before { content: "\f5a3"; } +.bi-sunrise-fill::before { content: "\f5a4"; } +.bi-sunrise::before { content: "\f5a5"; } +.bi-sunset-fill::before { content: "\f5a6"; } +.bi-sunset::before { content: "\f5a7"; } +.bi-symmetry-horizontal::before { content: "\f5a8"; } +.bi-symmetry-vertical::before { content: "\f5a9"; } +.bi-table::before { content: "\f5aa"; } +.bi-tablet-fill::before { content: "\f5ab"; } +.bi-tablet-landscape-fill::before { content: "\f5ac"; } +.bi-tablet-landscape::before { content: "\f5ad"; } +.bi-tablet::before { content: "\f5ae"; } +.bi-tag-fill::before { content: "\f5af"; } +.bi-tag::before { content: "\f5b0"; } +.bi-tags-fill::before { content: "\f5b1"; } +.bi-tags::before { content: "\f5b2"; } +.bi-telegram::before { content: "\f5b3"; } +.bi-telephone-fill::before { content: "\f5b4"; } +.bi-telephone-forward-fill::before { content: "\f5b5"; } +.bi-telephone-forward::before { content: "\f5b6"; } +.bi-telephone-inbound-fill::before { content: "\f5b7"; } +.bi-telephone-inbound::before { content: "\f5b8"; } +.bi-telephone-minus-fill::before { content: "\f5b9"; } +.bi-telephone-minus::before { content: "\f5ba"; } +.bi-telephone-outbound-fill::before { content: "\f5bb"; } +.bi-telephone-outbound::before { content: "\f5bc"; } +.bi-telephone-plus-fill::before { content: "\f5bd"; } +.bi-telephone-plus::before { content: "\f5be"; } +.bi-telephone-x-fill::before { content: "\f5bf"; } +.bi-telephone-x::before { content: "\f5c0"; } +.bi-telephone::before { content: "\f5c1"; } +.bi-terminal-fill::before { content: "\f5c2"; } +.bi-terminal::before { content: "\f5c3"; } +.bi-text-center::before { content: "\f5c4"; } +.bi-text-indent-left::before { content: "\f5c5"; } +.bi-text-indent-right::before { content: "\f5c6"; } +.bi-text-left::before { content: "\f5c7"; } +.bi-text-paragraph::before { content: "\f5c8"; } +.bi-text-right::before { content: "\f5c9"; } +.bi-textarea-resize::before { content: "\f5ca"; } +.bi-textarea-t::before { content: "\f5cb"; } +.bi-textarea::before { content: "\f5cc"; } +.bi-thermometer-half::before { content: "\f5cd"; } +.bi-thermometer-high::before { content: "\f5ce"; } +.bi-thermometer-low::before { content: "\f5cf"; } +.bi-thermometer-snow::before { content: "\f5d0"; } +.bi-thermometer-sun::before { content: "\f5d1"; } +.bi-thermometer::before { content: "\f5d2"; } +.bi-three-dots-vertical::before { content: "\f5d3"; } +.bi-three-dots::before { content: "\f5d4"; } +.bi-toggle-off::before { content: "\f5d5"; } +.bi-toggle-on::before { content: "\f5d6"; } +.bi-toggle2-off::before { content: "\f5d7"; } +.bi-toggle2-on::before { content: "\f5d8"; } +.bi-toggles::before { content: "\f5d9"; } +.bi-toggles2::before { content: "\f5da"; } +.bi-tools::before { content: "\f5db"; } +.bi-tornado::before { content: "\f5dc"; } +.bi-trash-fill::before { content: "\f5dd"; } +.bi-trash::before { content: "\f5de"; } +.bi-trash2-fill::before { content: "\f5df"; } +.bi-trash2::before { content: "\f5e0"; } +.bi-tree-fill::before { content: "\f5e1"; } +.bi-tree::before { content: "\f5e2"; } +.bi-triangle-fill::before { content: "\f5e3"; } +.bi-triangle-half::before { content: "\f5e4"; } +.bi-triangle::before { content: "\f5e5"; } +.bi-trophy-fill::before { content: "\f5e6"; } +.bi-trophy::before { content: "\f5e7"; } +.bi-tropical-storm::before { content: "\f5e8"; } +.bi-truck-flatbed::before { content: "\f5e9"; } +.bi-truck::before { content: "\f5ea"; } +.bi-tsunami::before { content: "\f5eb"; } +.bi-tv-fill::before { content: "\f5ec"; } +.bi-tv::before { content: "\f5ed"; } +.bi-twitch::before { content: "\f5ee"; } +.bi-twitter::before { content: "\f5ef"; } +.bi-type-bold::before { content: "\f5f0"; } +.bi-type-h1::before { content: "\f5f1"; } +.bi-type-h2::before { content: "\f5f2"; } +.bi-type-h3::before { content: "\f5f3"; } +.bi-type-italic::before { content: "\f5f4"; } +.bi-type-strikethrough::before { content: "\f5f5"; } +.bi-type-underline::before { content: "\f5f6"; } +.bi-type::before { content: "\f5f7"; } +.bi-ui-checks-grid::before { content: "\f5f8"; } +.bi-ui-checks::before { content: "\f5f9"; } +.bi-ui-radios-grid::before { content: "\f5fa"; } +.bi-ui-radios::before { content: "\f5fb"; } +.bi-umbrella-fill::before { content: "\f5fc"; } +.bi-umbrella::before { content: "\f5fd"; } +.bi-union::before { content: "\f5fe"; } +.bi-unlock-fill::before { content: "\f5ff"; } +.bi-unlock::before { content: "\f600"; } +.bi-upc-scan::before { content: "\f601"; } +.bi-upc::before { content: "\f602"; } +.bi-upload::before { content: "\f603"; } +.bi-vector-pen::before { content: "\f604"; } +.bi-view-list::before { content: "\f605"; } +.bi-view-stacked::before { content: "\f606"; } +.bi-vinyl-fill::before { content: "\f607"; } +.bi-vinyl::before { content: "\f608"; } +.bi-voicemail::before { content: "\f609"; } +.bi-volume-down-fill::before { content: "\f60a"; } +.bi-volume-down::before { content: "\f60b"; } +.bi-volume-mute-fill::before { content: "\f60c"; } +.bi-volume-mute::before { content: "\f60d"; } +.bi-volume-off-fill::before { content: "\f60e"; } +.bi-volume-off::before { content: "\f60f"; } +.bi-volume-up-fill::before { content: "\f610"; } +.bi-volume-up::before { content: "\f611"; } +.bi-vr::before { content: "\f612"; } +.bi-wallet-fill::before { content: "\f613"; } +.bi-wallet::before { content: "\f614"; } +.bi-wallet2::before { content: "\f615"; } +.bi-watch::before { content: "\f616"; } +.bi-water::before { content: "\f617"; } +.bi-whatsapp::before { content: "\f618"; } +.bi-wifi-1::before { content: "\f619"; } +.bi-wifi-2::before { content: "\f61a"; } +.bi-wifi-off::before { content: "\f61b"; } +.bi-wifi::before { content: "\f61c"; } +.bi-wind::before { content: "\f61d"; } +.bi-window-dock::before { content: "\f61e"; } +.bi-window-sidebar::before { content: "\f61f"; } +.bi-window::before { content: "\f620"; } +.bi-wrench::before { content: "\f621"; } +.bi-x-circle-fill::before { content: "\f622"; } +.bi-x-circle::before { content: "\f623"; } +.bi-x-diamond-fill::before { content: "\f624"; } +.bi-x-diamond::before { content: "\f625"; } +.bi-x-octagon-fill::before { content: "\f626"; } +.bi-x-octagon::before { content: "\f627"; } +.bi-x-square-fill::before { content: "\f628"; } +.bi-x-square::before { content: "\f629"; } +.bi-x::before { content: "\f62a"; } +.bi-youtube::before { content: "\f62b"; } +.bi-zoom-in::before { content: "\f62c"; } +.bi-zoom-out::before { content: "\f62d"; } +.bi-bank::before { content: "\f62e"; } +.bi-bank2::before { content: "\f62f"; } +.bi-bell-slash-fill::before { content: "\f630"; } +.bi-bell-slash::before { content: "\f631"; } +.bi-cash-coin::before { content: "\f632"; } +.bi-check-lg::before { content: "\f633"; } +.bi-coin::before { content: "\f634"; } +.bi-currency-bitcoin::before { content: "\f635"; } +.bi-currency-dollar::before { content: "\f636"; } +.bi-currency-euro::before { content: "\f637"; } +.bi-currency-exchange::before { content: "\f638"; } +.bi-currency-pound::before { content: "\f639"; } +.bi-currency-yen::before { content: "\f63a"; } +.bi-dash-lg::before { content: "\f63b"; } +.bi-exclamation-lg::before { content: "\f63c"; } +.bi-file-earmark-pdf-fill::before { content: "\f63d"; } +.bi-file-earmark-pdf::before { content: "\f63e"; } +.bi-file-pdf-fill::before { content: "\f63f"; } +.bi-file-pdf::before { content: "\f640"; } +.bi-gender-ambiguous::before { content: "\f641"; } +.bi-gender-female::before { content: "\f642"; } +.bi-gender-male::before { content: "\f643"; } +.bi-gender-trans::before { content: "\f644"; } +.bi-headset-vr::before { content: "\f645"; } +.bi-info-lg::before { content: "\f646"; } +.bi-mastodon::before { content: "\f647"; } +.bi-messenger::before { content: "\f648"; } +.bi-piggy-bank-fill::before { content: "\f649"; } +.bi-piggy-bank::before { content: "\f64a"; } +.bi-pin-map-fill::before { content: "\f64b"; } +.bi-pin-map::before { content: "\f64c"; } +.bi-plus-lg::before { content: "\f64d"; } +.bi-question-lg::before { content: "\f64e"; } +.bi-recycle::before { content: "\f64f"; } +.bi-reddit::before { content: "\f650"; } +.bi-safe-fill::before { content: "\f651"; } +.bi-safe2-fill::before { content: "\f652"; } +.bi-safe2::before { content: "\f653"; } +.bi-sd-card-fill::before { content: "\f654"; } +.bi-sd-card::before { content: "\f655"; } +.bi-skype::before { content: "\f656"; } +.bi-slash-lg::before { content: "\f657"; } +.bi-translate::before { content: "\f658"; } +.bi-x-lg::before { content: "\f659"; } +.bi-safe::before { content: "\f65a"; } +.bi-apple::before { content: "\f65b"; } +.bi-microsoft::before { content: "\f65d"; } +.bi-windows::before { content: "\f65e"; } +.bi-behance::before { content: "\f65c"; } +.bi-dribbble::before { content: "\f65f"; } +.bi-line::before { content: "\f660"; } +.bi-medium::before { content: "\f661"; } +.bi-paypal::before { content: "\f662"; } +.bi-pinterest::before { content: "\f663"; } +.bi-signal::before { content: "\f664"; } +.bi-snapchat::before { content: "\f665"; } +.bi-spotify::before { content: "\f666"; } +.bi-stack-overflow::before { content: "\f667"; } +.bi-strava::before { content: "\f668"; } +.bi-wordpress::before { content: "\f669"; } +.bi-vimeo::before { content: "\f66a"; } +.bi-activity::before { content: "\f66b"; } +.bi-easel2-fill::before { content: "\f66c"; } +.bi-easel2::before { content: "\f66d"; } +.bi-easel3-fill::before { content: "\f66e"; } +.bi-easel3::before { content: "\f66f"; } +.bi-fan::before { content: "\f670"; } +.bi-fingerprint::before { content: "\f671"; } +.bi-graph-down-arrow::before { content: "\f672"; } +.bi-graph-up-arrow::before { content: "\f673"; } +.bi-hypnotize::before { content: "\f674"; } +.bi-magic::before { content: "\f675"; } +.bi-person-rolodex::before { content: "\f676"; } +.bi-person-video::before { content: "\f677"; } +.bi-person-video2::before { content: "\f678"; } +.bi-person-video3::before { content: "\f679"; } +.bi-person-workspace::before { content: "\f67a"; } +.bi-radioactive::before { content: "\f67b"; } +.bi-webcam-fill::before { content: "\f67c"; } +.bi-webcam::before { content: "\f67d"; } +.bi-yin-yang::before { content: "\f67e"; } +.bi-bandaid-fill::before { content: "\f680"; } +.bi-bandaid::before { content: "\f681"; } +.bi-bluetooth::before { content: "\f682"; } +.bi-body-text::before { content: "\f683"; } +.bi-boombox::before { content: "\f684"; } +.bi-boxes::before { content: "\f685"; } +.bi-dpad-fill::before { content: "\f686"; } +.bi-dpad::before { content: "\f687"; } +.bi-ear-fill::before { content: "\f688"; } +.bi-ear::before { content: "\f689"; } +.bi-envelope-check-fill::before { content: "\f68b"; } +.bi-envelope-check::before { content: "\f68c"; } +.bi-envelope-dash-fill::before { content: "\f68e"; } +.bi-envelope-dash::before { content: "\f68f"; } +.bi-envelope-exclamation-fill::before { content: "\f691"; } +.bi-envelope-exclamation::before { content: "\f692"; } +.bi-envelope-plus-fill::before { content: "\f693"; } +.bi-envelope-plus::before { content: "\f694"; } +.bi-envelope-slash-fill::before { content: "\f696"; } +.bi-envelope-slash::before { content: "\f697"; } +.bi-envelope-x-fill::before { content: "\f699"; } +.bi-envelope-x::before { content: "\f69a"; } +.bi-explicit-fill::before { content: "\f69b"; } +.bi-explicit::before { content: "\f69c"; } +.bi-git::before { content: "\f69d"; } +.bi-infinity::before { content: "\f69e"; } +.bi-list-columns-reverse::before { content: "\f69f"; } +.bi-list-columns::before { content: "\f6a0"; } +.bi-meta::before { content: "\f6a1"; } +.bi-nintendo-switch::before { content: "\f6a4"; } +.bi-pc-display-horizontal::before { content: "\f6a5"; } +.bi-pc-display::before { content: "\f6a6"; } +.bi-pc-horizontal::before { content: "\f6a7"; } +.bi-pc::before { content: "\f6a8"; } +.bi-playstation::before { content: "\f6a9"; } +.bi-plus-slash-minus::before { content: "\f6aa"; } +.bi-projector-fill::before { content: "\f6ab"; } +.bi-projector::before { content: "\f6ac"; } +.bi-qr-code-scan::before { content: "\f6ad"; } +.bi-qr-code::before { content: "\f6ae"; } +.bi-quora::before { content: "\f6af"; } +.bi-quote::before { content: "\f6b0"; } +.bi-robot::before { content: "\f6b1"; } +.bi-send-check-fill::before { content: "\f6b2"; } +.bi-send-check::before { content: "\f6b3"; } +.bi-send-dash-fill::before { content: "\f6b4"; } +.bi-send-dash::before { content: "\f6b5"; } +.bi-send-exclamation-fill::before { content: "\f6b7"; } +.bi-send-exclamation::before { content: "\f6b8"; } +.bi-send-fill::before { content: "\f6b9"; } +.bi-send-plus-fill::before { content: "\f6ba"; } +.bi-send-plus::before { content: "\f6bb"; } +.bi-send-slash-fill::before { content: "\f6bc"; } +.bi-send-slash::before { content: "\f6bd"; } +.bi-send-x-fill::before { content: "\f6be"; } +.bi-send-x::before { content: "\f6bf"; } +.bi-send::before { content: "\f6c0"; } +.bi-steam::before { content: "\f6c1"; } +.bi-terminal-dash::before { content: "\f6c3"; } +.bi-terminal-plus::before { content: "\f6c4"; } +.bi-terminal-split::before { content: "\f6c5"; } +.bi-ticket-detailed-fill::before { content: "\f6c6"; } +.bi-ticket-detailed::before { content: "\f6c7"; } +.bi-ticket-fill::before { content: "\f6c8"; } +.bi-ticket-perforated-fill::before { content: "\f6c9"; } +.bi-ticket-perforated::before { content: "\f6ca"; } +.bi-ticket::before { content: "\f6cb"; } +.bi-tiktok::before { content: "\f6cc"; } +.bi-window-dash::before { content: "\f6cd"; } +.bi-window-desktop::before { content: "\f6ce"; } +.bi-window-fullscreen::before { content: "\f6cf"; } +.bi-window-plus::before { content: "\f6d0"; } +.bi-window-split::before { content: "\f6d1"; } +.bi-window-stack::before { content: "\f6d2"; } +.bi-window-x::before { content: "\f6d3"; } +.bi-xbox::before { content: "\f6d4"; } +.bi-ethernet::before { content: "\f6d5"; } +.bi-hdmi-fill::before { content: "\f6d6"; } +.bi-hdmi::before { content: "\f6d7"; } +.bi-usb-c-fill::before { content: "\f6d8"; } +.bi-usb-c::before { content: "\f6d9"; } +.bi-usb-fill::before { content: "\f6da"; } +.bi-usb-plug-fill::before { content: "\f6db"; } +.bi-usb-plug::before { content: "\f6dc"; } +.bi-usb-symbol::before { content: "\f6dd"; } +.bi-usb::before { content: "\f6de"; } +.bi-boombox-fill::before { content: "\f6df"; } +.bi-displayport::before { content: "\f6e1"; } +.bi-gpu-card::before { content: "\f6e2"; } +.bi-memory::before { content: "\f6e3"; } +.bi-modem-fill::before { content: "\f6e4"; } +.bi-modem::before { content: "\f6e5"; } +.bi-motherboard-fill::before { content: "\f6e6"; } +.bi-motherboard::before { content: "\f6e7"; } +.bi-optical-audio-fill::before { content: "\f6e8"; } +.bi-optical-audio::before { content: "\f6e9"; } +.bi-pci-card::before { content: "\f6ea"; } +.bi-router-fill::before { content: "\f6eb"; } +.bi-router::before { content: "\f6ec"; } +.bi-thunderbolt-fill::before { content: "\f6ef"; } +.bi-thunderbolt::before { content: "\f6f0"; } +.bi-usb-drive-fill::before { content: "\f6f1"; } +.bi-usb-drive::before { content: "\f6f2"; } +.bi-usb-micro-fill::before { content: "\f6f3"; } +.bi-usb-micro::before { content: "\f6f4"; } +.bi-usb-mini-fill::before { content: "\f6f5"; } +.bi-usb-mini::before { content: "\f6f6"; } +.bi-cloud-haze2::before { content: "\f6f7"; } +.bi-device-hdd-fill::before { content: "\f6f8"; } +.bi-device-hdd::before { content: "\f6f9"; } +.bi-device-ssd-fill::before { content: "\f6fa"; } +.bi-device-ssd::before { content: "\f6fb"; } +.bi-displayport-fill::before { content: "\f6fc"; } +.bi-mortarboard-fill::before { content: "\f6fd"; } +.bi-mortarboard::before { content: "\f6fe"; } +.bi-terminal-x::before { content: "\f6ff"; } +.bi-arrow-through-heart-fill::before { content: "\f700"; } +.bi-arrow-through-heart::before { content: "\f701"; } +.bi-badge-sd-fill::before { content: "\f702"; } +.bi-badge-sd::before { content: "\f703"; } +.bi-bag-heart-fill::before { content: "\f704"; } +.bi-bag-heart::before { content: "\f705"; } +.bi-balloon-fill::before { content: "\f706"; } +.bi-balloon-heart-fill::before { content: "\f707"; } +.bi-balloon-heart::before { content: "\f708"; } +.bi-balloon::before { content: "\f709"; } +.bi-box2-fill::before { content: "\f70a"; } +.bi-box2-heart-fill::before { content: "\f70b"; } +.bi-box2-heart::before { content: "\f70c"; } +.bi-box2::before { content: "\f70d"; } +.bi-braces-asterisk::before { content: "\f70e"; } +.bi-calendar-heart-fill::before { content: "\f70f"; } +.bi-calendar-heart::before { content: "\f710"; } +.bi-calendar2-heart-fill::before { content: "\f711"; } +.bi-calendar2-heart::before { content: "\f712"; } +.bi-chat-heart-fill::before { content: "\f713"; } +.bi-chat-heart::before { content: "\f714"; } +.bi-chat-left-heart-fill::before { content: "\f715"; } +.bi-chat-left-heart::before { content: "\f716"; } +.bi-chat-right-heart-fill::before { content: "\f717"; } +.bi-chat-right-heart::before { content: "\f718"; } +.bi-chat-square-heart-fill::before { content: "\f719"; } +.bi-chat-square-heart::before { content: "\f71a"; } +.bi-clipboard-check-fill::before { content: "\f71b"; } +.bi-clipboard-data-fill::before { content: "\f71c"; } +.bi-clipboard-fill::before { content: "\f71d"; } +.bi-clipboard-heart-fill::before { content: "\f71e"; } +.bi-clipboard-heart::before { content: "\f71f"; } +.bi-clipboard-minus-fill::before { content: "\f720"; } +.bi-clipboard-plus-fill::before { content: "\f721"; } +.bi-clipboard-pulse::before { content: "\f722"; } +.bi-clipboard-x-fill::before { content: "\f723"; } +.bi-clipboard2-check-fill::before { content: "\f724"; } +.bi-clipboard2-check::before { content: "\f725"; } +.bi-clipboard2-data-fill::before { content: "\f726"; } +.bi-clipboard2-data::before { content: "\f727"; } +.bi-clipboard2-fill::before { content: "\f728"; } +.bi-clipboard2-heart-fill::before { content: "\f729"; } +.bi-clipboard2-heart::before { content: "\f72a"; } +.bi-clipboard2-minus-fill::before { content: "\f72b"; } +.bi-clipboard2-minus::before { content: "\f72c"; } +.bi-clipboard2-plus-fill::before { content: "\f72d"; } +.bi-clipboard2-plus::before { content: "\f72e"; } +.bi-clipboard2-pulse-fill::before { content: "\f72f"; } +.bi-clipboard2-pulse::before { content: "\f730"; } +.bi-clipboard2-x-fill::before { content: "\f731"; } +.bi-clipboard2-x::before { content: "\f732"; } +.bi-clipboard2::before { content: "\f733"; } +.bi-emoji-kiss-fill::before { content: "\f734"; } +.bi-emoji-kiss::before { content: "\f735"; } +.bi-envelope-heart-fill::before { content: "\f736"; } +.bi-envelope-heart::before { content: "\f737"; } +.bi-envelope-open-heart-fill::before { content: "\f738"; } +.bi-envelope-open-heart::before { content: "\f739"; } +.bi-envelope-paper-fill::before { content: "\f73a"; } +.bi-envelope-paper-heart-fill::before { content: "\f73b"; } +.bi-envelope-paper-heart::before { content: "\f73c"; } +.bi-envelope-paper::before { content: "\f73d"; } +.bi-filetype-aac::before { content: "\f73e"; } +.bi-filetype-ai::before { content: "\f73f"; } +.bi-filetype-bmp::before { content: "\f740"; } +.bi-filetype-cs::before { content: "\f741"; } +.bi-filetype-css::before { content: "\f742"; } +.bi-filetype-csv::before { content: "\f743"; } +.bi-filetype-doc::before { content: "\f744"; } +.bi-filetype-docx::before { content: "\f745"; } +.bi-filetype-exe::before { content: "\f746"; } +.bi-filetype-gif::before { content: "\f747"; } +.bi-filetype-heic::before { content: "\f748"; } +.bi-filetype-html::before { content: "\f749"; } +.bi-filetype-java::before { content: "\f74a"; } +.bi-filetype-jpg::before { content: "\f74b"; } +.bi-filetype-js::before { content: "\f74c"; } +.bi-filetype-jsx::before { content: "\f74d"; } +.bi-filetype-key::before { content: "\f74e"; } +.bi-filetype-m4p::before { content: "\f74f"; } +.bi-filetype-md::before { content: "\f750"; } +.bi-filetype-mdx::before { content: "\f751"; } +.bi-filetype-mov::before { content: "\f752"; } +.bi-filetype-mp3::before { content: "\f753"; } +.bi-filetype-mp4::before { content: "\f754"; } +.bi-filetype-otf::before { content: "\f755"; } +.bi-filetype-pdf::before { content: "\f756"; } +.bi-filetype-php::before { content: "\f757"; } +.bi-filetype-png::before { content: "\f758"; } +.bi-filetype-ppt::before { content: "\f75a"; } +.bi-filetype-psd::before { content: "\f75b"; } +.bi-filetype-py::before { content: "\f75c"; } +.bi-filetype-raw::before { content: "\f75d"; } +.bi-filetype-rb::before { content: "\f75e"; } +.bi-filetype-sass::before { content: "\f75f"; } +.bi-filetype-scss::before { content: "\f760"; } +.bi-filetype-sh::before { content: "\f761"; } +.bi-filetype-svg::before { content: "\f762"; } +.bi-filetype-tiff::before { content: "\f763"; } +.bi-filetype-tsx::before { content: "\f764"; } +.bi-filetype-ttf::before { content: "\f765"; } +.bi-filetype-txt::before { content: "\f766"; } +.bi-filetype-wav::before { content: "\f767"; } +.bi-filetype-woff::before { content: "\f768"; } +.bi-filetype-xls::before { content: "\f76a"; } +.bi-filetype-xml::before { content: "\f76b"; } +.bi-filetype-yml::before { content: "\f76c"; } +.bi-heart-arrow::before { content: "\f76d"; } +.bi-heart-pulse-fill::before { content: "\f76e"; } +.bi-heart-pulse::before { content: "\f76f"; } +.bi-heartbreak-fill::before { content: "\f770"; } +.bi-heartbreak::before { content: "\f771"; } +.bi-hearts::before { content: "\f772"; } +.bi-hospital-fill::before { content: "\f773"; } +.bi-hospital::before { content: "\f774"; } +.bi-house-heart-fill::before { content: "\f775"; } +.bi-house-heart::before { content: "\f776"; } +.bi-incognito::before { content: "\f777"; } +.bi-magnet-fill::before { content: "\f778"; } +.bi-magnet::before { content: "\f779"; } +.bi-person-heart::before { content: "\f77a"; } +.bi-person-hearts::before { content: "\f77b"; } +.bi-phone-flip::before { content: "\f77c"; } +.bi-plugin::before { content: "\f77d"; } +.bi-postage-fill::before { content: "\f77e"; } +.bi-postage-heart-fill::before { content: "\f77f"; } +.bi-postage-heart::before { content: "\f780"; } +.bi-postage::before { content: "\f781"; } +.bi-postcard-fill::before { content: "\f782"; } +.bi-postcard-heart-fill::before { content: "\f783"; } +.bi-postcard-heart::before { content: "\f784"; } +.bi-postcard::before { content: "\f785"; } +.bi-search-heart-fill::before { content: "\f786"; } +.bi-search-heart::before { content: "\f787"; } +.bi-sliders2-vertical::before { content: "\f788"; } +.bi-sliders2::before { content: "\f789"; } +.bi-trash3-fill::before { content: "\f78a"; } +.bi-trash3::before { content: "\f78b"; } +.bi-valentine::before { content: "\f78c"; } +.bi-valentine2::before { content: "\f78d"; } +.bi-wrench-adjustable-circle-fill::before { content: "\f78e"; } +.bi-wrench-adjustable-circle::before { content: "\f78f"; } +.bi-wrench-adjustable::before { content: "\f790"; } +.bi-filetype-json::before { content: "\f791"; } +.bi-filetype-pptx::before { content: "\f792"; } +.bi-filetype-xlsx::before { content: "\f793"; } +.bi-1-circle-fill::before { content: "\f796"; } +.bi-1-circle::before { content: "\f797"; } +.bi-1-square-fill::before { content: "\f798"; } +.bi-1-square::before { content: "\f799"; } +.bi-2-circle-fill::before { content: "\f79c"; } +.bi-2-circle::before { content: "\f79d"; } +.bi-2-square-fill::before { content: "\f79e"; } +.bi-2-square::before { content: "\f79f"; } +.bi-3-circle-fill::before { content: "\f7a2"; } +.bi-3-circle::before { content: "\f7a3"; } +.bi-3-square-fill::before { content: "\f7a4"; } +.bi-3-square::before { content: "\f7a5"; } +.bi-4-circle-fill::before { content: "\f7a8"; } +.bi-4-circle::before { content: "\f7a9"; } +.bi-4-square-fill::before { content: "\f7aa"; } +.bi-4-square::before { content: "\f7ab"; } +.bi-5-circle-fill::before { content: "\f7ae"; } +.bi-5-circle::before { content: "\f7af"; } +.bi-5-square-fill::before { content: "\f7b0"; } +.bi-5-square::before { content: "\f7b1"; } +.bi-6-circle-fill::before { content: "\f7b4"; } +.bi-6-circle::before { content: "\f7b5"; } +.bi-6-square-fill::before { content: "\f7b6"; } +.bi-6-square::before { content: "\f7b7"; } +.bi-7-circle-fill::before { content: "\f7ba"; } +.bi-7-circle::before { content: "\f7bb"; } +.bi-7-square-fill::before { content: "\f7bc"; } +.bi-7-square::before { content: "\f7bd"; } +.bi-8-circle-fill::before { content: "\f7c0"; } +.bi-8-circle::before { content: "\f7c1"; } +.bi-8-square-fill::before { content: "\f7c2"; } +.bi-8-square::before { content: "\f7c3"; } +.bi-9-circle-fill::before { content: "\f7c6"; } +.bi-9-circle::before { content: "\f7c7"; } +.bi-9-square-fill::before { content: "\f7c8"; } +.bi-9-square::before { content: "\f7c9"; } +.bi-airplane-engines-fill::before { content: "\f7ca"; } +.bi-airplane-engines::before { content: "\f7cb"; } +.bi-airplane-fill::before { content: "\f7cc"; } +.bi-airplane::before { content: "\f7cd"; } +.bi-alexa::before { content: "\f7ce"; } +.bi-alipay::before { content: "\f7cf"; } +.bi-android::before { content: "\f7d0"; } +.bi-android2::before { content: "\f7d1"; } +.bi-box-fill::before { content: "\f7d2"; } +.bi-box-seam-fill::before { content: "\f7d3"; } +.bi-browser-chrome::before { content: "\f7d4"; } +.bi-browser-edge::before { content: "\f7d5"; } +.bi-browser-firefox::before { content: "\f7d6"; } +.bi-browser-safari::before { content: "\f7d7"; } +.bi-c-circle-fill::before { content: "\f7da"; } +.bi-c-circle::before { content: "\f7db"; } +.bi-c-square-fill::before { content: "\f7dc"; } +.bi-c-square::before { content: "\f7dd"; } +.bi-capsule-pill::before { content: "\f7de"; } +.bi-capsule::before { content: "\f7df"; } +.bi-car-front-fill::before { content: "\f7e0"; } +.bi-car-front::before { content: "\f7e1"; } +.bi-cassette-fill::before { content: "\f7e2"; } +.bi-cassette::before { content: "\f7e3"; } +.bi-cc-circle-fill::before { content: "\f7e6"; } +.bi-cc-circle::before { content: "\f7e7"; } +.bi-cc-square-fill::before { content: "\f7e8"; } +.bi-cc-square::before { content: "\f7e9"; } +.bi-cup-hot-fill::before { content: "\f7ea"; } +.bi-cup-hot::before { content: "\f7eb"; } +.bi-currency-rupee::before { content: "\f7ec"; } +.bi-dropbox::before { content: "\f7ed"; } +.bi-escape::before { content: "\f7ee"; } +.bi-fast-forward-btn-fill::before { content: "\f7ef"; } +.bi-fast-forward-btn::before { content: "\f7f0"; } +.bi-fast-forward-circle-fill::before { content: "\f7f1"; } +.bi-fast-forward-circle::before { content: "\f7f2"; } +.bi-fast-forward-fill::before { content: "\f7f3"; } +.bi-fast-forward::before { content: "\f7f4"; } +.bi-filetype-sql::before { content: "\f7f5"; } +.bi-fire::before { content: "\f7f6"; } +.bi-google-play::before { content: "\f7f7"; } +.bi-h-circle-fill::before { content: "\f7fa"; } +.bi-h-circle::before { content: "\f7fb"; } +.bi-h-square-fill::before { content: "\f7fc"; } +.bi-h-square::before { content: "\f7fd"; } +.bi-indent::before { content: "\f7fe"; } +.bi-lungs-fill::before { content: "\f7ff"; } +.bi-lungs::before { content: "\f800"; } +.bi-microsoft-teams::before { content: "\f801"; } +.bi-p-circle-fill::before { content: "\f804"; } +.bi-p-circle::before { content: "\f805"; } +.bi-p-square-fill::before { content: "\f806"; } +.bi-p-square::before { content: "\f807"; } +.bi-pass-fill::before { content: "\f808"; } +.bi-pass::before { content: "\f809"; } +.bi-prescription::before { content: "\f80a"; } +.bi-prescription2::before { content: "\f80b"; } +.bi-r-circle-fill::before { content: "\f80e"; } +.bi-r-circle::before { content: "\f80f"; } +.bi-r-square-fill::before { content: "\f810"; } +.bi-r-square::before { content: "\f811"; } +.bi-repeat-1::before { content: "\f812"; } +.bi-repeat::before { content: "\f813"; } +.bi-rewind-btn-fill::before { content: "\f814"; } +.bi-rewind-btn::before { content: "\f815"; } +.bi-rewind-circle-fill::before { content: "\f816"; } +.bi-rewind-circle::before { content: "\f817"; } +.bi-rewind-fill::before { content: "\f818"; } +.bi-rewind::before { content: "\f819"; } +.bi-train-freight-front-fill::before { content: "\f81a"; } +.bi-train-freight-front::before { content: "\f81b"; } +.bi-train-front-fill::before { content: "\f81c"; } +.bi-train-front::before { content: "\f81d"; } +.bi-train-lightrail-front-fill::before { content: "\f81e"; } +.bi-train-lightrail-front::before { content: "\f81f"; } +.bi-truck-front-fill::before { content: "\f820"; } +.bi-truck-front::before { content: "\f821"; } +.bi-ubuntu::before { content: "\f822"; } +.bi-unindent::before { content: "\f823"; } +.bi-unity::before { content: "\f824"; } +.bi-universal-access-circle::before { content: "\f825"; } +.bi-universal-access::before { content: "\f826"; } +.bi-virus::before { content: "\f827"; } +.bi-virus2::before { content: "\f828"; } +.bi-wechat::before { content: "\f829"; } +.bi-yelp::before { content: "\f82a"; } +.bi-sign-stop-fill::before { content: "\f82b"; } +.bi-sign-stop-lights-fill::before { content: "\f82c"; } +.bi-sign-stop-lights::before { content: "\f82d"; } +.bi-sign-stop::before { content: "\f82e"; } +.bi-sign-turn-left-fill::before { content: "\f82f"; } +.bi-sign-turn-left::before { content: "\f830"; } +.bi-sign-turn-right-fill::before { content: "\f831"; } +.bi-sign-turn-right::before { content: "\f832"; } +.bi-sign-turn-slight-left-fill::before { content: "\f833"; } +.bi-sign-turn-slight-left::before { content: "\f834"; } +.bi-sign-turn-slight-right-fill::before { content: "\f835"; } +.bi-sign-turn-slight-right::before { content: "\f836"; } +.bi-sign-yield-fill::before { content: "\f837"; } +.bi-sign-yield::before { content: "\f838"; } +.bi-ev-station-fill::before { content: "\f839"; } +.bi-ev-station::before { content: "\f83a"; } +.bi-fuel-pump-diesel-fill::before { content: "\f83b"; } +.bi-fuel-pump-diesel::before { content: "\f83c"; } +.bi-fuel-pump-fill::before { content: "\f83d"; } +.bi-fuel-pump::before { content: "\f83e"; } +.bi-0-circle-fill::before { content: "\f83f"; } +.bi-0-circle::before { content: "\f840"; } +.bi-0-square-fill::before { content: "\f841"; } +.bi-0-square::before { content: "\f842"; } +.bi-rocket-fill::before { content: "\f843"; } +.bi-rocket-takeoff-fill::before { content: "\f844"; } +.bi-rocket-takeoff::before { content: "\f845"; } +.bi-rocket::before { content: "\f846"; } +.bi-stripe::before { content: "\f847"; } +.bi-subscript::before { content: "\f848"; } +.bi-superscript::before { content: "\f849"; } +.bi-trello::before { content: "\f84a"; } +.bi-envelope-at-fill::before { content: "\f84b"; } +.bi-envelope-at::before { content: "\f84c"; } +.bi-regex::before { content: "\f84d"; } +.bi-text-wrap::before { content: "\f84e"; } +.bi-sign-dead-end-fill::before { content: "\f84f"; } +.bi-sign-dead-end::before { content: "\f850"; } +.bi-sign-do-not-enter-fill::before { content: "\f851"; } +.bi-sign-do-not-enter::before { content: "\f852"; } +.bi-sign-intersection-fill::before { content: "\f853"; } +.bi-sign-intersection-side-fill::before { content: "\f854"; } +.bi-sign-intersection-side::before { content: "\f855"; } +.bi-sign-intersection-t-fill::before { content: "\f856"; } +.bi-sign-intersection-t::before { content: "\f857"; } +.bi-sign-intersection-y-fill::before { content: "\f858"; } +.bi-sign-intersection-y::before { content: "\f859"; } +.bi-sign-intersection::before { content: "\f85a"; } +.bi-sign-merge-left-fill::before { content: "\f85b"; } +.bi-sign-merge-left::before { content: "\f85c"; } +.bi-sign-merge-right-fill::before { content: "\f85d"; } +.bi-sign-merge-right::before { content: "\f85e"; } +.bi-sign-no-left-turn-fill::before { content: "\f85f"; } +.bi-sign-no-left-turn::before { content: "\f860"; } +.bi-sign-no-parking-fill::before { content: "\f861"; } +.bi-sign-no-parking::before { content: "\f862"; } +.bi-sign-no-right-turn-fill::before { content: "\f863"; } +.bi-sign-no-right-turn::before { content: "\f864"; } +.bi-sign-railroad-fill::before { content: "\f865"; } +.bi-sign-railroad::before { content: "\f866"; } +.bi-building-add::before { content: "\f867"; } +.bi-building-check::before { content: "\f868"; } +.bi-building-dash::before { content: "\f869"; } +.bi-building-down::before { content: "\f86a"; } +.bi-building-exclamation::before { content: "\f86b"; } +.bi-building-fill-add::before { content: "\f86c"; } +.bi-building-fill-check::before { content: "\f86d"; } +.bi-building-fill-dash::before { content: "\f86e"; } +.bi-building-fill-down::before { content: "\f86f"; } +.bi-building-fill-exclamation::before { content: "\f870"; } +.bi-building-fill-gear::before { content: "\f871"; } +.bi-building-fill-lock::before { content: "\f872"; } +.bi-building-fill-slash::before { content: "\f873"; } +.bi-building-fill-up::before { content: "\f874"; } +.bi-building-fill-x::before { content: "\f875"; } +.bi-building-fill::before { content: "\f876"; } +.bi-building-gear::before { content: "\f877"; } +.bi-building-lock::before { content: "\f878"; } +.bi-building-slash::before { content: "\f879"; } +.bi-building-up::before { content: "\f87a"; } +.bi-building-x::before { content: "\f87b"; } +.bi-buildings-fill::before { content: "\f87c"; } +.bi-buildings::before { content: "\f87d"; } +.bi-bus-front-fill::before { content: "\f87e"; } +.bi-bus-front::before { content: "\f87f"; } +.bi-ev-front-fill::before { content: "\f880"; } +.bi-ev-front::before { content: "\f881"; } +.bi-globe-americas::before { content: "\f882"; } +.bi-globe-asia-australia::before { content: "\f883"; } +.bi-globe-central-south-asia::before { content: "\f884"; } +.bi-globe-europe-africa::before { content: "\f885"; } +.bi-house-add-fill::before { content: "\f886"; } +.bi-house-add::before { content: "\f887"; } +.bi-house-check-fill::before { content: "\f888"; } +.bi-house-check::before { content: "\f889"; } +.bi-house-dash-fill::before { content: "\f88a"; } +.bi-house-dash::before { content: "\f88b"; } +.bi-house-down-fill::before { content: "\f88c"; } +.bi-house-down::before { content: "\f88d"; } +.bi-house-exclamation-fill::before { content: "\f88e"; } +.bi-house-exclamation::before { content: "\f88f"; } +.bi-house-gear-fill::before { content: "\f890"; } +.bi-house-gear::before { content: "\f891"; } +.bi-house-lock-fill::before { content: "\f892"; } +.bi-house-lock::before { content: "\f893"; } +.bi-house-slash-fill::before { content: "\f894"; } +.bi-house-slash::before { content: "\f895"; } +.bi-house-up-fill::before { content: "\f896"; } +.bi-house-up::before { content: "\f897"; } +.bi-house-x-fill::before { content: "\f898"; } +.bi-house-x::before { content: "\f899"; } +.bi-person-add::before { content: "\f89a"; } +.bi-person-down::before { content: "\f89b"; } +.bi-person-exclamation::before { content: "\f89c"; } +.bi-person-fill-add::before { content: "\f89d"; } +.bi-person-fill-check::before { content: "\f89e"; } +.bi-person-fill-dash::before { content: "\f89f"; } +.bi-person-fill-down::before { content: "\f8a0"; } +.bi-person-fill-exclamation::before { content: "\f8a1"; } +.bi-person-fill-gear::before { content: "\f8a2"; } +.bi-person-fill-lock::before { content: "\f8a3"; } +.bi-person-fill-slash::before { content: "\f8a4"; } +.bi-person-fill-up::before { content: "\f8a5"; } +.bi-person-fill-x::before { content: "\f8a6"; } +.bi-person-gear::before { content: "\f8a7"; } +.bi-person-lock::before { content: "\f8a8"; } +.bi-person-slash::before { content: "\f8a9"; } +.bi-person-up::before { content: "\f8aa"; } +.bi-scooter::before { content: "\f8ab"; } +.bi-taxi-front-fill::before { content: "\f8ac"; } +.bi-taxi-front::before { content: "\f8ad"; } +.bi-amd::before { content: "\f8ae"; } +.bi-database-add::before { content: "\f8af"; } +.bi-database-check::before { content: "\f8b0"; } +.bi-database-dash::before { content: "\f8b1"; } +.bi-database-down::before { content: "\f8b2"; } +.bi-database-exclamation::before { content: "\f8b3"; } +.bi-database-fill-add::before { content: "\f8b4"; } +.bi-database-fill-check::before { content: "\f8b5"; } +.bi-database-fill-dash::before { content: "\f8b6"; } +.bi-database-fill-down::before { content: "\f8b7"; } +.bi-database-fill-exclamation::before { content: "\f8b8"; } +.bi-database-fill-gear::before { content: "\f8b9"; } +.bi-database-fill-lock::before { content: "\f8ba"; } +.bi-database-fill-slash::before { content: "\f8bb"; } +.bi-database-fill-up::before { content: "\f8bc"; } +.bi-database-fill-x::before { content: "\f8bd"; } +.bi-database-fill::before { content: "\f8be"; } +.bi-database-gear::before { content: "\f8bf"; } +.bi-database-lock::before { content: "\f8c0"; } +.bi-database-slash::before { content: "\f8c1"; } +.bi-database-up::before { content: "\f8c2"; } +.bi-database-x::before { content: "\f8c3"; } +.bi-database::before { content: "\f8c4"; } +.bi-houses-fill::before { content: "\f8c5"; } +.bi-houses::before { content: "\f8c6"; } +.bi-nvidia::before { content: "\f8c7"; } +.bi-person-vcard-fill::before { content: "\f8c8"; } +.bi-person-vcard::before { content: "\f8c9"; } +.bi-sina-weibo::before { content: "\f8ca"; } +.bi-tencent-qq::before { content: "\f8cb"; } +.bi-wikipedia::before { content: "\f8cc"; } +.bi-alphabet-uppercase::before { content: "\f2a5"; } +.bi-alphabet::before { content: "\f68a"; } +.bi-amazon::before { content: "\f68d"; } +.bi-arrows-collapse-vertical::before { content: "\f690"; } +.bi-arrows-expand-vertical::before { content: "\f695"; } +.bi-arrows-vertical::before { content: "\f698"; } +.bi-arrows::before { content: "\f6a2"; } +.bi-ban-fill::before { content: "\f6a3"; } +.bi-ban::before { content: "\f6b6"; } +.bi-bing::before { content: "\f6c2"; } +.bi-cake::before { content: "\f6e0"; } +.bi-cake2::before { content: "\f6ed"; } +.bi-cookie::before { content: "\f6ee"; } +.bi-copy::before { content: "\f759"; } +.bi-crosshair::before { content: "\f769"; } +.bi-crosshair2::before { content: "\f794"; } +.bi-emoji-astonished-fill::before { content: "\f795"; } +.bi-emoji-astonished::before { content: "\f79a"; } +.bi-emoji-grimace-fill::before { content: "\f79b"; } +.bi-emoji-grimace::before { content: "\f7a0"; } +.bi-emoji-grin-fill::before { content: "\f7a1"; } +.bi-emoji-grin::before { content: "\f7a6"; } +.bi-emoji-surprise-fill::before { content: "\f7a7"; } +.bi-emoji-surprise::before { content: "\f7ac"; } +.bi-emoji-tear-fill::before { content: "\f7ad"; } +.bi-emoji-tear::before { content: "\f7b2"; } +.bi-envelope-arrow-down-fill::before { content: "\f7b3"; } +.bi-envelope-arrow-down::before { content: "\f7b8"; } +.bi-envelope-arrow-up-fill::before { content: "\f7b9"; } +.bi-envelope-arrow-up::before { content: "\f7be"; } +.bi-feather::before { content: "\f7bf"; } +.bi-feather2::before { content: "\f7c4"; } +.bi-floppy-fill::before { content: "\f7c5"; } +.bi-floppy::before { content: "\f7d8"; } +.bi-floppy2-fill::before { content: "\f7d9"; } +.bi-floppy2::before { content: "\f7e4"; } +.bi-gitlab::before { content: "\f7e5"; } +.bi-highlighter::before { content: "\f7f8"; } +.bi-marker-tip::before { content: "\f802"; } +.bi-nvme-fill::before { content: "\f803"; } +.bi-nvme::before { content: "\f80c"; } +.bi-opencollective::before { content: "\f80d"; } +.bi-pci-card-network::before { content: "\f8cd"; } +.bi-pci-card-sound::before { content: "\f8ce"; } +.bi-radar::before { content: "\f8cf"; } +.bi-send-arrow-down-fill::before { content: "\f8d0"; } +.bi-send-arrow-down::before { content: "\f8d1"; } +.bi-send-arrow-up-fill::before { content: "\f8d2"; } +.bi-send-arrow-up::before { content: "\f8d3"; } +.bi-sim-slash-fill::before { content: "\f8d4"; } +.bi-sim-slash::before { content: "\f8d5"; } +.bi-sourceforge::before { content: "\f8d6"; } +.bi-substack::before { content: "\f8d7"; } +.bi-threads-fill::before { content: "\f8d8"; } +.bi-threads::before { content: "\f8d9"; } +.bi-transparency::before { content: "\f8da"; } +.bi-twitter-x::before { content: "\f8db"; } +.bi-type-h4::before { content: "\f8dc"; } +.bi-type-h5::before { content: "\f8dd"; } +.bi-type-h6::before { content: "\f8de"; } +.bi-backpack-fill::before { content: "\f8df"; } +.bi-backpack::before { content: "\f8e0"; } +.bi-backpack2-fill::before { content: "\f8e1"; } +.bi-backpack2::before { content: "\f8e2"; } +.bi-backpack3-fill::before { content: "\f8e3"; } +.bi-backpack3::before { content: "\f8e4"; } +.bi-backpack4-fill::before { content: "\f8e5"; } +.bi-backpack4::before { content: "\f8e6"; } +.bi-brilliance::before { content: "\f8e7"; } +.bi-cake-fill::before { content: "\f8e8"; } +.bi-cake2-fill::before { content: "\f8e9"; } +.bi-duffle-fill::before { content: "\f8ea"; } +.bi-duffle::before { content: "\f8eb"; } +.bi-exposure::before { content: "\f8ec"; } +.bi-gender-neuter::before { content: "\f8ed"; } +.bi-highlights::before { content: "\f8ee"; } +.bi-luggage-fill::before { content: "\f8ef"; } +.bi-luggage::before { content: "\f8f0"; } +.bi-mailbox-flag::before { content: "\f8f1"; } +.bi-mailbox2-flag::before { content: "\f8f2"; } +.bi-noise-reduction::before { content: "\f8f3"; } +.bi-passport-fill::before { content: "\f8f4"; } +.bi-passport::before { content: "\f8f5"; } +.bi-person-arms-up::before { content: "\f8f6"; } +.bi-person-raised-hand::before { content: "\f8f7"; } +.bi-person-standing-dress::before { content: "\f8f8"; } +.bi-person-standing::before { content: "\f8f9"; } +.bi-person-walking::before { content: "\f8fa"; } +.bi-person-wheelchair::before { content: "\f8fb"; } +.bi-shadows::before { content: "\f8fc"; } +.bi-suitcase-fill::before { content: "\f8fd"; } +.bi-suitcase-lg-fill::before { content: "\f8fe"; } +.bi-suitcase-lg::before { content: "\f8ff"; } +.bi-suitcase::before { content: "\f900"; } +.bi-suitcase2-fill::before { content: "\f901"; } +.bi-suitcase2::before { content: "\f902"; } +.bi-vignette::before { content: "\f903"; } diff --git a/site_libs/bootstrap/bootstrap-icons.woff b/site_libs/bootstrap/bootstrap-icons.woff new file mode 100644 index 0000000..dbeeb05 Binary files /dev/null and b/site_libs/bootstrap/bootstrap-icons.woff differ diff --git a/site_libs/bootstrap/bootstrap.min.css b/site_libs/bootstrap/bootstrap.min.css new file mode 100644 index 0000000..988da14 --- /dev/null +++ b/site_libs/bootstrap/bootstrap.min.css @@ -0,0 +1,12 @@ +/*! + * Bootstrap v5.3.1 (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */@import"https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;700&display=swap";:root,[data-bs-theme=light]{--bs-blue: #2780e3;--bs-indigo: #6610f2;--bs-purple: #613d7c;--bs-pink: #e83e8c;--bs-red: #ff0039;--bs-orange: #f0ad4e;--bs-yellow: #ff7518;--bs-green: #3fb618;--bs-teal: #20c997;--bs-cyan: #9954bb;--bs-black: #000;--bs-white: #fff;--bs-gray: #6c757d;--bs-gray-dark: #343a40;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #343a40;--bs-gray-900: #212529;--bs-default: #343a40;--bs-primary: #2780e3;--bs-secondary: #343a40;--bs-success: #3fb618;--bs-info: #9954bb;--bs-warning: #ff7518;--bs-danger: #ff0039;--bs-light: #f8f9fa;--bs-dark: #343a40;--bs-default-rgb: 52, 58, 64;--bs-primary-rgb: 39, 128, 227;--bs-secondary-rgb: 52, 58, 64;--bs-success-rgb: 63, 182, 24;--bs-info-rgb: 153, 84, 187;--bs-warning-rgb: 255, 117, 24;--bs-danger-rgb: 255, 0, 57;--bs-light-rgb: 248, 249, 250;--bs-dark-rgb: 52, 58, 64;--bs-primary-text-emphasis: #10335b;--bs-secondary-text-emphasis: #15171a;--bs-success-text-emphasis: #19490a;--bs-info-text-emphasis: #3d224b;--bs-warning-text-emphasis: #662f0a;--bs-danger-text-emphasis: #660017;--bs-light-text-emphasis: #495057;--bs-dark-text-emphasis: #495057;--bs-primary-bg-subtle: #d4e6f9;--bs-secondary-bg-subtle: #d6d8d9;--bs-success-bg-subtle: #d9f0d1;--bs-info-bg-subtle: #ebddf1;--bs-warning-bg-subtle: #ffe3d1;--bs-danger-bg-subtle: #ffccd7;--bs-light-bg-subtle: #fcfcfd;--bs-dark-bg-subtle: #ced4da;--bs-primary-border-subtle: #a9ccf4;--bs-secondary-border-subtle: #aeb0b3;--bs-success-border-subtle: #b2e2a3;--bs-info-border-subtle: #d6bbe4;--bs-warning-border-subtle: #ffc8a3;--bs-danger-border-subtle: #ff99b0;--bs-light-border-subtle: #e9ecef;--bs-dark-border-subtle: #adb5bd;--bs-white-rgb: 255, 255, 255;--bs-black-rgb: 0, 0, 0;--bs-font-sans-serif: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";--bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;--bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0));--bs-root-font-size: 17px;--bs-body-font-family: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";--bs-body-font-size:1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #343a40;--bs-body-color-rgb: 52, 58, 64;--bs-body-bg: #fff;--bs-body-bg-rgb: 255, 255, 255;--bs-emphasis-color: #000;--bs-emphasis-color-rgb: 0, 0, 0;--bs-secondary-color: rgba(52, 58, 64, 0.75);--bs-secondary-color-rgb: 52, 58, 64;--bs-secondary-bg: #e9ecef;--bs-secondary-bg-rgb: 233, 236, 239;--bs-tertiary-color: rgba(52, 58, 64, 0.5);--bs-tertiary-color-rgb: 52, 58, 64;--bs-tertiary-bg: #f8f9fa;--bs-tertiary-bg-rgb: 248, 249, 250;--bs-heading-color: inherit;--bs-link-color: #2761e3;--bs-link-color-rgb: 39, 97, 227;--bs-link-decoration: underline;--bs-link-hover-color: #1f4eb6;--bs-link-hover-color-rgb: 31, 78, 182;--bs-code-color: #7d12ba;--bs-highlight-bg: #ffe3d1;--bs-border-width: 1px;--bs-border-style: solid;--bs-border-color: #dee2e6;--bs-border-color-translucent: rgba(0, 0, 0, 0.175);--bs-border-radius: 0.25rem;--bs-border-radius-sm: 0.2em;--bs-border-radius-lg: 0.5rem;--bs-border-radius-xl: 1rem;--bs-border-radius-xxl: 2rem;--bs-border-radius-2xl: var(--bs-border-radius-xxl);--bs-border-radius-pill: 50rem;--bs-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-box-shadow-sm: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-box-shadow-lg: 0 1rem 3rem rgba(0, 0, 0, 0.175);--bs-box-shadow-inset: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-focus-ring-width: 0.25rem;--bs-focus-ring-opacity: 0.25;--bs-focus-ring-color: rgba(39, 128, 227, 0.25);--bs-form-valid-color: #3fb618;--bs-form-valid-border-color: #3fb618;--bs-form-invalid-color: #ff0039;--bs-form-invalid-border-color: #ff0039}[data-bs-theme=dark]{color-scheme:dark;--bs-body-color: #dee2e6;--bs-body-color-rgb: 222, 226, 230;--bs-body-bg: #212529;--bs-body-bg-rgb: 33, 37, 41;--bs-emphasis-color: #fff;--bs-emphasis-color-rgb: 255, 255, 255;--bs-secondary-color: rgba(222, 226, 230, 0.75);--bs-secondary-color-rgb: 222, 226, 230;--bs-secondary-bg: #343a40;--bs-secondary-bg-rgb: 52, 58, 64;--bs-tertiary-color: rgba(222, 226, 230, 0.5);--bs-tertiary-color-rgb: 222, 226, 230;--bs-tertiary-bg: #2b3035;--bs-tertiary-bg-rgb: 43, 48, 53;--bs-primary-text-emphasis: #7db3ee;--bs-secondary-text-emphasis: #85898c;--bs-success-text-emphasis: #8cd374;--bs-info-text-emphasis: #c298d6;--bs-warning-text-emphasis: #ffac74;--bs-danger-text-emphasis: #ff6688;--bs-light-text-emphasis: #f8f9fa;--bs-dark-text-emphasis: #dee2e6;--bs-primary-bg-subtle: #081a2d;--bs-secondary-bg-subtle: #0a0c0d;--bs-success-bg-subtle: #0d2405;--bs-info-bg-subtle: #1f1125;--bs-warning-bg-subtle: #331705;--bs-danger-bg-subtle: #33000b;--bs-light-bg-subtle: #343a40;--bs-dark-bg-subtle: #1a1d20;--bs-primary-border-subtle: #174d88;--bs-secondary-border-subtle: #1f2326;--bs-success-border-subtle: #266d0e;--bs-info-border-subtle: #5c3270;--bs-warning-border-subtle: #99460e;--bs-danger-border-subtle: #990022;--bs-light-border-subtle: #495057;--bs-dark-border-subtle: #343a40;--bs-heading-color: inherit;--bs-link-color: #7db3ee;--bs-link-hover-color: #97c2f1;--bs-link-color-rgb: 125, 179, 238;--bs-link-hover-color-rgb: 151, 194, 241;--bs-code-color: white;--bs-border-color: #495057;--bs-border-color-translucent: rgba(255, 255, 255, 0.15);--bs-form-valid-color: #8cd374;--bs-form-valid-border-color: #8cd374;--bs-form-invalid-color: #ff6688;--bs-form-invalid-border-color: #ff6688}*,*::before,*::after{box-sizing:border-box}:root{font-size:var(--bs-root-font-size)}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;border:0;border-top:1px solid;opacity:.25}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2;color:var(--bs-heading-color)}h1,.h1{font-size:calc(1.325rem + 0.9vw)}@media(min-width: 1200px){h1,.h1{font-size:2rem}}h2,.h2{font-size:calc(1.29rem + 0.48vw)}@media(min-width: 1200px){h2,.h2{font-size:1.65rem}}h3,.h3{font-size:calc(1.27rem + 0.24vw)}@media(min-width: 1200px){h3,.h3{font-size:1.45rem}}h4,.h4{font-size:1.25rem}h5,.h5{font-size:1.1rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:0.875em}mark,.mark{padding:.1875em;background-color:var(--bs-highlight-bg)}sub,sup{position:relative;font-size:0.75em;line-height:0;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}a{color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 1));text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{--bs-link-color-rgb: var(--bs-link-hover-color-rgb)}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:0.875em;color:#000;background-color:#f8f9fa;padding:.5rem;border:1px solid var(--bs-border-color, #dee2e6)}pre code{background-color:rgba(0,0,0,0);font-size:inherit;color:inherit;word-break:normal}code{font-size:0.875em;color:var(--bs-code-color);background-color:#f8f9fa;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.4rem .4rem;font-size:0.875em;color:#fff;background-color:#343a40}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:rgba(52,58,64,.75);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type=date]):not([type=datetime-local]):not([type=month]):not([type=week]):not([type=time])::-webkit-calendar-picker-indicator{display:none !important}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + 0.3vw);line-height:inherit}@media(min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:0.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:0.875em;color:#6c757d}.blockquote-footer::before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:0.875em;color:rgba(52,58,64,.75)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x)*.5);padding-left:calc(var(--bs-gutter-x)*.5);margin-right:auto;margin-left:auto}@media(min-width: 576px){.container-sm,.container{max-width:540px}}@media(min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media(min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media(min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media(min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media(min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media(min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media(min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media(min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media(min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: #343a40;--bs-table-bg: #fff;--bs-table-border-color: #dee2e6;--bs-table-accent-bg: transparent;--bs-table-striped-color: #343a40;--bs-table-striped-bg: rgba(0, 0, 0, 0.05);--bs-table-active-color: #343a40;--bs-table-active-bg: rgba(0, 0, 0, 0.1);--bs-table-hover-color: #343a40;--bs-table-hover-bg: rgba(0, 0, 0, 0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:1px;box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(1px*2) solid #b2bac1}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:1px 0}.table-bordered>:not(caption)>*>*{border-width:0 1px}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #d4e6f9;--bs-table-border-color: #bfcfe0;--bs-table-striped-bg: #c9dbed;--bs-table-striped-color: #000;--bs-table-active-bg: #bfcfe0;--bs-table-active-color: #000;--bs-table-hover-bg: #c4d5e6;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #d6d8d9;--bs-table-border-color: #c1c2c3;--bs-table-striped-bg: #cbcdce;--bs-table-striped-color: #000;--bs-table-active-bg: #c1c2c3;--bs-table-active-color: #000;--bs-table-hover-bg: #c6c8c9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d9f0d1;--bs-table-border-color: #c3d8bc;--bs-table-striped-bg: #cee4c7;--bs-table-striped-color: #000;--bs-table-active-bg: #c3d8bc;--bs-table-active-color: #000;--bs-table-hover-bg: #c9dec1;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #ebddf1;--bs-table-border-color: #d4c7d9;--bs-table-striped-bg: #dfd2e5;--bs-table-striped-color: #000;--bs-table-active-bg: #d4c7d9;--bs-table-active-color: #000;--bs-table-hover-bg: #d9ccdf;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #ffe3d1;--bs-table-border-color: #e6ccbc;--bs-table-striped-bg: #f2d8c7;--bs-table-striped-color: #000;--bs-table-active-bg: #e6ccbc;--bs-table-active-color: #000;--bs-table-hover-bg: #ecd2c1;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #ffccd7;--bs-table-border-color: #e6b8c2;--bs-table-striped-bg: #f2c2cc;--bs-table-striped-color: #000;--bs-table-active-bg: #e6b8c2;--bs-table-active-color: #000;--bs-table-hover-bg: #ecbdc7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #fff;--bs-table-bg: #343a40;--bs-table-border-color: #484e53;--bs-table-striped-bg: #3e444a;--bs-table-striped-color: #fff;--bs-table-active-bg: #484e53;--bs-table-active-color: #fff;--bs-table-hover-bg: #43494e;--bs-table-hover-color: #fff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media(max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(0.375rem + 1px);padding-bottom:calc(0.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(0.5rem + 1px);padding-bottom:calc(0.5rem + 1px);font-size:1.25rem}.col-form-label-sm{padding-top:calc(0.25rem + 1px);padding-bottom:calc(0.25rem + 1px);font-size:0.875rem}.form-text{margin-top:.25rem;font-size:0.875em;color:rgba(52,58,64,.75)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-clip:padding-box;border:1px solid #dee2e6;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type=file]{overflow:hidden}.form-control[type=file]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:#343a40;background-color:#fff;border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:rgba(52,58,64,.75);opacity:1}.form-control:disabled{background-color:#e9ecef;opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#343a40;background-color:#f8f9fa;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:#e9ecef}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:#343a40;background-color:rgba(0,0,0,0);border:solid rgba(0,0,0,0);border-width:1px 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2));padding:.25rem .5rem;font-size:0.875rem}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2));padding:.5rem 1rem;font-size:1.25rem}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + 0.75rem + calc(1px * 2))}textarea.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2))}.form-control-color{width:3rem;height:calc(1.5em + 0.75rem + calc(1px * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important}.form-control-color::-webkit-color-swatch{border:0 !important}.form-control-color.form-control-sm{height:calc(1.5em + 0.5rem + calc(1px * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(1px * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:1px solid #dee2e6;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:#e9ecef}.form-select:-moz-focusring{color:rgba(0,0,0,0);text-shadow:0 0 0 #343a40}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:0.875rem}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}[data-bs-theme=dark] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: #fff;width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:1px solid #dee2e6;print-color-adjust:exact}.form-check-input[type=radio],.shiny-input-container .checkbox input[type=radio],.shiny-input-container .checkbox-inline input[type=radio],.shiny-input-container .radio input[type=radio],.shiny-input-container .radio-inline input[type=radio]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#2780e3;border-color:#2780e3}.form-check-input:checked[type=checkbox],.shiny-input-container .checkbox input:checked[type=checkbox],.shiny-input-container .checkbox-inline input:checked[type=checkbox],.shiny-input-container .radio input:checked[type=checkbox],.shiny-input-container .radio-inline input:checked[type=checkbox]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type=radio],.shiny-input-container .checkbox input:checked[type=radio],.shiny-input-container .checkbox-inline input:checked[type=radio],.shiny-input-container .radio input:checked[type=radio],.shiny-input-container .radio-inline input:checked[type=radio]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e")}.form-check-input[type=checkbox]:indeterminate,.shiny-input-container .checkbox input[type=checkbox]:indeterminate,.shiny-input-container .checkbox-inline input[type=checkbox]:indeterminate,.shiny-input-container .radio input[type=checkbox]:indeterminate,.shiny-input-container .radio-inline input[type=checkbox]:indeterminate{background-color:#2780e3;border-color:#2780e3;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;transition:background-position .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2393c0f1'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme=dark] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255, 255, 255, 0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:rgba(0,0,0,0)}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-0.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#bed9f7}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0)}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#bed9f7}.form-range::-moz-range-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0)}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:rgba(52,58,64,.75)}.form-range:disabled::-moz-range-thumb{background-color:rgba(52,58,64,.75)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(1px * 2));min-height:calc(3.5rem + calc(1px * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:1px solid rgba(0,0,0,0);transform-origin:0 0;transition:opacity .1s ease-in-out,transform .1s ease-in-out}@media(prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:rgba(0,0,0,0)}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:#fff}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:1px 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:#e9ecef}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;text-align:center;white-space:nowrap;background-color:#f8f9fa;border:1px solid #dee2e6}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(1px*-1)}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#3fb618}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#3fb618}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#3fb618;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:#3fb618}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:#3fb618}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:#3fb618}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#3fb618}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#ff0039}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#ff0039}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#ff0039;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:#ff0039}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:#ff0039}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:#ff0039}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#ff0039}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: 0.75rem;--bs-btn-padding-y: 0.375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: #343a40;--bs-btn-bg: transparent;--bs-btn-border-width: 1px;--bs-btn-border-color: transparent;--bs-btn-border-radius: 0.25rem;--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.15), 0 1px 1px rgba(0, 0, 0, 0.075);--bs-btn-disabled-opacity: 0.65;--bs-btn-focus-box-shadow: 0 0 0 0.25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);background-color:var(--bs-btn-bg);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2c3136;--bs-btn-hover-border-color: #2a2e33;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2a2e33;--bs-btn-active-border-color: #272c30;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-primary{--bs-btn-color: #fff;--bs-btn-bg: #2780e3;--bs-btn-border-color: #2780e3;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #216dc1;--bs-btn-hover-border-color: #1f66b6;--bs-btn-focus-shadow-rgb: 71, 147, 231;--bs-btn-active-color: #fff;--bs-btn-active-bg: #1f66b6;--bs-btn-active-border-color: #1d60aa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #2780e3;--bs-btn-disabled-border-color: #2780e3}.btn-secondary{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2c3136;--bs-btn-hover-border-color: #2a2e33;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2a2e33;--bs-btn-active-border-color: #272c30;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-success{--bs-btn-color: #fff;--bs-btn-bg: #3fb618;--bs-btn-border-color: #3fb618;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #369b14;--bs-btn-hover-border-color: #329213;--bs-btn-focus-shadow-rgb: 92, 193, 59;--bs-btn-active-color: #fff;--bs-btn-active-bg: #329213;--bs-btn-active-border-color: #2f8912;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #3fb618;--bs-btn-disabled-border-color: #3fb618}.btn-info{--bs-btn-color: #fff;--bs-btn-bg: #9954bb;--bs-btn-border-color: #9954bb;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #82479f;--bs-btn-hover-border-color: #7a4396;--bs-btn-focus-shadow-rgb: 168, 110, 197;--bs-btn-active-color: #fff;--bs-btn-active-bg: #7a4396;--bs-btn-active-border-color: #733f8c;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #9954bb;--bs-btn-disabled-border-color: #9954bb}.btn-warning{--bs-btn-color: #fff;--bs-btn-bg: #ff7518;--bs-btn-border-color: #ff7518;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #d96314;--bs-btn-hover-border-color: #cc5e13;--bs-btn-focus-shadow-rgb: 255, 138, 59;--bs-btn-active-color: #fff;--bs-btn-active-bg: #cc5e13;--bs-btn-active-border-color: #bf5812;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #ff7518;--bs-btn-disabled-border-color: #ff7518}.btn-danger{--bs-btn-color: #fff;--bs-btn-bg: #ff0039;--bs-btn-border-color: #ff0039;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #d90030;--bs-btn-hover-border-color: #cc002e;--bs-btn-focus-shadow-rgb: 255, 38, 87;--bs-btn-active-color: #fff;--bs-btn-active-bg: #cc002e;--bs-btn-active-border-color: #bf002b;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #ff0039;--bs-btn-disabled-border-color: #ff0039}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211, 212, 213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #52585d;--bs-btn-hover-border-color: #484e53;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #5d6166;--bs-btn-active-border-color: #484e53;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-outline-default{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #2780e3;--bs-btn-border-color: #2780e3;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2780e3;--bs-btn-hover-border-color: #2780e3;--bs-btn-focus-shadow-rgb: 39, 128, 227;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2780e3;--bs-btn-active-border-color: #2780e3;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #2780e3;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #2780e3;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #3fb618;--bs-btn-border-color: #3fb618;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #3fb618;--bs-btn-hover-border-color: #3fb618;--bs-btn-focus-shadow-rgb: 63, 182, 24;--bs-btn-active-color: #fff;--bs-btn-active-bg: #3fb618;--bs-btn-active-border-color: #3fb618;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #3fb618;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #3fb618;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #9954bb;--bs-btn-border-color: #9954bb;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #9954bb;--bs-btn-hover-border-color: #9954bb;--bs-btn-focus-shadow-rgb: 153, 84, 187;--bs-btn-active-color: #fff;--bs-btn-active-bg: #9954bb;--bs-btn-active-border-color: #9954bb;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #9954bb;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #9954bb;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ff7518;--bs-btn-border-color: #ff7518;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #ff7518;--bs-btn-hover-border-color: #ff7518;--bs-btn-focus-shadow-rgb: 255, 117, 24;--bs-btn-active-color: #fff;--bs-btn-active-bg: #ff7518;--bs-btn-active-border-color: #ff7518;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ff7518;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ff7518;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #ff0039;--bs-btn-border-color: #ff0039;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #ff0039;--bs-btn-hover-border-color: #ff0039;--bs-btn-focus-shadow-rgb: 255, 0, 57;--bs-btn-active-color: #fff;--bs-btn-active-bg: #ff0039;--bs-btn-active-border-color: #ff0039;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ff0039;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ff0039;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248, 249, 250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: #2761e3;--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: #1f4eb6;--bs-btn-hover-border-color: transparent;--bs-btn-active-color: #1f4eb6;--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 71, 121, 231;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: 0.5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: 0.5rem}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: 0.25rem;--bs-btn-padding-x: 0.5rem;--bs-btn-font-size:0.875rem;--bs-btn-border-radius: 0.2em}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height .2s ease}@media(prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width .35s ease}@media(prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid rgba(0,0,0,0);border-bottom:0;border-left:.3em solid rgba(0,0,0,0)}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: 0.5rem;--bs-dropdown-spacer: 0.125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: #343a40;--bs-dropdown-bg: #fff;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-border-radius: 0.25rem;--bs-dropdown-border-width: 1px;--bs-dropdown-inner-border-radius: calc(0.25rem - 1px);--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-divider-margin-y: 0.5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-dropdown-link-color: #343a40;--bs-dropdown-link-hover-color: #343a40;--bs-dropdown-link-hover-bg: #f8f9fa;--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #2780e3;--bs-dropdown-link-disabled-color: rgba(52, 58, 64, 0.5);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: 0.25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: 0.5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media(min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid rgba(0,0,0,0);border-bottom:.3em solid;border-left:.3em solid rgba(0,0,0,0)}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:0;border-bottom:.3em solid rgba(0,0,0,0);border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:.3em solid;border-bottom:.3em solid rgba(0,0,0,0)}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:rgba(0,0,0,0);border:0}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:rgba(0,0,0,0)}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:0.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #fff;--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-link-hover-bg: rgba(255, 255, 255, 0.15);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #2780e3;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(1px*-1)}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(1px*-1)}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: #2761e3;--bs-nav-link-hover-color: #1f4eb6;--bs-nav-link-disabled-color: rgba(52, 58, 64, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out}@media(prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: 1px;--bs-nav-tabs-border-color: #dee2e6;--bs-nav-tabs-border-radius: 0.25rem;--bs-nav-tabs-link-hover-border-color: #e9ecef #e9ecef #dee2e6;--bs-nav-tabs-link-active-color: #000;--bs-nav-tabs-link-active-bg: #fff;--bs-nav-tabs-link-active-border-color: #dee2e6 #dee2e6 #fff;border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1*var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid rgba(0,0,0,0)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1*var(--bs-nav-tabs-border-width))}.nav-pills{--bs-nav-pills-border-radius: 0.25rem;--bs-nav-pills-link-active-color: #fff;--bs-nav-pills-link-active-bg: #2780e3}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: 0.125rem;--bs-nav-underline-link-active-color: #000;gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid rgba(0,0,0,0)}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: 0.5rem;--bs-navbar-color: #fdfeff;--bs-navbar-hover-color: rgba(253, 253, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 255, 0.75);--bs-navbar-active-color: #fdfdff;--bs-navbar-brand-padding-y: 0.3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: #fdfeff;--bs-navbar-brand-hover-color: #fdfdff;--bs-navbar-nav-link-padding-x: 0.5rem;--bs-navbar-toggler-padding-y: 0.25;--bs-navbar-toggler-padding-x: 0;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfeff' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(253, 254, 255, 0);--bs-navbar-toggler-border-radius: 0.25rem;--bs-navbar-toggler-focus-width: 0.25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out;position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:rgba(0,0,0,0);border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);transition:var(--bs-navbar-toggler-transition)}@media(prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media(min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,.navbar[data-bs-theme=dark]{--bs-navbar-color: #fdfeff;--bs-navbar-hover-color: rgba(253, 253, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 255, 0.75);--bs-navbar-active-color: #fdfdff;--bs-navbar-brand-color: #fdfeff;--bs-navbar-brand-hover-color: #fdfdff;--bs-navbar-toggler-border-color: rgba(253, 254, 255, 0);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfeff' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme=dark] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfeff' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: 0.5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: 1px;--bs-card-border-color: rgba(0, 0, 0, 0.175);--bs-card-border-radius: 0.25rem;--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(0.25rem - 1px);--bs-card-cap-padding-y: 0.5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(52, 58, 64, 0.25);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: #fff;--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: 0.75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0}.card>.list-group:last-child{border-bottom-width:0}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-0.5*var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header-tabs{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-bottom:calc(-1*var(--bs-card-cap-padding-y));margin-left:calc(-0.5*var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-left:calc(-0.5*var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media(min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}}.accordion{--bs-accordion-color: #343a40;--bs-accordion-bg: #fff;--bs-accordion-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out, border-radius 0.15s ease;--bs-accordion-border-color: #dee2e6;--bs-accordion-border-width: 1px;--bs-accordion-border-radius: 0.25rem;--bs-accordion-inner-border-radius: calc(0.25rem - 1px);--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: #343a40;--bs-accordion-btn-bg: #fff;--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23343a40'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%2310335b'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #93c0f1;--bs-accordion-btn-focus-box-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: #10335b;--bs-accordion-active-bg: #d4e6f9}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media(prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1*var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media(prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:not(:first-of-type){border-top:0}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}[data-bs-theme=dark] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%237db3ee'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%237db3ee'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: rgba(52, 58, 64, 0.75);--bs-breadcrumb-item-padding-x: 0.5rem;--bs-breadcrumb-item-active-color: rgba(52, 58, 64, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, ">") /* rtl: var(--bs-breadcrumb-divider, ">") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: 0.75rem;--bs-pagination-padding-y: 0.375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: #2761e3;--bs-pagination-bg: #fff;--bs-pagination-border-width: 1px;--bs-pagination-border-color: #dee2e6;--bs-pagination-border-radius: 0.25rem;--bs-pagination-hover-color: #1f4eb6;--bs-pagination-hover-bg: #f8f9fa;--bs-pagination-hover-border-color: #dee2e6;--bs-pagination-focus-color: #1f4eb6;--bs-pagination-focus-bg: #e9ecef;--bs-pagination-focus-box-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-pagination-active-color: #fff;--bs-pagination-active-bg: #2780e3;--bs-pagination-active-border-color: #2780e3;--bs-pagination-disabled-color: rgba(52, 58, 64, 0.75);--bs-pagination-disabled-bg: #e9ecef;--bs-pagination-disabled-border-color: #dee2e6;display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(1px*-1)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: 0.75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: 0.5rem}.pagination-sm{--bs-pagination-padding-x: 0.5rem;--bs-pagination-padding-y: 0.25rem;--bs-pagination-font-size:0.875rem;--bs-pagination-border-radius: 0.2em}.badge{--bs-badge-padding-x: 0.65em;--bs-badge-padding-y: 0.35em;--bs-badge-font-size:0.75em;--bs-badge-font-weight: 700;--bs-badge-color: #fff;--bs-badge-border-radius: 0.25rem;display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: 0 solid var(--bs-alert-border-color);--bs-alert-border-radius: 0.25rem;--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:.5rem}}.progress,.progress-stacked{--bs-progress-height: 0.5rem;--bs-progress-font-size:0.75rem;--bs-progress-bg: #e9ecef;--bs-progress-border-radius: 0.25rem;--bs-progress-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-progress-bar-color: #fff;--bs-progress-bar-bg: #2780e3;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media(prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: #343a40;--bs-list-group-bg: #fff;--bs-list-group-border-color: #dee2e6;--bs-list-group-border-width: 1px;--bs-list-group-border-radius: 0.25rem;--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: 0.5rem;--bs-list-group-action-color: rgba(52, 58, 64, 0.75);--bs-list-group-action-hover-color: #000;--bs-list-group-action-hover-bg: #f8f9fa;--bs-list-group-action-active-color: #343a40;--bs-list-group-action-active-bg: #e9ecef;--bs-list-group-disabled-color: rgba(52, 58, 64, 0.75);--bs-list-group-disabled-bg: #fff;--bs-list-group-active-color: #fff;--bs-list-group-active-bg: #2780e3;--bs-list-group-active-border-color: #2780e3;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1*var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media(min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: 0.5;--bs-btn-close-hover-opacity: 0.75;--bs-btn-close-focus-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: 0.25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:rgba(0,0,0,0) var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme=dark] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: 0.75rem;--bs-toast-padding-y: 0.5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:0.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(255, 255, 255, 0.85);--bs-toast-border-width: 1px;--bs-toast-border-color: rgba(0, 0, 0, 0.175);--bs-toast-border-radius: 0.25rem;--bs-toast-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-toast-header-color: rgba(52, 58, 64, 0.75);--bs-toast-header-bg: rgba(255, 255, 255, 0.85);--bs-toast-header-border-color: rgba(0, 0, 0, 0.175);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color)}.toast-header .btn-close{margin-right:calc(-0.5*var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: 0.5rem;--bs-modal-color: ;--bs-modal-bg: #fff;--bs-modal-border-color: rgba(0, 0, 0, 0.175);--bs-modal-border-width: 1px;--bs-modal-border-radius: 0.5rem;--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-modal-inner-border-radius: calc(0.5rem - 1px);--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: #dee2e6;--bs-modal-header-border-width: 1px;--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: 0.5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: #dee2e6;--bs-modal-footer-border-width: 1px;position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0, -50px)}@media(prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin)*2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin)*2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: 0.5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y)*.5) calc(var(--bs-modal-header-padding-x)*.5);margin:calc(-0.5*var(--bs-modal-header-padding-y)) calc(-0.5*var(--bs-modal-header-padding-x)) calc(-0.5*var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap)*.5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap)*.5)}@media(min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media(min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media(min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0}.modal-fullscreen .modal-body{overflow-y:auto}@media(max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media(max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media(max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media(max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media(max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: 0.5rem;--bs-tooltip-padding-y: 0.25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:0.875rem;--bs-tooltip-color: #fff;--bs-tooltip-bg: #000;--bs-tooltip-border-radius: 0.25rem;--bs-tooltip-opacity: 0.9;--bs-tooltip-arrow-width: 0.8rem;--bs-tooltip-arrow-height: 0.4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow{bottom:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow{left:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow{top:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow{right:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) 0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:0.875rem;--bs-popover-bg: #fff;--bs-popover-border-width: 1px;--bs-popover-border-color: rgba(0, 0, 0, 0.175);--bs-popover-border-radius: 0.5rem;--bs-popover-inner-border-radius: calc(0.5rem - 1px);--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: 0.5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: #e9ecef;--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: #343a40;--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: 0.5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:rgba(0,0,0,0);border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow{bottom:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow{left:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow{top:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-0.5*var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow{right:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) 0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid rgba(0,0,0,0);border-bottom:10px solid rgba(0,0,0,0);opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme=dark] .carousel .carousel-control-prev-icon,[data-bs-theme=dark] .carousel .carousel-control-next-icon,[data-bs-theme=dark].carousel .carousel-control-prev-icon,[data-bs-theme=dark].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme=dark] .carousel .carousel-indicators [data-bs-target],[data-bs-theme=dark].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme=dark] .carousel .carousel-caption,[data-bs-theme=dark].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-border-width: 0.25em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:rgba(0,0,0,0)}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: 0.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media(prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: #343a40;--bs-offcanvas-bg: #fff;--bs-offcanvas-border-width: 1px;--bs-offcanvas-border-color: rgba(0, 0, 0, 0.175);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-offcanvas-transition: transform 0.3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media(max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 575.98px)and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media(max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media(min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 767.98px)and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media(max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media(min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 991.98px)and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media(max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media(min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1199.98px)and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media(max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media(min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1399.98px)and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media(max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media(min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media(prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y)*.5) calc(var(--bs-offcanvas-padding-x)*.5);margin-top:calc(-0.5*var(--bs-offcanvas-padding-y));margin-right:calc(-0.5*var(--bs-offcanvas-padding-x));margin-bottom:calc(-0.5*var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#fff !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#fff !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#fff !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(31, 102, 182, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(31, 102, 182, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(50, 146, 19, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(50, 146, 19, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(122, 67, 150, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(122, 67, 150, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(204, 94, 19, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(204, 94, 19, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(204, 0, 46, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(204, 0, 46, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249, 250, 251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249, 250, 251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:.2s ease-in-out transform}@media(prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: 75%}.ratio-16x9{--bs-aspect-ratio: 56.25%}.ratio-21x9{--bs-aspect-ratio: 42.8571428571%}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media(min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:1px;min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15) !important}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: 0.1}.border-opacity-25{--bs-border-opacity: 0.25}.border-opacity-50{--bs-border-opacity: 0.5}.border-opacity-75{--bs-border-opacity: 0.75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.325rem + 0.9vw) !important}.fs-2{font-size:calc(1.29rem + 0.48vw) !important}.fs-3{font-size:calc(1.27rem + 0.24vw) !important}.fs-4{font-size:1.25rem !important}.fs-5{font-size:1.1rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: 0.25}.text-opacity-50{--bs-text-opacity: 0.5}.text-opacity-75{--bs-text-opacity: 0.75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: 0.1}.link-opacity-10-hover:hover{--bs-link-opacity: 0.1}.link-opacity-25{--bs-link-opacity: 0.25}.link-opacity-25-hover:hover{--bs-link-opacity: 0.25}.link-opacity-50{--bs-link-opacity: 0.5}.link-opacity-50-hover:hover{--bs-link-opacity: 0.5}.link-opacity-75{--bs-link-opacity: 0.75}.link-opacity-75-hover:hover{--bs-link-opacity: 0.75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: 0.1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: 0.1}.link-underline-opacity-25{--bs-link-underline-opacity: 0.25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: 0.25}.link-underline-opacity-50{--bs-link-underline-opacity: 0.5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: 0.5}.link-underline-opacity-75{--bs-link-underline-opacity: 0.75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: 0.75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: 0.1}.bg-opacity-25{--bs-bg-opacity: 0.25}.bg-opacity-50{--bs-bg-opacity: 0.5}.bg-opacity-75{--bs-bg-opacity: 0.75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media(min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media(min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media(min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media(min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media(min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#fff}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#fff}.bg-warning{color:#fff}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media(min-width: 1200px){.fs-1{font-size:2rem !important}.fs-2{font-size:1.65rem !important}.fs-3{font-size:1.45rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #2780e3;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #613d7c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #613d7c;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #e83e8c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #e83e8c;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #ff0039;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #f0ad4e;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #f0ad4e;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ff7518;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #3fb618;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #9954bb;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #343a40}.bg-default{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-primary{--bslib-color-fg: #2780e3}.bg-primary{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #343a40}.bg-secondary{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #3fb618}.bg-success{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #9954bb}.bg-info{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff}.text-warning{--bslib-color-fg: #ff7518}.bg-warning{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff}.text-danger{--bslib-color-fg: #ff0039}.bg-danger{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #343a40}.bg-dark{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4053e9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4053e9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3e65ba;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3e65ba;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #7466c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #7466c0;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #7d4d9f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #7d4d9f;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #7792a7;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #7792a7;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #7d7c92;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #7d7c92;color:#fff}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #319692;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #319692;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #fff;--bslib-color-bg: #249dc5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #249dc5;color:#fff}.bg-gradient-blue-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #556ed3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #556ed3;color:#fff}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4d3dec;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4d3dec;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6422c3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #6422c3;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #9a22c9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #9a22c9;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #a30aa8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a30aa8;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9d4fb0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9d4fb0;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a3389b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a3389b;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #56529b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #56529b;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #7a2bdc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #7a2bdc;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4a58a5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4a58a5;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #632bab;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #632bab;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #973d82;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #973d82;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #a02561;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a02561;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9a6a6a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9a6a6a;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a05354;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a05354;color:#fff}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #536d54;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #536d54;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #477587;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #477587;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #774695;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #774695;color:#fff}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #9b58af;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #9b58af;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b42cb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b42cb5;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b23e86;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b23e86;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #f1256b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f1256b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #fff;--bslib-color-bg: #eb6a73;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #eb6a73;color:#fff}.bg-gradient-pink-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #f1545e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f1545e;color:#fff}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #a46e5e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a46e5e;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #fff;--bslib-color-bg: #987690;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #987690;color:#fff}.bg-gradient-pink-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #c8479f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #c8479f;color:#fff}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a9337d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a9337d;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c20683;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c20683;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c01854;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c01854;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f6195a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f6195a;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #fff;--bslib-color-bg: #f94541;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f94541;color:#fff}.bg-gradient-red-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #ff2f2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #ff2f2c;color:#fff}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #b2492c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b2492c;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6505f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6505f;color:#fff}.bg-gradient-red-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d6226d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d6226d;color:#fff}.bg-gradient-orange-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a09b8a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a09b8a;color:#fff}.bg-gradient-orange-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b96e90;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b96e90;color:#fff}.bg-gradient-orange-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b78060;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b78060;color:#fff}.bg-gradient-orange-pink{--bslib-color-fg: #fff;--bslib-color-bg: #ed8167;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #ed8167;color:#fff}.bg-gradient-orange-red{--bslib-color-fg: #fff;--bslib-color-bg: #f66846;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f66846;color:#fff}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #f69738;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f69738;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a9b138;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a9b138;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #9db86b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #9db86b;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #cd897a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #cd897a;color:#fff}.bg-gradient-yellow-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a97969;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a97969;color:#fff}.bg-gradient-yellow-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c24d6f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c24d6f;color:#fff}.bg-gradient-yellow-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c05f40;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c05f40;color:#fff}.bg-gradient-yellow-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f65f46;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f65f46;color:#fff}.bg-gradient-yellow-red{--bslib-color-fg: #fff;--bslib-color-bg: #ff4625;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #ff4625;color:#fff}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #f98b2e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f98b2e;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #fff;--bslib-color-bg: #b28f18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b28f18;color:#fff}.bg-gradient-yellow-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6974b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6974b;color:#fff}.bg-gradient-yellow-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d66859;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d66859;color:#fff}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #35a069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #35a069;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4f746f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4f746f;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #4d8640;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #4d8640;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #838646;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #838646;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #8c6d25;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #8c6d25;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #86b22e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #86b22e;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #8c9c18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #8c9c18;color:#fff}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #33be4b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #33be4b;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #638f59;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #638f59;color:#fff}.bg-gradient-teal-blue{--bslib-color-fg: #fff;--bslib-color-bg: #23acb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #23acb5;color:#fff}.bg-gradient-teal-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#fff}.bg-gradient-teal-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3a918c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3a918c;color:#fff}.bg-gradient-teal-pink{--bslib-color-fg: #fff;--bslib-color-bg: #709193;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #709193;color:#fff}.bg-gradient-teal-red{--bslib-color-fg: #fff;--bslib-color-bg: #797971;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #797971;color:#fff}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #73be7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #73be7a;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #79a764;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #79a764;color:#fff}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #2cc164;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #2cc164;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #509aa5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #509aa5;color:#fff}.bg-gradient-cyan-blue{--bslib-color-fg: #fff;--bslib-color-bg: #6b66cb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #6b66cb;color:#fff}.bg-gradient-cyan-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #8539d1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #8539d1;color:#fff}.bg-gradient-cyan-purple{--bslib-color-fg: #fff;--bslib-color-bg: #834ba2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #834ba2;color:#fff}.bg-gradient-cyan-pink{--bslib-color-fg: #fff;--bslib-color-bg: #b94ba8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #b94ba8;color:#fff}.bg-gradient-cyan-red{--bslib-color-fg: #fff;--bslib-color-bg: #c23287;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #c23287;color:#fff}.bg-gradient-cyan-orange{--bslib-color-fg: #fff;--bslib-color-bg: #bc788f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #bc788f;color:#fff}.bg-gradient-cyan-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #c2617a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #c2617a;color:#fff}.bg-gradient-cyan-green{--bslib-color-fg: #fff;--bslib-color-bg: #757b7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #757b7a;color:#fff}.bg-gradient-cyan-teal{--bslib-color-fg: #fff;--bslib-color-bg: #6983ad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #6983ad;color:#fff}.bg-blue{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #2780e3;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #613d7c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #613d7c;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #e83e8c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #e83e8c;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #ff0039;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #f0ad4e;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #f0ad4e;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ff7518;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #3fb618;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #9954bb;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #343a40}.bg-default{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-primary{--bslib-color-fg: #2780e3}.bg-primary{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #343a40}.bg-secondary{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #3fb618}.bg-success{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #9954bb}.bg-info{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff}.text-warning{--bslib-color-fg: #ff7518}.bg-warning{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff}.text-danger{--bslib-color-fg: #ff0039}.bg-danger{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #343a40}.bg-dark{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4053e9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4053e9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3e65ba;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3e65ba;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #7466c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #7466c0;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #7d4d9f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #7d4d9f;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #7792a7;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #7792a7;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #7d7c92;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #7d7c92;color:#fff}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #319692;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #319692;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #fff;--bslib-color-bg: #249dc5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #249dc5;color:#fff}.bg-gradient-blue-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #556ed3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #556ed3;color:#fff}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4d3dec;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4d3dec;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6422c3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #6422c3;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #9a22c9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #9a22c9;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #a30aa8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a30aa8;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9d4fb0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9d4fb0;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a3389b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a3389b;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #56529b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #56529b;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #7a2bdc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #7a2bdc;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4a58a5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4a58a5;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #632bab;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #632bab;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #973d82;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #973d82;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #a02561;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a02561;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9a6a6a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9a6a6a;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a05354;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a05354;color:#fff}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #536d54;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #536d54;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #477587;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #477587;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #774695;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #774695;color:#fff}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #9b58af;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #9b58af;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b42cb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b42cb5;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b23e86;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b23e86;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #f1256b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f1256b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #fff;--bslib-color-bg: #eb6a73;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #eb6a73;color:#fff}.bg-gradient-pink-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #f1545e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f1545e;color:#fff}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #a46e5e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a46e5e;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #fff;--bslib-color-bg: #987690;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #987690;color:#fff}.bg-gradient-pink-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #c8479f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #c8479f;color:#fff}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a9337d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a9337d;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c20683;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c20683;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c01854;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c01854;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f6195a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f6195a;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #fff;--bslib-color-bg: #f94541;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f94541;color:#fff}.bg-gradient-red-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #ff2f2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #ff2f2c;color:#fff}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #b2492c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b2492c;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6505f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6505f;color:#fff}.bg-gradient-red-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d6226d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d6226d;color:#fff}.bg-gradient-orange-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a09b8a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a09b8a;color:#fff}.bg-gradient-orange-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b96e90;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b96e90;color:#fff}.bg-gradient-orange-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b78060;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b78060;color:#fff}.bg-gradient-orange-pink{--bslib-color-fg: #fff;--bslib-color-bg: #ed8167;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #ed8167;color:#fff}.bg-gradient-orange-red{--bslib-color-fg: #fff;--bslib-color-bg: #f66846;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f66846;color:#fff}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #f69738;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f69738;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a9b138;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a9b138;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #9db86b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #9db86b;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #cd897a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #cd897a;color:#fff}.bg-gradient-yellow-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a97969;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a97969;color:#fff}.bg-gradient-yellow-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c24d6f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c24d6f;color:#fff}.bg-gradient-yellow-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c05f40;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c05f40;color:#fff}.bg-gradient-yellow-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f65f46;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f65f46;color:#fff}.bg-gradient-yellow-red{--bslib-color-fg: #fff;--bslib-color-bg: #ff4625;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #ff4625;color:#fff}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #f98b2e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f98b2e;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #fff;--bslib-color-bg: #b28f18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b28f18;color:#fff}.bg-gradient-yellow-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6974b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6974b;color:#fff}.bg-gradient-yellow-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d66859;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d66859;color:#fff}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #35a069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #35a069;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4f746f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4f746f;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #4d8640;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #4d8640;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #838646;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #838646;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #8c6d25;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #8c6d25;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #86b22e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #86b22e;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #8c9c18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #8c9c18;color:#fff}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #33be4b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #33be4b;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #638f59;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #638f59;color:#fff}.bg-gradient-teal-blue{--bslib-color-fg: #fff;--bslib-color-bg: #23acb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #23acb5;color:#fff}.bg-gradient-teal-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#fff}.bg-gradient-teal-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3a918c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3a918c;color:#fff}.bg-gradient-teal-pink{--bslib-color-fg: #fff;--bslib-color-bg: #709193;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #709193;color:#fff}.bg-gradient-teal-red{--bslib-color-fg: #fff;--bslib-color-bg: #797971;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #797971;color:#fff}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #73be7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #73be7a;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #79a764;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #79a764;color:#fff}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #2cc164;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #2cc164;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #509aa5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #509aa5;color:#fff}.bg-gradient-cyan-blue{--bslib-color-fg: #fff;--bslib-color-bg: #6b66cb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #6b66cb;color:#fff}.bg-gradient-cyan-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #8539d1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #8539d1;color:#fff}.bg-gradient-cyan-purple{--bslib-color-fg: #fff;--bslib-color-bg: #834ba2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #834ba2;color:#fff}.bg-gradient-cyan-pink{--bslib-color-fg: #fff;--bslib-color-bg: #b94ba8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #b94ba8;color:#fff}.bg-gradient-cyan-red{--bslib-color-fg: #fff;--bslib-color-bg: #c23287;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #c23287;color:#fff}.bg-gradient-cyan-orange{--bslib-color-fg: #fff;--bslib-color-bg: #bc788f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #bc788f;color:#fff}.bg-gradient-cyan-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #c2617a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #c2617a;color:#fff}.bg-gradient-cyan-green{--bslib-color-fg: #fff;--bslib-color-bg: #757b7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #757b7a;color:#fff}.bg-gradient-cyan-teal{--bslib-color-fg: #fff;--bslib-color-bg: #6983ad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #6983ad;color:#fff}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}html{height:100%}.bslib-page-fill{width:100%;height:100%;margin:0;padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}@media(max-width: 575.98px){.bslib-page-fill{height:var(--bslib-page-fill-mobile-height, auto)}}.bslib-grid{display:grid !important;gap:var(--bslib-spacer, 1rem);height:var(--bslib-grid-height)}.bslib-grid.grid{grid-template-columns:repeat(var(--bs-columns, 12), minmax(0, 1fr));grid-template-rows:unset;grid-auto-rows:var(--bslib-grid--row-heights);--bslib-grid--row-heights--xs: unset;--bslib-grid--row-heights--sm: unset;--bslib-grid--row-heights--md: unset;--bslib-grid--row-heights--lg: unset;--bslib-grid--row-heights--xl: unset;--bslib-grid--row-heights--xxl: unset}.bslib-grid.grid.bslib-grid--row-heights--xs{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xs)}@media(min-width: 576px){.bslib-grid.grid.bslib-grid--row-heights--sm{--bslib-grid--row-heights: var(--bslib-grid--row-heights--sm)}}@media(min-width: 768px){.bslib-grid.grid.bslib-grid--row-heights--md{--bslib-grid--row-heights: var(--bslib-grid--row-heights--md)}}@media(min-width: 992px){.bslib-grid.grid.bslib-grid--row-heights--lg{--bslib-grid--row-heights: var(--bslib-grid--row-heights--lg)}}@media(min-width: 1200px){.bslib-grid.grid.bslib-grid--row-heights--xl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xl)}}@media(min-width: 1400px){.bslib-grid.grid.bslib-grid--row-heights--xxl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xxl)}}.bslib-grid>*>.shiny-input-container{width:100%}.bslib-grid-item{grid-column:auto/span 1}@media(max-width: 767.98px){.bslib-grid-item{grid-column:1/-1}}@media(max-width: 575.98px){.bslib-grid{grid-template-columns:1fr !important;height:var(--bslib-grid-height-mobile)}.bslib-grid.grid{height:unset !important;grid-auto-rows:var(--bslib-grid--row-heights--xs, auto)}}.navbar+.container-fluid:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-sm:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-md:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-lg:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xl:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xxl:has(>.tab-content>.tab-pane.active.html-fill-container){padding-left:0;padding-right:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container{padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child){padding:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]){border-left:none;border-right:none;border-bottom:none}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]){border-radius:0}.navbar+div>.bslib-sidebar-layout{border-top:var(--bslib-sidebar-border)}.bslib-card{overflow:auto}.bslib-card .card-body+.card-body{padding-top:0}.bslib-card .card-body{overflow:auto}.bslib-card .card-body p{margin-top:0}.bslib-card .card-body p:last-child{margin-bottom:0}.bslib-card .card-body{max-height:var(--bslib-card-body-max-height, none)}.bslib-card[data-full-screen=true]>.card-body{max-height:var(--bslib-card-body-max-height-full-screen, none)}.bslib-card .card-header .form-group{margin-bottom:0}.bslib-card .card-header .selectize-control{margin-bottom:0}.bslib-card .card-header .selectize-control .item{margin-right:1.15rem}.bslib-card .card-footer{margin-top:auto}.bslib-card .bslib-navs-card-title{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center}.bslib-card .bslib-navs-card-title .nav{margin-left:auto}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border=true]){border:none}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border-radius=true]){border-top-left-radius:0;border-top-right-radius:0}[data-full-screen=true]{position:fixed;inset:3.5rem 1rem 1rem;height:auto !important;max-height:none !important;width:auto !important;z-index:1070}.bslib-full-screen-enter{display:none;position:absolute;bottom:var(--bslib-full-screen-enter-bottom, 0.2rem);right:var(--bslib-full-screen-enter-right, 0);top:var(--bslib-full-screen-enter-top);left:var(--bslib-full-screen-enter-left);color:var(--bslib-color-fg, var(--bs-card-color));background-color:var(--bslib-color-bg, var(--bs-card-bg, var(--bs-body-bg)));border:var(--bs-card-border-width) solid var(--bslib-color-fg, var(--bs-card-border-color));box-shadow:0 2px 4px rgba(0,0,0,.15);margin:.2rem .4rem;padding:.55rem !important;font-size:.8rem;cursor:pointer;opacity:.7;z-index:1070}.bslib-full-screen-enter:hover{opacity:1}.card[data-full-screen=false]:hover>*>.bslib-full-screen-enter{display:block}.bslib-has-full-screen .card:hover>*>.bslib-full-screen-enter{display:none}@media(max-width: 575.98px){.bslib-full-screen-enter{display:none !important}}.bslib-full-screen-exit{position:relative;top:1.35rem;font-size:.9rem;cursor:pointer;text-decoration:none;display:flex;float:right;margin-right:2.15rem;align-items:center;color:rgba(var(--bs-body-bg-rgb), 0.8)}.bslib-full-screen-exit:hover{color:rgba(var(--bs-body-bg-rgb), 1)}.bslib-full-screen-exit svg{margin-left:.5rem;font-size:1.5rem}#bslib-full-screen-overlay{position:fixed;inset:0;background-color:rgba(var(--bs-body-color-rgb), 0.6);backdrop-filter:blur(2px);-webkit-backdrop-filter:blur(2px);z-index:1069;animation:bslib-full-screen-overlay-enter 400ms cubic-bezier(0.6, 0.02, 0.65, 1) forwards}@keyframes bslib-full-screen-overlay-enter{0%{opacity:0}100%{opacity:1}}.accordion .accordion-header{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2;color:var(--bs-heading-color);margin-bottom:0}@media(min-width: 1200px){.accordion .accordion-header{font-size:1.65rem}}.accordion .accordion-icon:not(:empty){margin-right:.75rem;display:flex}.accordion .accordion-button:not(.collapsed){box-shadow:none}.accordion .accordion-button:not(.collapsed):focus{box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.bslib-sidebar-layout{--bslib-sidebar-transition-duration: 500ms;--bslib-sidebar-transition-easing-x: cubic-bezier(0.8, 0.78, 0.22, 1.07);--bslib-sidebar-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-border-radius: var(--bs-border-radius);--bslib-sidebar-vert-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.05);--bslib-sidebar-fg: var(--bs-emphasis-color, black);--bslib-sidebar-main-fg: var(--bs-card-color, var(--bs-body-color));--bslib-sidebar-main-bg: var(--bs-card-bg, var(--bs-body-bg));--bslib-sidebar-toggle-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.1);--bslib-sidebar-padding: calc(var(--bslib-spacer) * 1.5);--bslib-sidebar-icon-size: var(--bslib-spacer, 1rem);--bslib-sidebar-icon-button-size: calc(var(--bslib-sidebar-icon-size, 1rem) * 2);--bslib-sidebar-padding-icon: calc(var(--bslib-sidebar-icon-button-size, 2rem) * 1.5);--bslib-collapse-toggle-border-radius: var(--bs-border-radius, 0.25rem);--bslib-collapse-toggle-transform: 0deg;--bslib-sidebar-toggle-transition-easing: cubic-bezier(1, 0, 0, 1);--bslib-collapse-toggle-right-transform: 180deg;--bslib-sidebar-column-main: minmax(0, 1fr);display:grid !important;grid-template-columns:min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px)) var(--bslib-sidebar-column-main);position:relative;transition:grid-template-columns ease-in-out var(--bslib-sidebar-transition-duration);border:var(--bslib-sidebar-border);border-radius:var(--bslib-sidebar-border-radius)}@media(prefers-reduced-motion: reduce){.bslib-sidebar-layout{transition:none}}.bslib-sidebar-layout[data-bslib-sidebar-border=false]{border:none}.bslib-sidebar-layout[data-bslib-sidebar-border-radius=false]{border-radius:initial}.bslib-sidebar-layout>.main,.bslib-sidebar-layout>.sidebar{grid-row:1/2;border-radius:inherit;overflow:auto}.bslib-sidebar-layout>.main{grid-column:2/3;border-top-left-radius:0;border-bottom-left-radius:0;padding:var(--bslib-sidebar-padding);transition:padding var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration);color:var(--bslib-sidebar-main-fg);background-color:var(--bslib-sidebar-main-bg)}.bslib-sidebar-layout>.sidebar{grid-column:1/2;width:100%;height:100%;border-right:var(--bslib-sidebar-vert-border);border-top-right-radius:0;border-bottom-right-radius:0;color:var(--bslib-sidebar-fg);background-color:var(--bslib-sidebar-bg);backdrop-filter:blur(5px)}.bslib-sidebar-layout>.sidebar>.sidebar-content{display:flex;flex-direction:column;gap:var(--bslib-spacer, 1rem);padding:var(--bslib-sidebar-padding);padding-top:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout>.sidebar>.sidebar-content>:last-child:not(.sidebar-title){margin-bottom:0}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion{margin-left:calc(-1*var(--bslib-sidebar-padding));margin-right:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:last-child{margin-bottom:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child){margin-bottom:1rem}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion .accordion-body{display:flex;flex-direction:column}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:first-child) .accordion-item:first-child{border-top:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child) .accordion-item:last-child{border-bottom:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content.has-accordion>.sidebar-title{border-bottom:none;padding-bottom:0}.bslib-sidebar-layout>.sidebar .shiny-input-container{width:100%}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar>.sidebar-content{padding-top:var(--bslib-sidebar-padding)}.bslib-sidebar-layout>.collapse-toggle{grid-row:1/2;grid-column:1/2;display:inline-flex;align-items:center;position:absolute;right:calc(var(--bslib-sidebar-icon-size));top:calc(var(--bslib-sidebar-icon-size, 1rem)/2);border:none;border-radius:var(--bslib-collapse-toggle-border-radius);height:var(--bslib-sidebar-icon-button-size, 2rem);width:var(--bslib-sidebar-icon-button-size, 2rem);display:flex;align-items:center;justify-content:center;padding:0;color:var(--bslib-sidebar-fg);background-color:unset;transition:color var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),top var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),right var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),left var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover{background-color:var(--bslib-sidebar-toggle-bg)}.bslib-sidebar-layout>.collapse-toggle>.collapse-icon{opacity:.8;width:var(--bslib-sidebar-icon-size);height:var(--bslib-sidebar-icon-size);transform:rotateY(var(--bslib-collapse-toggle-transform));transition:transform var(--bslib-sidebar-toggle-transition-easing) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover>.collapse-icon{opacity:1}.bslib-sidebar-layout .sidebar-title{font-size:1.25rem;line-height:1.25;margin-top:0;margin-bottom:1rem;padding-bottom:1rem;border-bottom:var(--bslib-sidebar-border)}.bslib-sidebar-layout.sidebar-right{grid-template-columns:var(--bslib-sidebar-column-main) min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px))}.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/2;border-top-right-radius:0;border-bottom-right-radius:0;border-top-left-radius:inherit;border-bottom-left-radius:inherit}.bslib-sidebar-layout.sidebar-right>.sidebar{grid-column:2/3;border-right:none;border-left:var(--bslib-sidebar-vert-border);border-top-left-radius:0;border-bottom-left-radius:0}.bslib-sidebar-layout.sidebar-right>.collapse-toggle{grid-column:2/3;left:var(--bslib-sidebar-icon-size);right:unset;border:var(--bslib-collapse-toggle-border)}.bslib-sidebar-layout.sidebar-right>.collapse-toggle>.collapse-icon{transform:rotateY(var(--bslib-collapse-toggle-right-transform))}.bslib-sidebar-layout.sidebar-collapsed{--bslib-collapse-toggle-transform: 180deg;--bslib-collapse-toggle-right-transform: 0deg;--bslib-sidebar-vert-border: none;grid-template-columns:0 minmax(0, 1fr)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right{grid-template-columns:minmax(0, 1fr) 0}.bslib-sidebar-layout.sidebar-collapsed:not(.transitioning)>.sidebar>*{display:none}.bslib-sidebar-layout.sidebar-collapsed>.main{border-radius:inherit}.bslib-sidebar-layout.sidebar-collapsed:not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed>.collapse-toggle{color:var(--bslib-sidebar-main-fg);top:calc(var(--bslib-sidebar-overlap-counter, 0)*(var(--bslib-sidebar-icon-size) + var(--bslib-sidebar-padding)) + var(--bslib-sidebar-icon-size, 1rem)/2);right:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px))}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.collapse-toggle{left:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px));right:unset}@media(min-width: 576px){.bslib-sidebar-layout.transitioning>.sidebar>.sidebar-content{display:none}}@media(max-width: 575.98px){.bslib-sidebar-layout[data-bslib-sidebar-open=desktop]{--bslib-sidebar-js-init-collapsed: true}.bslib-sidebar-layout>.sidebar,.bslib-sidebar-layout.sidebar-right>.sidebar{border:none}.bslib-sidebar-layout>.main,.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/3}.bslib-sidebar-layout[data-bslib-sidebar-open=always]{display:block !important}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar{max-height:var(--bslib-sidebar-max-height-mobile);overflow-y:auto;border-top:var(--bslib-sidebar-vert-border)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]){grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.sidebar{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.collapse-toggle{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed.sidebar-right{grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always])>.main{opacity:0;transition:opacity var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed>.main{opacity:1}}:root{--bslib-value-box-shadow: none;--bslib-value-box-border-width-auto-yes: var(--bslib-value-box-border-width-baseline);--bslib-value-box-border-width-auto-no: 0;--bslib-value-box-border-width-baseline: 1px}.bslib-value-box{border-width:var(--bslib-value-box-border-width-auto-no, var(--bslib-value-box-border-width-baseline));container-name:bslib-value-box;container-type:inline-size}.bslib-value-box.card{box-shadow:var(--bslib-value-box-shadow)}.bslib-value-box.border-auto{border-width:var(--bslib-value-box-border-width-auto-yes, var(--bslib-value-box-border-width-baseline))}.bslib-value-box.default{--bslib-value-box-bg-default: var(--bs-card-bg, #fff);--bslib-value-box-border-color-default: var(--bs-card-border-color, rgba(0, 0, 0, 0.175));color:var(--bslib-value-box-color);background-color:var(--bslib-value-box-bg, var(--bslib-value-box-bg-default));border-color:var(--bslib-value-box-border-color, var(--bslib-value-box-border-color-default))}.bslib-value-box .value-box-grid{display:grid;grid-template-areas:"left right";align-items:center;overflow:hidden}.bslib-value-box .value-box-showcase{height:100%;max-height:var(---bslib-value-box-showcase-max-h, 100%)}.bslib-value-box .value-box-showcase,.bslib-value-box .value-box-showcase>.html-fill-item{width:100%}.bslib-value-box[data-full-screen=true] .value-box-showcase{max-height:var(---bslib-value-box-showcase-max-h-fs, 100%)}@media screen and (min-width: 575.98px){@container bslib-value-box (max-width: 300px){.bslib-value-box:not(.showcase-bottom) .value-box-grid{grid-template-columns:1fr !important;grid-template-rows:auto auto;grid-template-areas:"top" "bottom"}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-showcase{grid-area:top !important}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-area{grid-area:bottom !important;justify-content:end}}}.bslib-value-box .value-box-area{justify-content:center;padding:1.5rem 1rem;font-size:.9rem;font-weight:500}.bslib-value-box .value-box-area *{margin-bottom:0;margin-top:0}.bslib-value-box .value-box-title{font-size:1rem;margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2}.bslib-value-box .value-box-title:empty::after{content:" "}.bslib-value-box .value-box-value{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2}@media(min-width: 1200px){.bslib-value-box .value-box-value{font-size:1.65rem}}.bslib-value-box .value-box-value:empty::after{content:" "}.bslib-value-box .value-box-showcase{align-items:center;justify-content:center;margin-top:auto;margin-bottom:auto;padding:1rem}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{opacity:.85;min-width:50px;max-width:125%}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{font-size:4rem}.bslib-value-box.showcase-top-right .value-box-grid{grid-template-columns:1fr var(---bslib-value-box-showcase-w, 50%)}.bslib-value-box.showcase-top-right .value-box-grid .value-box-showcase{grid-area:right;margin-left:auto;align-self:start;align-items:end;padding-left:0;padding-bottom:0}.bslib-value-box.showcase-top-right .value-box-grid .value-box-area{grid-area:left;align-self:end}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid{grid-template-columns:auto var(---bslib-value-box-showcase-w-fs, 1fr)}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid>div{align-self:center}.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-showcase{margin-top:0}@container bslib-value-box (max-width: 300px){.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-grid .value-box-showcase{padding-left:1rem}}.bslib-value-box.showcase-left-center .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w, 30%) auto}.bslib-value-box.showcase-left-center[data-full-screen=true] .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w-fs, 1fr) auto}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-showcase{grid-area:left}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-area{grid-area:right}.bslib-value-box.showcase-bottom .value-box-grid{grid-template-columns:1fr;grid-template-rows:1fr var(---bslib-value-box-showcase-h, auto);grid-template-areas:"top" "bottom";overflow:hidden}.bslib-value-box.showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.bslib-value-box.showcase-bottom .value-box-grid .value-box-area{grid-area:top}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid{grid-template-rows:1fr var(---bslib-value-box-showcase-h-fs, 2fr)}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid .value-box-showcase{padding:1rem}[data-bs-theme=dark] .bslib-value-box{--bslib-value-box-shadow: 0 0.5rem 1rem rgb(0 0 0 / 50%)}:root{--bslib-page-sidebar-title-bg: #2780e3;--bslib-page-sidebar-title-color: #fff}.bslib-page-title{background-color:var(--bslib-page-sidebar-title-bg);color:var(--bslib-page-sidebar-title-color);font-size:1.25rem;font-weight:300;padding:var(--bslib-spacer, 1rem);padding-left:1.5rem;margin-bottom:0;border-bottom:1px solid #dee2e6}@media(min-width: 576px){.nav:not(.nav-hidden){display:flex !important;display:-webkit-flex !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column){float:none !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.bslib-nav-spacer{margin-left:auto !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.form-inline{margin-top:auto;margin-bottom:auto}.nav:not(.nav-hidden).nav-stacked{flex-direction:column;-webkit-flex-direction:column;height:100%}.nav:not(.nav-hidden).nav-stacked>.bslib-nav-spacer{margin-top:auto !important}}.html-fill-container{display:flex;flex-direction:column;min-height:0;min-width:0}.html-fill-container>.html-fill-item{flex:1 1 auto;min-height:0;min-width:0}.html-fill-container>:not(.html-fill-item){flex:0 0 auto}.quarto-container{min-height:calc(100vh - 132px)}body.hypothesis-enabled #quarto-header{margin-right:16px}footer.footer .nav-footer,#quarto-header>nav{padding-left:1em;padding-right:1em}footer.footer div.nav-footer p:first-child{margin-top:0}footer.footer div.nav-footer p:last-child{margin-bottom:0}#quarto-content>*{padding-top:14px}#quarto-content>#quarto-sidebar-glass{padding-top:0px}@media(max-width: 991.98px){#quarto-content>*{padding-top:0}#quarto-content .subtitle{padding-top:14px}#quarto-content section:first-of-type h2:first-of-type,#quarto-content section:first-of-type .h2:first-of-type{margin-top:1rem}}.headroom-target,header.headroom{will-change:transform;transition:position 200ms linear;transition:all 200ms linear}header.headroom--pinned{transform:translateY(0%)}header.headroom--unpinned{transform:translateY(-100%)}.navbar-container{width:100%}.navbar-brand{overflow:hidden;text-overflow:ellipsis}.navbar-brand-container{max-width:calc(100% - 115px);min-width:0;display:flex;align-items:center}@media(min-width: 992px){.navbar-brand-container{margin-right:1em}}.navbar-brand.navbar-brand-logo{margin-right:4px;display:inline-flex}.navbar-toggler{flex-basis:content;flex-shrink:0}.navbar .navbar-brand-container{order:2}.navbar .navbar-toggler{order:1}.navbar .navbar-container>.navbar-nav{order:20}.navbar .navbar-container>.navbar-brand-container{margin-left:0 !important;margin-right:0 !important}.navbar .navbar-collapse{order:20}.navbar #quarto-search{order:4;margin-left:auto}.navbar .navbar-toggler{margin-right:.5em}.navbar-collapse .quarto-navbar-tools{margin-left:.5em}.navbar-logo{max-height:24px;width:auto;padding-right:4px}nav .nav-item:not(.compact){padding-top:1px}nav .nav-link i,nav .dropdown-item i{padding-right:1px}.navbar-expand-lg .navbar-nav .nav-link{padding-left:.6rem;padding-right:.6rem}nav .nav-item.compact .nav-link{padding-left:.5rem;padding-right:.5rem;font-size:1.1rem}.navbar .quarto-navbar-tools{order:3}.navbar .quarto-navbar-tools div.dropdown{display:inline-block}.navbar .quarto-navbar-tools .quarto-navigation-tool{color:#fdfeff}.navbar .quarto-navbar-tools .quarto-navigation-tool:hover{color:#fdfdff}.navbar-nav .dropdown-menu{min-width:220px;font-size:.9rem}.navbar .navbar-nav .nav-link.dropdown-toggle::after{opacity:.75;vertical-align:.175em}.navbar ul.dropdown-menu{padding-top:0;padding-bottom:0}.navbar .dropdown-header{text-transform:uppercase;font-size:.8rem;padding:0 .5rem}.navbar .dropdown-item{padding:.4rem .5rem}.navbar .dropdown-item>i.bi{margin-left:.1rem;margin-right:.25em}.sidebar #quarto-search{margin-top:-1px}.sidebar #quarto-search svg.aa-SubmitIcon{width:16px;height:16px}.sidebar-navigation a{color:inherit}.sidebar-title{margin-top:.25rem;padding-bottom:.5rem;font-size:1.3rem;line-height:1.6rem;visibility:visible}.sidebar-title>a{font-size:inherit;text-decoration:none}.sidebar-title .sidebar-tools-main{margin-top:-6px}@media(max-width: 991.98px){#quarto-sidebar div.sidebar-header{padding-top:.2em}}.sidebar-header-stacked .sidebar-title{margin-top:.6rem}.sidebar-logo{max-width:90%;padding-bottom:.5rem}.sidebar-logo-link{text-decoration:none}.sidebar-navigation li a{text-decoration:none}.sidebar-navigation .quarto-navigation-tool{opacity:.7;font-size:.875rem}#quarto-sidebar>nav>.sidebar-tools-main{margin-left:14px}.sidebar-tools-main{display:inline-flex;margin-left:0px;order:2}.sidebar-tools-main:not(.tools-wide){vertical-align:middle}.sidebar-navigation .quarto-navigation-tool.dropdown-toggle::after{display:none}.sidebar.sidebar-navigation>*{padding-top:1em}.sidebar-item{margin-bottom:.2em;line-height:1rem;margin-top:.4rem}.sidebar-section{padding-left:.5em;padding-bottom:.2em}.sidebar-item .sidebar-item-container{display:flex;justify-content:space-between;cursor:pointer}.sidebar-item-toggle:hover{cursor:pointer}.sidebar-item .sidebar-item-toggle .bi{font-size:.7rem;text-align:center}.sidebar-item .sidebar-item-toggle .bi-chevron-right::before{transition:transform 200ms ease}.sidebar-item .sidebar-item-toggle[aria-expanded=false] .bi-chevron-right::before{transform:none}.sidebar-item .sidebar-item-toggle[aria-expanded=true] .bi-chevron-right::before{transform:rotate(90deg)}.sidebar-item-text{width:100%}.sidebar-navigation .sidebar-divider{margin-left:0;margin-right:0;margin-top:.5rem;margin-bottom:.5rem}@media(max-width: 991.98px){.quarto-secondary-nav{display:block}.quarto-secondary-nav button.quarto-search-button{padding-right:0em;padding-left:2em}.quarto-secondary-nav button.quarto-btn-toggle{margin-left:-0.75rem;margin-right:.15rem}.quarto-secondary-nav nav.quarto-title-breadcrumbs{display:none}.quarto-secondary-nav nav.quarto-page-breadcrumbs{display:flex;align-items:center;padding-right:1em;margin-left:-0.25em}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{text-decoration:none}.quarto-secondary-nav nav.quarto-page-breadcrumbs ol.breadcrumb{margin-bottom:0}}@media(min-width: 992px){.quarto-secondary-nav{display:none}}.quarto-title-breadcrumbs .breadcrumb{margin-bottom:.5em;font-size:.9rem}.quarto-title-breadcrumbs .breadcrumb li:last-of-type a{color:#6c757d}.quarto-secondary-nav .quarto-btn-toggle{color:#595959}.quarto-secondary-nav[aria-expanded=false] .quarto-btn-toggle .bi-chevron-right::before{transform:none}.quarto-secondary-nav[aria-expanded=true] .quarto-btn-toggle .bi-chevron-right::before{transform:rotate(90deg)}.quarto-secondary-nav .quarto-btn-toggle .bi-chevron-right::before{transition:transform 200ms ease}.quarto-secondary-nav{cursor:pointer}.no-decor{text-decoration:none}.quarto-secondary-nav-title{margin-top:.3em;color:#595959;padding-top:4px}.quarto-secondary-nav nav.quarto-page-breadcrumbs{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a:hover{color:rgba(33,81,191,.8)}.quarto-secondary-nav nav.quarto-page-breadcrumbs .breadcrumb-item::before{color:#8c8c8c}.breadcrumb-item{line-height:1.2rem}div.sidebar-item-container{color:#595959}div.sidebar-item-container:hover,div.sidebar-item-container:focus{color:rgba(33,81,191,.8)}div.sidebar-item-container.disabled{color:rgba(89,89,89,.75)}div.sidebar-item-container .active,div.sidebar-item-container .show>.nav-link,div.sidebar-item-container .sidebar-link>code{color:#2151bf}div.sidebar.sidebar-navigation.rollup.quarto-sidebar-toggle-contents,nav.sidebar.sidebar-navigation:not(.rollup){background-color:#fff}@media(max-width: 991.98px){.sidebar-navigation .sidebar-item a,.nav-page .nav-page-text,.sidebar-navigation{font-size:1rem}.sidebar-navigation ul.sidebar-section.depth1 .sidebar-section-item{font-size:1.1rem}.sidebar-logo{display:none}.sidebar.sidebar-navigation{position:static;border-bottom:1px solid #dee2e6}.sidebar.sidebar-navigation.collapsing{position:fixed;z-index:1000}.sidebar.sidebar-navigation.show{position:fixed;z-index:1000}.sidebar.sidebar-navigation{min-height:100%}nav.quarto-secondary-nav{background-color:#fff;border-bottom:1px solid #dee2e6}.quarto-banner nav.quarto-secondary-nav{background-color:#2780e3;color:#fdfeff;border-top:1px solid #dee2e6}.sidebar .sidebar-footer{visibility:visible;padding-top:1rem;position:inherit}.sidebar-tools-collapse{display:block}}#quarto-sidebar{transition:width .15s ease-in}#quarto-sidebar>*{padding-right:1em}@media(max-width: 991.98px){#quarto-sidebar .sidebar-menu-container{white-space:nowrap;min-width:225px}#quarto-sidebar.show{transition:width .15s ease-out}}@media(min-width: 992px){#quarto-sidebar{display:flex;flex-direction:column}.nav-page .nav-page-text,.sidebar-navigation .sidebar-section .sidebar-item{font-size:.875rem}.sidebar-navigation .sidebar-item{font-size:.925rem}.sidebar.sidebar-navigation{display:block;position:sticky}.sidebar-search{width:100%}.sidebar .sidebar-footer{visibility:visible}}@media(min-width: 992px){#quarto-sidebar-glass{display:none}}@media(max-width: 991.98px){#quarto-sidebar-glass{position:fixed;top:0;bottom:0;left:0;right:0;background-color:rgba(255,255,255,0);transition:background-color .15s ease-in;z-index:-1}#quarto-sidebar-glass.collapsing{z-index:1000}#quarto-sidebar-glass.show{transition:background-color .15s ease-out;background-color:rgba(102,102,102,.4);z-index:1000}}.sidebar .sidebar-footer{padding:.5rem 1rem;align-self:flex-end;color:#6c757d;width:100%}.quarto-page-breadcrumbs .breadcrumb-item+.breadcrumb-item,.quarto-page-breadcrumbs .breadcrumb-item{padding-right:.33em;padding-left:0}.quarto-page-breadcrumbs .breadcrumb-item::before{padding-right:.33em}.quarto-sidebar-footer{font-size:.875em}.sidebar-section .bi-chevron-right{vertical-align:middle}.sidebar-section .bi-chevron-right::before{font-size:.9em}.notransition{-webkit-transition:none !important;-moz-transition:none !important;-o-transition:none !important;transition:none !important}.btn:focus:not(:focus-visible){box-shadow:none}.page-navigation{display:flex;justify-content:space-between}.nav-page{padding-bottom:.75em}.nav-page .bi{font-size:1.8rem;vertical-align:middle}.nav-page .nav-page-text{padding-left:.25em;padding-right:.25em}.nav-page a{color:#6c757d;text-decoration:none;display:flex;align-items:center}.nav-page a:hover{color:#1f4eb6}.nav-footer .toc-actions{padding-bottom:.5em;padding-top:.5em}.nav-footer .toc-actions a,.nav-footer .toc-actions a:hover{text-decoration:none}.nav-footer .toc-actions ul{display:flex;list-style:none}.nav-footer .toc-actions ul :first-child{margin-left:auto}.nav-footer .toc-actions ul :last-child{margin-right:auto}.nav-footer .toc-actions ul li{padding-right:1.5em}.nav-footer .toc-actions ul li i.bi{padding-right:.4em}.nav-footer .toc-actions ul li:last-of-type{padding-right:0}.nav-footer{display:flex;flex-direction:row;flex-wrap:wrap;justify-content:space-between;align-items:baseline;text-align:center;padding-top:.5rem;padding-bottom:.5rem;background-color:#fff}body.nav-fixed{padding-top:64px}.nav-footer-contents{color:#6c757d;margin-top:.25rem}.nav-footer{min-height:3.5em;color:#757575}.nav-footer a{color:#757575}.nav-footer .nav-footer-left{font-size:.825em}.nav-footer .nav-footer-center{font-size:.825em}.nav-footer .nav-footer-right{font-size:.825em}.nav-footer-left .footer-items,.nav-footer-center .footer-items,.nav-footer-right .footer-items{display:inline-flex;padding-top:.3em;padding-bottom:.3em;margin-bottom:0em}.nav-footer-left .footer-items .nav-link,.nav-footer-center .footer-items .nav-link,.nav-footer-right .footer-items .nav-link{padding-left:.6em;padding-right:.6em}@media(min-width: 768px){.nav-footer-left{flex:1 1 0px;text-align:left}}@media(max-width: 575.98px){.nav-footer-left{margin-bottom:1em;flex:100%}}@media(min-width: 768px){.nav-footer-right{flex:1 1 0px;text-align:right}}@media(max-width: 575.98px){.nav-footer-right{margin-bottom:1em;flex:100%}}.nav-footer-center{text-align:center;min-height:3em}@media(min-width: 768px){.nav-footer-center{flex:1 1 0px}}.nav-footer-center .footer-items{justify-content:center}@media(max-width: 767.98px){.nav-footer-center{margin-bottom:1em;flex:100%}}@media(max-width: 767.98px){.nav-footer-center{margin-top:3em;order:10}}.navbar .quarto-reader-toggle.reader .quarto-reader-toggle-btn{background-color:#fdfeff;border-radius:3px}@media(max-width: 991.98px){.quarto-reader-toggle{display:none}}.quarto-reader-toggle.reader.quarto-navigation-tool .quarto-reader-toggle-btn{background-color:#595959;border-radius:3px}.quarto-reader-toggle .quarto-reader-toggle-btn{display:inline-flex;padding-left:.2em;padding-right:.2em;margin-left:-0.2em;margin-right:-0.2em;text-align:center}.navbar .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,')}.navbar .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,')}#quarto-back-to-top{display:none;position:fixed;bottom:50px;background-color:#fff;border-radius:.25rem;box-shadow:0 .2rem .5rem #6c757d,0 0 .05rem #6c757d;color:#6c757d;text-decoration:none;font-size:.9em;text-align:center;left:50%;padding:.4rem .8rem;transform:translate(-50%, 0)}#quarto-announcement{padding:.5em;display:flex;justify-content:space-between;margin-bottom:0;font-size:.9em}#quarto-announcement .quarto-announcement-content{margin-right:auto}#quarto-announcement .quarto-announcement-content p{margin-bottom:0}#quarto-announcement .quarto-announcement-icon{margin-right:.5em;font-size:1.2em;margin-top:-0.15em}#quarto-announcement .quarto-announcement-action{cursor:pointer}.aa-DetachedSearchButtonQuery{display:none}.aa-DetachedOverlay ul.aa-List,#quarto-search-results ul.aa-List{list-style:none;padding-left:0}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{background-color:#fff;position:absolute;z-index:2000}#quarto-search-results .aa-Panel{max-width:400px}#quarto-search input{font-size:.925rem}@media(min-width: 992px){.navbar #quarto-search{margin-left:.25rem;order:999}}.navbar.navbar-expand-sm #quarto-search,.navbar.navbar-expand-md #quarto-search{order:999}@media(min-width: 992px){.navbar .quarto-navbar-tools{order:900}}@media(min-width: 992px){.navbar .quarto-navbar-tools.tools-end{margin-left:auto !important}}@media(max-width: 991.98px){#quarto-sidebar .sidebar-search{display:none}}#quarto-sidebar .sidebar-search .aa-Autocomplete{width:100%}.navbar .aa-Autocomplete .aa-Form{width:180px}.navbar #quarto-search.type-overlay .aa-Autocomplete{width:40px}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form{background-color:inherit;border:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form:focus-within{box-shadow:none;outline:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper{display:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper:focus-within{display:inherit}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-Label svg,.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-LoadingIndicator svg{width:26px;height:26px;color:#fdfeff;opacity:1}.navbar #quarto-search.type-overlay .aa-Autocomplete svg.aa-SubmitIcon{width:26px;height:26px;color:#fdfeff;opacity:1}.aa-Autocomplete .aa-Form,.aa-DetachedFormContainer .aa-Form{align-items:center;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem;color:#343a40;display:flex;line-height:1em;margin:0;position:relative;width:100%}.aa-Autocomplete .aa-Form:focus-within,.aa-DetachedFormContainer .aa-Form:focus-within{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix{align-items:center;display:flex;flex-shrink:0;order:1}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{cursor:initial;flex-shrink:0;padding:0;text-align:left}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg{color:#343a40;opacity:.5}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton{appearance:none;background:none;border:0;margin:0}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{align-items:center;display:flex;justify-content:center}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapper,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper{order:3;position:relative;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input{appearance:none;background:none;border:0;color:#343a40;font:inherit;height:calc(1.5em + .1rem + 2px);padding:0;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::placeholder,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::placeholder{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input:focus{border-color:none;box-shadow:none;outline:none}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix{align-items:center;display:flex;order:4}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton{align-items:center;background:none;border:0;color:#343a40;opacity:.8;cursor:pointer;display:flex;margin:0;width:calc(1.5em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg{width:calc(1.5em + 0.75rem + calc(1px * 2))}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton{border:none;align-items:center;background:none;color:#343a40;opacity:.4;font-size:.7rem;cursor:pointer;display:none;margin:0;width:calc(1em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden]{display:none}.aa-PanelLayout:empty{display:none}.quarto-search-no-results.no-query{display:none}.aa-Source:has(.no-query){display:none}#quarto-search-results .aa-Panel{border:solid #dee2e6 1px}#quarto-search-results .aa-SourceNoResults{width:398px}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{max-height:65vh;overflow-y:auto;font-size:.925rem}.aa-DetachedOverlay .aa-SourceNoResults,#quarto-search-results .aa-SourceNoResults{height:60px;display:flex;justify-content:center;align-items:center}.aa-DetachedOverlay .search-error,#quarto-search-results .search-error{padding-top:10px;padding-left:20px;padding-right:20px;cursor:default}.aa-DetachedOverlay .search-error .search-error-title,#quarto-search-results .search-error .search-error-title{font-size:1.1rem;margin-bottom:.5rem}.aa-DetachedOverlay .search-error .search-error-title .search-error-icon,#quarto-search-results .search-error .search-error-title .search-error-icon{margin-right:8px}.aa-DetachedOverlay .search-error .search-error-text,#quarto-search-results .search-error .search-error-text{font-weight:300}.aa-DetachedOverlay .search-result-text,#quarto-search-results .search-result-text{font-weight:300;overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-line-clamp:2;-webkit-box-orient:vertical;line-height:1.2rem;max-height:2.4rem}.aa-DetachedOverlay .aa-SourceHeader .search-result-header,#quarto-search-results .aa-SourceHeader .search-result-header{font-size:.875rem;background-color:#f2f2f2;padding-left:14px;padding-bottom:4px;padding-top:4px}.aa-DetachedOverlay .aa-SourceHeader .search-result-header-no-results,#quarto-search-results .aa-SourceHeader .search-result-header-no-results{display:none}.aa-DetachedOverlay .aa-SourceFooter .algolia-search-logo,#quarto-search-results .aa-SourceFooter .algolia-search-logo{width:110px;opacity:.85;margin:8px;float:right}.aa-DetachedOverlay .search-result-section,#quarto-search-results .search-result-section{font-size:.925em}.aa-DetachedOverlay a.search-result-link,#quarto-search-results a.search-result-link{color:inherit;text-decoration:none}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item,#quarto-search-results li.aa-Item[aria-selected=true] .search-item{background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text-container{color:#fff;background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=true] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-match.mark{color:#fff;background-color:#4b95e8}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item,#quarto-search-results li.aa-Item[aria-selected=false] .search-item{background-color:#fff}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text-container{color:#343a40}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=false] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-match.mark{color:inherit;background-color:#e5effc}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container{background-color:#fff;color:#343a40}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container{padding-top:0px}.aa-DetachedOverlay li.aa-Item .search-result-doc.document-selectable .search-result-text-container,#quarto-search-results li.aa-Item .search-result-doc.document-selectable .search-result-text-container{margin-top:-4px}.aa-DetachedOverlay .aa-Item,#quarto-search-results .aa-Item{cursor:pointer}.aa-DetachedOverlay .aa-Item .search-item,#quarto-search-results .aa-Item .search-item{border-left:none;border-right:none;border-top:none;background-color:#fff;border-color:#dee2e6;color:#343a40}.aa-DetachedOverlay .aa-Item .search-item p,#quarto-search-results .aa-Item .search-item p{margin-top:0;margin-bottom:0}.aa-DetachedOverlay .aa-Item .search-item i.bi,#quarto-search-results .aa-Item .search-item i.bi{padding-left:8px;padding-right:8px;font-size:1.3em}.aa-DetachedOverlay .aa-Item .search-item .search-result-title,#quarto-search-results .aa-Item .search-item .search-result-title{margin-top:.3em;margin-bottom:0em}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs,#quarto-search-results .aa-Item .search-item .search-result-crumbs{white-space:nowrap;text-overflow:ellipsis;font-size:.8em;font-weight:300;margin-right:1em}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs:not(.search-result-crumbs-wrap),#quarto-search-results .aa-Item .search-item .search-result-crumbs:not(.search-result-crumbs-wrap){max-width:30%;margin-left:auto;margin-top:.5em;margin-bottom:.1rem}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs.search-result-crumbs-wrap,#quarto-search-results .aa-Item .search-item .search-result-crumbs.search-result-crumbs-wrap{flex-basis:100%;margin-top:0em;margin-bottom:.2em;margin-left:37px}.aa-DetachedOverlay .aa-Item .search-result-title-container,#quarto-search-results .aa-Item .search-result-title-container{font-size:1em;display:flex;flex-wrap:wrap;padding:6px 4px 6px 4px}.aa-DetachedOverlay .aa-Item .search-result-text-container,#quarto-search-results .aa-Item .search-result-text-container{padding-bottom:8px;padding-right:8px;margin-left:42px}.aa-DetachedOverlay .aa-Item .search-result-doc-section,.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-doc-section,#quarto-search-results .aa-Item .search-result-more{padding-top:8px;padding-bottom:8px;padding-left:44px}.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-more{font-size:.8em;font-weight:400}.aa-DetachedOverlay .aa-Item .search-result-doc,#quarto-search-results .aa-Item .search-result-doc{border-top:1px solid #dee2e6}.aa-DetachedSearchButton{background:none;border:none}.aa-DetachedSearchButton .aa-DetachedSearchButtonPlaceholder{display:none}.navbar .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#fdfeff}.sidebar-tools-collapse #quarto-search,.sidebar-tools-main #quarto-search{display:inline}.sidebar-tools-collapse #quarto-search .aa-Autocomplete,.sidebar-tools-main #quarto-search .aa-Autocomplete{display:inline}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton{padding-left:4px;padding-right:4px}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#595959}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon{margin-top:-3px}.aa-DetachedContainer{background:rgba(255,255,255,.65);width:90%;bottom:0;box-shadow:rgba(222,226,230,.6) 0 0 0 1px;outline:currentColor none medium;display:flex;flex-direction:column;left:0;margin:0;overflow:hidden;padding:0;position:fixed;right:0;top:0;z-index:1101}.aa-DetachedContainer::after{height:32px}.aa-DetachedContainer .aa-SourceHeader{margin:var(--aa-spacing-half) 0 var(--aa-spacing-half) 2px}.aa-DetachedContainer .aa-Panel{background-color:#fff;border-radius:0;box-shadow:none;flex-grow:1;margin:0;padding:0;position:relative}.aa-DetachedContainer .aa-PanelLayout{bottom:0;box-shadow:none;left:0;margin:0;max-height:none;overflow-y:auto;position:absolute;right:0;top:0;width:100%}.aa-DetachedFormContainer{background-color:#fff;border-bottom:1px solid #dee2e6;display:flex;flex-direction:row;justify-content:space-between;margin:0;padding:.5em}.aa-DetachedCancelButton{background:none;font-size:.8em;border:0;border-radius:3px;color:#343a40;cursor:pointer;margin:0 0 0 .5em;padding:0 .5em}.aa-DetachedCancelButton:hover,.aa-DetachedCancelButton:focus{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-DetachedContainer--modal{bottom:inherit;height:auto;margin:0 auto;position:absolute;top:100px;border-radius:6px;max-width:850px}@media(max-width: 575.98px){.aa-DetachedContainer--modal{width:100%;top:0px;border-radius:0px;border:none}}.aa-DetachedContainer--modal .aa-PanelLayout{max-height:var(--aa-detached-modal-max-height);padding-bottom:var(--aa-spacing-half);position:static}.aa-Detached{height:100vh;overflow:hidden}.aa-DetachedOverlay{background-color:rgba(52,58,64,.4);position:fixed;left:0;right:0;top:0;margin:0;padding:0;height:100vh;z-index:1100}.quarto-dashboard.nav-fixed.dashboard-sidebar #quarto-content.quarto-dashboard-content{padding:0em}.quarto-dashboard #quarto-content.quarto-dashboard-content{padding:1em}.quarto-dashboard #quarto-content.quarto-dashboard-content>*{padding-top:0}@media(min-width: 576px){.quarto-dashboard{height:100%}}.quarto-dashboard .card.valuebox.bslib-card.bg-primary{background-color:#5397e9 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-secondary{background-color:#343a40 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-success{background-color:#3aa716 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-info{background-color:rgba(153,84,187,.7019607843) !important}.quarto-dashboard .card.valuebox.bslib-card.bg-warning{background-color:#fa6400 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-danger{background-color:rgba(255,0,57,.7019607843) !important}.quarto-dashboard .card.valuebox.bslib-card.bg-light{background-color:#f8f9fa !important}.quarto-dashboard .card.valuebox.bslib-card.bg-dark{background-color:#343a40 !important}.quarto-dashboard.dashboard-fill{display:flex;flex-direction:column}.quarto-dashboard #quarto-appendix{display:none}.quarto-dashboard #quarto-header #quarto-dashboard-header{border-top:solid 1px #549be9;border-bottom:solid 1px #549be9}.quarto-dashboard #quarto-header #quarto-dashboard-header>nav{padding-left:1em;padding-right:1em}.quarto-dashboard #quarto-header #quarto-dashboard-header>nav .navbar-brand-container{padding-left:0}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-toggler{margin-right:0}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-toggler-icon{height:1em;width:1em;background-image:url('data:image/svg+xml,')}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-brand-container{padding-right:1em}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-title{font-size:1.1em}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-nav{font-size:.9em}.quarto-dashboard #quarto-dashboard-header .navbar{padding:0}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-container{padding-left:1em}.quarto-dashboard #quarto-dashboard-header .navbar.slim .navbar-brand-container .nav-link,.quarto-dashboard #quarto-dashboard-header .navbar.slim .navbar-nav .nav-link{padding:.7em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-color-scheme-toggle{order:9}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-toggler{margin-left:.5em;order:10}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-nav .nav-link{padding:.5em;height:100%;display:flex;align-items:center}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-nav .active{background-color:#4b95e8}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-brand-container{padding:.5em .5em .5em 0;display:flex;flex-direction:row;margin-right:2em;align-items:center}@media(max-width: 767.98px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-brand-container{margin-right:auto}}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{align-self:stretch}@media(min-width: 768px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{order:8}}@media(max-width: 767.98px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{order:1000;padding-bottom:.5em}}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse .navbar-nav{align-self:stretch}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title{font-size:1.25em;line-height:1.1em;display:flex;flex-direction:row;flex-wrap:wrap;align-items:baseline}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title .navbar-title-text{margin-right:.4em}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title a{text-decoration:none;color:inherit}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-subtitle,.quarto-dashboard #quarto-dashboard-header .navbar .navbar-author{font-size:.9rem;margin-right:.5em}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-author{margin-left:auto}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-logo{max-height:48px;min-height:30px;object-fit:cover;margin-right:1em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-links{order:9;padding-right:1em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-link-text{margin-left:.25em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-link{padding-right:0em;padding-left:.7em;text-decoration:none;color:#fdfeff}.quarto-dashboard .page-layout-custom .tab-content{padding:0;border:none}.quarto-dashboard-img-contain{height:100%;width:100%;object-fit:contain}@media(max-width: 575.98px){.quarto-dashboard .bslib-grid{grid-template-rows:minmax(1em, max-content) !important}.quarto-dashboard .sidebar-content{height:inherit}.quarto-dashboard .page-layout-custom{min-height:100vh}}.quarto-dashboard.dashboard-toolbar>.page-layout-custom,.quarto-dashboard.dashboard-sidebar>.page-layout-custom{padding:0}.quarto-dashboard .quarto-dashboard-content.quarto-dashboard-pages{padding:0}.quarto-dashboard .callout{margin-bottom:0;margin-top:0}.quarto-dashboard .html-fill-container figure{overflow:hidden}.quarto-dashboard bslib-tooltip .rounded-pill{border:solid #6c757d 1px}.quarto-dashboard bslib-tooltip .rounded-pill .svg{fill:#343a40}.quarto-dashboard .tabset .dashboard-card-no-title .nav-tabs{margin-left:0;margin-right:auto}.quarto-dashboard .tabset .tab-content{border:none}.quarto-dashboard .tabset .card-header .nav-link[role=tab]{margin-top:-6px;padding-top:6px;padding-bottom:6px}.quarto-dashboard .card.valuebox,.quarto-dashboard .card.bslib-value-box{min-height:3rem}.quarto-dashboard .card.valuebox .card-body,.quarto-dashboard .card.bslib-value-box .card-body{padding:0}.quarto-dashboard .bslib-value-box .value-box-value{font-size:clamp(.1em,15cqw,5em)}.quarto-dashboard .bslib-value-box .value-box-showcase .bi{font-size:clamp(.1em,max(18cqw,5.2cqh),5em);text-align:center;height:1em}.quarto-dashboard .bslib-value-box .value-box-showcase .bi::before{vertical-align:1em}.quarto-dashboard .bslib-value-box .value-box-area{margin-top:auto;margin-bottom:auto}.quarto-dashboard .card figure.quarto-float{display:flex;flex-direction:column;align-items:center}.quarto-dashboard .dashboard-scrolling{padding:1em}.quarto-dashboard .full-height{height:100%}.quarto-dashboard .showcase-bottom .value-box-grid{display:grid;grid-template-columns:1fr;grid-template-rows:1fr auto;grid-template-areas:"top" "bottom"}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-showcase i.bi{font-size:4rem}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-area{grid-area:top}.quarto-dashboard .tab-content{margin-bottom:0}.quarto-dashboard .bslib-card .bslib-navs-card-title{justify-content:stretch;align-items:end}.quarto-dashboard .card-header{display:flex;flex-wrap:wrap;justify-content:space-between}.quarto-dashboard .card-header .card-title{display:flex;flex-direction:column;justify-content:center;margin-bottom:0}.quarto-dashboard .tabset .card-toolbar{margin-bottom:1em}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout{border:none;gap:var(--bslib-spacer, 1rem)}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.main{padding:0}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.sidebar{border-radius:.25rem;border:1px solid rgba(0,0,0,.175)}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.collapse-toggle{display:none}@media(max-width: 767.98px){.quarto-dashboard .bslib-grid>.bslib-sidebar-layout{grid-template-columns:1fr;grid-template-rows:max-content 1fr}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.main{grid-column:1;grid-row:2}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout .sidebar{grid-column:1;grid-row:1}}.quarto-dashboard .sidebar-right .sidebar{padding-left:2.5em}.quarto-dashboard .sidebar-right .collapse-toggle{left:2px}.quarto-dashboard .quarto-dashboard .sidebar-right button.collapse-toggle:not(.transitioning){left:unset}.quarto-dashboard aside.sidebar{padding-left:1em;padding-right:1em;background-color:rgba(52,58,64,.25);color:#343a40}.quarto-dashboard .bslib-sidebar-layout>div.main{padding:.7em}.quarto-dashboard .bslib-sidebar-layout button.collapse-toggle{margin-top:.3em}.quarto-dashboard .bslib-sidebar-layout .collapse-toggle{top:0}.quarto-dashboard .bslib-sidebar-layout.sidebar-collapsed:not(.transitioning):not(.sidebar-right) .collapse-toggle{left:2px}.quarto-dashboard .sidebar>section>.h3:first-of-type{margin-top:0em}.quarto-dashboard .sidebar .h3,.quarto-dashboard .sidebar .h4,.quarto-dashboard .sidebar .h5,.quarto-dashboard .sidebar .h6{margin-top:.5em}.quarto-dashboard .sidebar form{flex-direction:column;align-items:start;margin-bottom:1em}.quarto-dashboard .sidebar form div[class*=oi-][class$=-input]{flex-direction:column}.quarto-dashboard .sidebar form[class*=oi-][class$=-toggle]{flex-direction:row-reverse;align-items:center;justify-content:start}.quarto-dashboard .sidebar form input[type=range]{margin-top:.5em;margin-right:.8em;margin-left:1em}.quarto-dashboard .sidebar label{width:fit-content}.quarto-dashboard .sidebar .card-body{margin-bottom:2em}.quarto-dashboard .sidebar .shiny-input-container{margin-bottom:1em}.quarto-dashboard .sidebar .shiny-options-group{margin-top:0}.quarto-dashboard .sidebar .control-label{margin-bottom:.3em}.quarto-dashboard .card .card-body .quarto-layout-row{align-items:stretch}.quarto-dashboard .toolbar{font-size:.9em;display:flex;flex-direction:row;border-top:solid 1px #bcbfc0;padding:1em;flex-wrap:wrap;background-color:rgba(52,58,64,.25)}.quarto-dashboard .toolbar .cell-output-display{display:flex}.quarto-dashboard .toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .toolbar>*:last-child{margin-right:0}.quarto-dashboard .toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .toolbar .shiny-input-container{padding-bottom:0;margin-bottom:0}.quarto-dashboard .toolbar .shiny-input-container>*{flex-shrink:0;flex-grow:0}.quarto-dashboard .toolbar .form-group.shiny-input-container:not([role=group])>label{margin-bottom:0}.quarto-dashboard .toolbar .shiny-input-container.no-baseline{align-items:start;padding-top:6px}.quarto-dashboard .toolbar .shiny-input-container{display:flex;align-items:baseline}.quarto-dashboard .toolbar .shiny-input-container label{padding-right:.4em}.quarto-dashboard .toolbar .shiny-input-container .bslib-input-switch{margin-top:6px}.quarto-dashboard .toolbar input[type=text]{line-height:1;width:inherit}.quarto-dashboard .toolbar .input-daterange{width:inherit}.quarto-dashboard .toolbar .input-daterange input[type=text]{height:2.4em;width:10em}.quarto-dashboard .toolbar .input-daterange .input-group-addon{height:auto;padding:0;margin-left:-5px !important;margin-right:-5px}.quarto-dashboard .toolbar .input-daterange .input-group-addon .input-group-text{padding-top:0;padding-bottom:0;height:100%}.quarto-dashboard .toolbar span.irs.irs--shiny{width:10em}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-line{top:9px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-min,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-max,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-from,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-to,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-single{top:20px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-bar{top:8px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-handle{top:0px}.quarto-dashboard .toolbar .shiny-input-checkboxgroup>label{margin-top:6px}.quarto-dashboard .toolbar .shiny-input-checkboxgroup>.shiny-options-group{margin-top:0;align-items:baseline}.quarto-dashboard .toolbar .shiny-input-radiogroup>label{margin-top:6px}.quarto-dashboard .toolbar .shiny-input-radiogroup>.shiny-options-group{align-items:baseline;margin-top:0}.quarto-dashboard .toolbar .shiny-input-radiogroup>.shiny-options-group>.radio{margin-right:.3em}.quarto-dashboard .toolbar .form-select{padding-top:.2em;padding-bottom:.2em}.quarto-dashboard .toolbar .shiny-input-select{min-width:6em}.quarto-dashboard .toolbar div.checkbox{margin-bottom:0px}.quarto-dashboard .toolbar>.checkbox:first-child{margin-top:6px}.quarto-dashboard .toolbar form{width:fit-content}.quarto-dashboard .toolbar form label{padding-top:.2em;padding-bottom:.2em;width:fit-content}.quarto-dashboard .toolbar form input[type=date]{width:fit-content}.quarto-dashboard .toolbar form input[type=color]{width:3em}.quarto-dashboard .toolbar form button{padding:.4em}.quarto-dashboard .toolbar form select{width:fit-content}.quarto-dashboard .toolbar>*{font-size:.9em;flex-grow:0}.quarto-dashboard .toolbar .shiny-input-container label{margin-bottom:1px}.quarto-dashboard .toolbar-bottom{margin-top:1em;margin-bottom:0 !important;order:2}.quarto-dashboard .quarto-dashboard-content>.dashboard-toolbar-container>.toolbar-content>.tab-content>.tab-pane>*:not(.bslib-sidebar-layout){padding:1em}.quarto-dashboard .quarto-dashboard-content>.dashboard-toolbar-container>.toolbar-content>*:not(.tab-content){padding:1em}.quarto-dashboard .quarto-dashboard-content>.tab-content>.dashboard-page>.dashboard-toolbar-container>.toolbar-content,.quarto-dashboard .quarto-dashboard-content>.tab-content>.dashboard-page:not(.dashboard-sidebar-container)>*:not(.dashboard-toolbar-container){padding:1em}.quarto-dashboard .toolbar-content{padding:0}.quarto-dashboard .quarto-dashboard-content.quarto-dashboard-pages .tab-pane>.dashboard-toolbar-container .toolbar{border-radius:0;margin-bottom:0}.quarto-dashboard .dashboard-toolbar-container.toolbar-toplevel .toolbar{border-bottom:1px solid rgba(0,0,0,.175)}.quarto-dashboard .dashboard-toolbar-container.toolbar-toplevel .toolbar-bottom{margin-top:0}.quarto-dashboard .dashboard-toolbar-container:not(.toolbar-toplevel) .toolbar{margin-bottom:1em;border-top:none;border-radius:.25rem;border:1px solid rgba(0,0,0,.175)}.quarto-dashboard .vega-embed.has-actions details{width:1.7em;height:2em;position:absolute !important;top:0;right:0}.quarto-dashboard .dashboard-toolbar-container{padding:0}.quarto-dashboard .card .card-header p:last-child,.quarto-dashboard .card .card-footer p:last-child{margin-bottom:0}.quarto-dashboard .card .card-body>.h4:first-child{margin-top:0}.quarto-dashboard .card .card-body{z-index:4}@media(max-width: 767.98px){.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_length,.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_info,.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_paginate{text-align:initial}.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_filter{text-align:right}.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_paginate ul.pagination{justify-content:initial}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center;padding-top:0}.quarto-dashboard .card .card-body .itables .dataTables_wrapper table{flex-shrink:0}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons{margin-bottom:.5em;margin-left:auto;width:fit-content;float:right}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons.btn-group{background:#fff;border:none}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons .btn-secondary{background-color:#fff;background-image:none;border:solid #dee2e6 1px;padding:.2em .7em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons .btn span{font-size:.8em;color:#343a40}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{margin-left:.5em;margin-bottom:.5em;padding-top:0}@media(min-width: 768px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{font-size:.875em}}@media(max-width: 767.98px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{font-size:.8em}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_filter{margin-bottom:.5em;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_filter input[type=search]{padding:1px 5px 1px 5px;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_length{flex-basis:1 1 50%;margin-bottom:.5em;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_length select{padding:.4em 3em .4em .5em;font-size:.875em;margin-left:.2em;margin-right:.2em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate{flex-shrink:0}@media(min-width: 768px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate{margin-left:auto}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate ul.pagination .paginate_button .page-link{font-size:.8em}.quarto-dashboard .card .card-footer{font-size:.9em}.quarto-dashboard .card .card-toolbar{display:flex;flex-grow:1;flex-direction:row;width:100%;flex-wrap:wrap}.quarto-dashboard .card .card-toolbar>*{font-size:.8em;flex-grow:0}.quarto-dashboard .card .card-toolbar>.card-title{font-size:1em;flex-grow:1;align-self:flex-start;margin-top:.1em}.quarto-dashboard .card .card-toolbar .cell-output-display{display:flex}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .card .card-toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card .card-toolbar>*:last-child{margin-right:0}.quarto-dashboard .card .card-toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .card .card-toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .card .card-toolbar form{width:fit-content}.quarto-dashboard .card .card-toolbar form label{padding-top:.2em;padding-bottom:.2em;width:fit-content}.quarto-dashboard .card .card-toolbar form input[type=date]{width:fit-content}.quarto-dashboard .card .card-toolbar form input[type=color]{width:3em}.quarto-dashboard .card .card-toolbar form button{padding:.4em}.quarto-dashboard .card .card-toolbar form select{width:fit-content}.quarto-dashboard .card .card-toolbar .cell-output-display{display:flex}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .card .card-toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card .card-toolbar>*:last-child{margin-right:0}.quarto-dashboard .card .card-toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .card .card-toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:0;margin-bottom:0}.quarto-dashboard .card .card-toolbar .shiny-input-container>*{flex-shrink:0;flex-grow:0}.quarto-dashboard .card .card-toolbar .form-group.shiny-input-container:not([role=group])>label{margin-bottom:0}.quarto-dashboard .card .card-toolbar .shiny-input-container.no-baseline{align-items:start;padding-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-container{display:flex;align-items:baseline}.quarto-dashboard .card .card-toolbar .shiny-input-container label{padding-right:.4em}.quarto-dashboard .card .card-toolbar .shiny-input-container .bslib-input-switch{margin-top:6px}.quarto-dashboard .card .card-toolbar input[type=text]{line-height:1;width:inherit}.quarto-dashboard .card .card-toolbar .input-daterange{width:inherit}.quarto-dashboard .card .card-toolbar .input-daterange input[type=text]{height:2.4em;width:10em}.quarto-dashboard .card .card-toolbar .input-daterange .input-group-addon{height:auto;padding:0;margin-left:-5px !important;margin-right:-5px}.quarto-dashboard .card .card-toolbar .input-daterange .input-group-addon .input-group-text{padding-top:0;padding-bottom:0;height:100%}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny{width:10em}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-line{top:9px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-min,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-max,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-from,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-to,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-single{top:20px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-bar{top:8px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-handle{top:0px}.quarto-dashboard .card .card-toolbar .shiny-input-checkboxgroup>label{margin-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-checkboxgroup>.shiny-options-group{margin-top:0;align-items:baseline}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>label{margin-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>.shiny-options-group{align-items:baseline;margin-top:0}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>.shiny-options-group>.radio{margin-right:.3em}.quarto-dashboard .card .card-toolbar .form-select{padding-top:.2em;padding-bottom:.2em}.quarto-dashboard .card .card-toolbar .shiny-input-select{min-width:6em}.quarto-dashboard .card .card-toolbar div.checkbox{margin-bottom:0px}.quarto-dashboard .card .card-toolbar>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card-body>table>thead{border-top:none}.quarto-dashboard .card-body>.table>:not(caption)>*>*{background-color:#fff}.tableFloatingHeaderOriginal{background-color:#fff;position:sticky !important;top:0 !important}.dashboard-data-table{margin-top:-1px}div.value-box-area span.observablehq--number{font-size:calc(clamp(.1em,15cqw,5em)*1.25);line-height:1.2;color:inherit;font-family:var(--bs-body-font-family)}.quarto-listing{padding-bottom:1em}.listing-pagination{padding-top:.5em}ul.pagination{float:right;padding-left:8px;padding-top:.5em}ul.pagination li{padding-right:.75em}ul.pagination li.disabled a,ul.pagination li.active a{color:#fff;text-decoration:none}ul.pagination li:last-of-type{padding-right:0}.listing-actions-group{display:flex}.quarto-listing-filter{margin-bottom:1em;width:200px;margin-left:auto}.quarto-listing-sort{margin-bottom:1em;margin-right:auto;width:auto}.quarto-listing-sort .input-group-text{font-size:.8em}.input-group-text{border-right:none}.quarto-listing-sort select.form-select{font-size:.8em}.listing-no-matching{text-align:center;padding-top:2em;padding-bottom:3em;font-size:1em}#quarto-margin-sidebar .quarto-listing-category{padding-top:0;font-size:1rem}#quarto-margin-sidebar .quarto-listing-category-title{cursor:pointer;font-weight:600;font-size:1rem}.quarto-listing-category .category{cursor:pointer}.quarto-listing-category .category.active{font-weight:600}.quarto-listing-category.category-cloud{display:flex;flex-wrap:wrap;align-items:baseline}.quarto-listing-category.category-cloud .category{padding-right:5px}.quarto-listing-category.category-cloud .category-cloud-1{font-size:.75em}.quarto-listing-category.category-cloud .category-cloud-2{font-size:.95em}.quarto-listing-category.category-cloud .category-cloud-3{font-size:1.15em}.quarto-listing-category.category-cloud .category-cloud-4{font-size:1.35em}.quarto-listing-category.category-cloud .category-cloud-5{font-size:1.55em}.quarto-listing-category.category-cloud .category-cloud-6{font-size:1.75em}.quarto-listing-category.category-cloud .category-cloud-7{font-size:1.95em}.quarto-listing-category.category-cloud .category-cloud-8{font-size:2.15em}.quarto-listing-category.category-cloud .category-cloud-9{font-size:2.35em}.quarto-listing-category.category-cloud .category-cloud-10{font-size:2.55em}.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-1{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-2{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-3{grid-template-columns:repeat(3, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-3{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-3{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-4{grid-template-columns:repeat(4, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-4{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-4{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-5{grid-template-columns:repeat(5, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-5{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-5{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-6{grid-template-columns:repeat(6, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-6{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-6{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-7{grid-template-columns:repeat(7, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-7{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-7{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-8{grid-template-columns:repeat(8, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-8{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-8{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-9{grid-template-columns:repeat(9, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-9{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-9{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-10{grid-template-columns:repeat(10, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-10{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-10{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-11{grid-template-columns:repeat(11, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-11{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-11{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-12{grid-template-columns:repeat(12, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-12{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-12{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-grid{gap:1.5em}.quarto-grid-item.borderless{border:none}.quarto-grid-item.borderless .listing-categories .listing-category:last-of-type,.quarto-grid-item.borderless .listing-categories .listing-category:first-of-type{padding-left:0}.quarto-grid-item.borderless .listing-categories .listing-category{border:0}.quarto-grid-link{text-decoration:none;color:inherit}.quarto-grid-link:hover{text-decoration:none;color:inherit}.quarto-grid-item h5.title,.quarto-grid-item .title.h5{margin-top:0;margin-bottom:0}.quarto-grid-item .card-footer{display:flex;justify-content:space-between;font-size:.8em}.quarto-grid-item .card-footer p{margin-bottom:0}.quarto-grid-item p.card-img-top{margin-bottom:0}.quarto-grid-item p.card-img-top>img{object-fit:cover}.quarto-grid-item .card-other-values{margin-top:.5em;font-size:.8em}.quarto-grid-item .card-other-values tr{margin-bottom:.5em}.quarto-grid-item .card-other-values tr>td:first-of-type{font-weight:600;padding-right:1em;padding-left:1em;vertical-align:top}.quarto-grid-item div.post-contents{display:flex;flex-direction:column;text-decoration:none;height:100%}.quarto-grid-item .listing-item-img-placeholder{background-color:rgba(52,58,64,.25);flex-shrink:0}.quarto-grid-item .card-attribution{padding-top:1em;display:flex;gap:1em;text-transform:uppercase;color:#6c757d;font-weight:500;flex-grow:10;align-items:flex-end}.quarto-grid-item .description{padding-bottom:1em}.quarto-grid-item .card-attribution .date{align-self:flex-end}.quarto-grid-item .card-attribution.justify{justify-content:space-between}.quarto-grid-item .card-attribution.start{justify-content:flex-start}.quarto-grid-item .card-attribution.end{justify-content:flex-end}.quarto-grid-item .card-title{margin-bottom:.1em}.quarto-grid-item .card-subtitle{padding-top:.25em}.quarto-grid-item .card-text{font-size:.9em}.quarto-grid-item .listing-reading-time{padding-bottom:.25em}.quarto-grid-item .card-text-small{font-size:.8em}.quarto-grid-item .card-subtitle.subtitle{font-size:.9em;font-weight:600;padding-bottom:.5em}.quarto-grid-item .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}.quarto-grid-item .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}.quarto-grid-item.card-right{text-align:right}.quarto-grid-item.card-right .listing-categories{justify-content:flex-end}.quarto-grid-item.card-left{text-align:left}.quarto-grid-item.card-center{text-align:center}.quarto-grid-item.card-center .listing-description{text-align:justify}.quarto-grid-item.card-center .listing-categories{justify-content:center}table.quarto-listing-table td.image{padding:0px}table.quarto-listing-table td.image img{width:100%;max-width:50px;object-fit:contain}table.quarto-listing-table a{text-decoration:none;word-break:keep-all}table.quarto-listing-table th a{color:inherit}table.quarto-listing-table th a.asc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,');content:""}table.quarto-listing-table th a.desc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,');content:""}table.quarto-listing-table.table-hover td{cursor:pointer}.quarto-post.image-left{flex-direction:row}.quarto-post.image-right{flex-direction:row-reverse}@media(max-width: 767.98px){.quarto-post.image-right,.quarto-post.image-left{gap:0em;flex-direction:column}.quarto-post .metadata{padding-bottom:1em;order:2}.quarto-post .body{order:1}.quarto-post .thumbnail{order:3}}.list.quarto-listing-default div:last-of-type{border-bottom:none}@media(min-width: 992px){.quarto-listing-container-default{margin-right:2em}}div.quarto-post{display:flex;gap:2em;margin-bottom:1.5em;border-bottom:1px solid #dee2e6}@media(max-width: 767.98px){div.quarto-post{padding-bottom:1em}}div.quarto-post .metadata{flex-basis:20%;flex-grow:0;margin-top:.2em;flex-shrink:10}div.quarto-post .thumbnail{flex-basis:30%;flex-grow:0;flex-shrink:0}div.quarto-post .thumbnail img{margin-top:.4em;width:100%;object-fit:cover}div.quarto-post .body{flex-basis:45%;flex-grow:1;flex-shrink:0}div.quarto-post .body h3.listing-title,div.quarto-post .body .listing-title.h3{margin-top:0px;margin-bottom:0px;border-bottom:none}div.quarto-post .body .listing-subtitle{font-size:.875em;margin-bottom:.5em;margin-top:.2em}div.quarto-post .body .description{font-size:.9em}div.quarto-post .body pre code{white-space:pre-wrap}div.quarto-post a{color:#343a40;text-decoration:none}div.quarto-post .metadata{display:flex;flex-direction:column;font-size:.8em;font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";flex-basis:33%}div.quarto-post .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}div.quarto-post .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}div.quarto-post .listing-description{margin-bottom:.5em}div.quarto-about-jolla{display:flex !important;flex-direction:column;align-items:center;margin-top:10%;padding-bottom:1em}div.quarto-about-jolla .about-image{object-fit:cover;margin-left:auto;margin-right:auto;margin-bottom:1.5em}div.quarto-about-jolla img.round{border-radius:50%}div.quarto-about-jolla img.rounded{border-radius:10px}div.quarto-about-jolla .quarto-title h1.title,div.quarto-about-jolla .quarto-title .title.h1{text-align:center}div.quarto-about-jolla .quarto-title .description{text-align:center}div.quarto-about-jolla h2,div.quarto-about-jolla .h2{border-bottom:none}div.quarto-about-jolla .about-sep{width:60%}div.quarto-about-jolla main{text-align:center}div.quarto-about-jolla .about-links{display:flex}@media(min-width: 992px){div.quarto-about-jolla .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-jolla .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-jolla .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-jolla .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-jolla .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-jolla .about-link:hover{color:#2761e3}div.quarto-about-jolla .about-link i.bi{margin-right:.15em}div.quarto-about-solana{display:flex !important;flex-direction:column;padding-top:3em !important;padding-bottom:1em}div.quarto-about-solana .about-entity{display:flex !important;align-items:start;justify-content:space-between}@media(min-width: 992px){div.quarto-about-solana .about-entity{flex-direction:row}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity{flex-direction:column-reverse;align-items:center;text-align:center}}div.quarto-about-solana .about-entity .entity-contents{display:flex;flex-direction:column}@media(max-width: 767.98px){div.quarto-about-solana .about-entity .entity-contents{width:100%}}div.quarto-about-solana .about-entity .about-image{object-fit:cover}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-image{margin-bottom:1.5em}}div.quarto-about-solana .about-entity img.round{border-radius:50%}div.quarto-about-solana .about-entity img.rounded{border-radius:10px}div.quarto-about-solana .about-entity .about-links{display:flex;justify-content:left;padding-bottom:1.2em}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-solana .about-entity .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-solana .about-entity .about-link:hover{color:#2761e3}div.quarto-about-solana .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-solana .about-contents{padding-right:1.5em;flex-basis:0;flex-grow:1}div.quarto-about-solana .about-contents main.content{margin-top:0}div.quarto-about-solana .about-contents h2,div.quarto-about-solana .about-contents .h2{border-bottom:none}div.quarto-about-trestles{display:flex !important;flex-direction:row;padding-top:3em !important;padding-bottom:1em}@media(max-width: 991.98px){div.quarto-about-trestles{flex-direction:column;padding-top:0em !important}}div.quarto-about-trestles .about-entity{display:flex !important;flex-direction:column;align-items:center;text-align:center;padding-right:1em}@media(min-width: 992px){div.quarto-about-trestles .about-entity{flex:0 0 42%}}div.quarto-about-trestles .about-entity .about-image{object-fit:cover;margin-bottom:1.5em}div.quarto-about-trestles .about-entity img.round{border-radius:50%}div.quarto-about-trestles .about-entity img.rounded{border-radius:10px}div.quarto-about-trestles .about-entity .about-links{display:flex;justify-content:center}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-trestles .about-entity .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-trestles .about-entity .about-link:hover{color:#2761e3}div.quarto-about-trestles .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-trestles .about-contents{flex-basis:0;flex-grow:1}div.quarto-about-trestles .about-contents h2,div.quarto-about-trestles .about-contents .h2{border-bottom:none}@media(min-width: 992px){div.quarto-about-trestles .about-contents{border-left:solid 1px #dee2e6;padding-left:1.5em}}div.quarto-about-trestles .about-contents main.content{margin-top:0}div.quarto-about-marquee{padding-bottom:1em}div.quarto-about-marquee .about-contents{display:flex;flex-direction:column}div.quarto-about-marquee .about-image{max-height:550px;margin-bottom:1.5em;object-fit:cover}div.quarto-about-marquee img.round{border-radius:50%}div.quarto-about-marquee img.rounded{border-radius:10px}div.quarto-about-marquee h2,div.quarto-about-marquee .h2{border-bottom:none}div.quarto-about-marquee .about-links{display:flex;justify-content:center;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-marquee .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-marquee .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-marquee .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-marquee .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-marquee .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-marquee .about-link:hover{color:#2761e3}div.quarto-about-marquee .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-marquee .about-link{border:none}}div.quarto-about-broadside{display:flex;flex-direction:column;padding-bottom:1em}div.quarto-about-broadside .about-main{display:flex !important;padding-top:0 !important}@media(min-width: 992px){div.quarto-about-broadside .about-main{flex-direction:row;align-items:flex-start}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main{flex-direction:column}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main .about-entity{flex-shrink:0;width:100%;height:450px;margin-bottom:1.5em;background-size:cover;background-repeat:no-repeat}}@media(min-width: 992px){div.quarto-about-broadside .about-main .about-entity{flex:0 10 50%;margin-right:1.5em;width:100%;height:100%;background-size:100%;background-repeat:no-repeat}}div.quarto-about-broadside .about-main .about-contents{padding-top:14px;flex:0 0 50%}div.quarto-about-broadside h2,div.quarto-about-broadside .h2{border-bottom:none}div.quarto-about-broadside .about-sep{margin-top:1.5em;width:60%;align-self:center}div.quarto-about-broadside .about-links{display:flex;justify-content:center;column-gap:20px;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-broadside .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-broadside .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-broadside .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-broadside .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-broadside .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-broadside .about-link:hover{color:#2761e3}div.quarto-about-broadside .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-broadside .about-link{border:none}}.tippy-box[data-theme~=quarto]{background-color:#fff;border:solid 1px #dee2e6;border-radius:.25rem;color:#343a40;font-size:.875rem}.tippy-box[data-theme~=quarto]>.tippy-backdrop{background-color:#fff}.tippy-box[data-theme~=quarto]>.tippy-arrow:after,.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{content:"";position:absolute;z-index:-1}.tippy-box[data-theme~=quarto]>.tippy-arrow:after{border-color:rgba(0,0,0,0);border-style:solid}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-6px}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-6px}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-6px}.tippy-box[data-placement^=left]>.tippy-arrow:before{right:-6px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:before{border-top-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:after{border-top-color:#dee2e6;border-width:7px 7px 0;top:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow>svg{top:16px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow:after{top:17px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:before{border-bottom-color:#fff;bottom:16px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:after{border-bottom-color:#dee2e6;border-width:0 7px 7px;bottom:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow>svg{bottom:15px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow:after{bottom:17px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:before{border-left-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:after{border-left-color:#dee2e6;border-width:7px 0 7px 7px;left:17px;top:1px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow>svg{left:11px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow:after{left:12px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:before{border-right-color:#fff;right:16px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:after{border-width:7px 7px 7px 0;right:17px;top:1px;border-right-color:#dee2e6}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow>svg{right:11px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow:after{right:12px}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow{fill:#343a40}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{background-image:url();background-size:16px 6px;width:16px;height:6px}.top-right{position:absolute;top:1em;right:1em}.visually-hidden{border:0;clip:rect(0 0 0 0);height:auto;margin:0;overflow:hidden;padding:0;position:absolute;width:1px;white-space:nowrap}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:.5em}figure>figcaption.quarto-float-caption-top{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,.h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,.h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,.h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,.h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1,#title-block-header .quarto-title-block>div>.h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}@media(min-width: 992px){#title-block-header .quarto-title-block>div>button{margin-top:5px}}tr.header>th>p:last-of-type{margin-bottom:0px}table,table.table{margin-top:.5rem;margin-bottom:.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-top{margin-top:.5rem;margin-bottom:.25rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-bottom{padding-top:.25rem;margin-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:#6c757d}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}dd code:not(.sourceCode),p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.footnote-back{margin-left:.2em}.tippy-content{overflow-x:auto}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*! +* +* ansi colors from IPython notebook's +* +* we also add `bright-[color]-` synonyms for the `-[color]-intense` classes since +* that seems to be what ansi_up emits +* +*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-black,.ansi-bright-black-fg{color:#282c36}.ansi-black-intense-black,.ansi-bright-black-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-red,.ansi-bright-red-fg{color:#b22b31}.ansi-red-intense-red,.ansi-bright-red-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-green,.ansi-bright-green-fg{color:#007427}.ansi-green-intense-green,.ansi-bright-green-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-yellow,.ansi-bright-yellow-fg{color:#b27d12}.ansi-yellow-intense-yellow,.ansi-bright-yellow-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-blue,.ansi-bright-blue-fg{color:#0065ca}.ansi-blue-intense-blue,.ansi-bright-blue-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-magenta,.ansi-bright-magenta-fg{color:#a03196}.ansi-magenta-intense-magenta,.ansi-bright-magenta-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-cyan,.ansi-bright-cyan-fg{color:#258f8f}.ansi-cyan-intense-cyan,.ansi-bright-cyan-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-white,.ansi-bright-white-fg{color:#a1a6b2}.ansi-white-intense-white,.ansi-bright-white-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: #fff;--quarto-body-color: #343a40;--quarto-text-muted: #6c757d;--quarto-border-color: #dee2e6;--quarto-border-width: 1px;--quarto-border-radius: 0.25rem}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:relative;float:right;background-color:rgba(0,0,0,0)}input[type=checkbox]{margin-right:.5ch}:root{--mermaid-bg-color: #fff;--mermaid-edge-color: #343a40;--mermaid-node-fg-color: #343a40;--mermaid-fg-color: #343a40;--mermaid-fg-color--lighter: #4b545c;--mermaid-fg-color--lightest: #626d78;--mermaid-font-family: Source Sans Pro, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol;--mermaid-label-bg-color: #fff;--mermaid-label-fg-color: #2780e3;--mermaid-node-bg-color: rgba(39, 128, 227, 0.1);--mermaid-node-fg-color: #343a40}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}pre.sourceCode:hover>.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}pre.sourceCode:hover>.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}pre.sourceCode:hover>.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}pre.sourceCode:hover>.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,')}main ol ol,main ul ul,main ol ul,main ul ol{margin-bottom:1em}ul>li:not(:has(>p))>ul,ol>li:not(:has(>p))>ul,ul>li:not(:has(>p))>ol,ol>li:not(:has(>p))>ol{margin-bottom:0}ul>li:not(:has(>p))>ul>li:has(>p),ol>li:not(:has(>p))>ul>li:has(>p),ul>li:not(:has(>p))>ol>li:has(>p),ol>li:not(:has(>p))>ol>li:has(>p){margin-top:1rem}body{margin:0}main.page-columns>header>h1.title,main.page-columns>header>.title.h1{margin-bottom:0}@media(min-width: 992px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] 35px [page-end-inset page-end] 5fr [screen-end-inset] 1.5em}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 3em [body-end] 50px [body-end-outset] minmax(0px, 250px) [page-end-inset] minmax(50px, 100px) [page-end] 1fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 100px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 150px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 991.98px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(1250px - 3em)) [body-content-end body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1.5em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 767.98px){body .page-columns,body.fullcontent:not(.floating):not(.docked) .page-columns,body.slimcontent:not(.floating):not(.docked) .page-columns,body.docked .page-columns,body.docked.slimcontent .page-columns,body.docked.fullcontent .page-columns,body.floating .page-columns,body.floating.slimcontent .page-columns,body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}nav[role=doc-toc]{display:none}}body,.page-row-navigation{grid-template-rows:[page-top] max-content [contents-top] max-content [contents-bottom] max-content [page-bottom]}.page-rows-contents{grid-template-rows:[content-top] minmax(max-content, 1fr) [content-bottom] minmax(60px, max-content) [page-bottom]}.page-full{grid-column:screen-start/screen-end !important}.page-columns>*{grid-column:body-content-start/body-content-end}.page-columns.column-page>*{grid-column:page-start/page-end}.page-columns.column-page-left .page-columns.page-full>*,.page-columns.column-page-left>*{grid-column:page-start/body-content-end}.page-columns.column-page-right .page-columns.page-full>*,.page-columns.column-page-right>*{grid-column:body-content-start/page-end}.page-rows{grid-auto-rows:auto}.header{grid-column:screen-start/screen-end;grid-row:page-top/contents-top}#quarto-content{padding:0;grid-column:screen-start/screen-end;grid-row:contents-top/contents-bottom}body.floating .sidebar.sidebar-navigation{grid-column:page-start/body-start;grid-row:content-top/page-bottom}body.docked .sidebar.sidebar-navigation{grid-column:screen-start/body-start;grid-row:content-top/page-bottom}.sidebar.toc-left{grid-column:page-start/body-start;grid-row:content-top/page-bottom}.sidebar.margin-sidebar{grid-column:body-end/page-end;grid-row:content-top/page-bottom}.page-columns .content{grid-column:body-content-start/body-content-end;grid-row:content-top/content-bottom;align-content:flex-start}.page-columns .page-navigation{grid-column:body-content-start/body-content-end;grid-row:content-bottom/page-bottom}.page-columns .footer{grid-column:screen-start/screen-end;grid-row:contents-bottom/page-bottom}.page-columns .column-body{grid-column:body-content-start/body-content-end}.page-columns .column-body-fullbleed{grid-column:body-start/body-end}.page-columns .column-body-outset{grid-column:body-start-outset/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset table{background:#fff}.page-columns .column-body-outset-left{grid-column:body-start-outset/body-content-end;z-index:998;opacity:.999}.page-columns .column-body-outset-left table{background:#fff}.page-columns .column-body-outset-right{grid-column:body-content-start/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset-right table{background:#fff}.page-columns .column-page{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-page table{background:#fff}.page-columns .column-page-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset table{background:#fff}.page-columns .column-page-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-inset-left table{background:#fff}.page-columns .column-page-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset-right figcaption table{background:#fff}.page-columns .column-page-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-left table{background:#fff}.page-columns .column-page-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-page-right figcaption table{background:#fff}#quarto-content.page-columns #quarto-margin-sidebar,#quarto-content.page-columns #quarto-sidebar{z-index:1}@media(max-width: 991.98px){#quarto-content.page-columns #quarto-margin-sidebar.collapse,#quarto-content.page-columns #quarto-sidebar.collapse,#quarto-content.page-columns #quarto-margin-sidebar.collapsing,#quarto-content.page-columns #quarto-sidebar.collapsing{z-index:1055}}#quarto-content.page-columns main.column-page,#quarto-content.page-columns main.column-page-right,#quarto-content.page-columns main.column-page-left{z-index:0}.page-columns .column-screen-inset{grid-column:screen-start-inset/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:screen-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:screen-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:screen-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:screen-start/screen-end;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}.zindex-content{z-index:998;opacity:.999}.zindex-modal{z-index:1055;opacity:.999}.zindex-over-content{z-index:999;opacity:.999}img.img-fluid.column-screen,img.img-fluid.column-screen-inset-shaded,img.img-fluid.column-screen-inset,img.img-fluid.column-screen-inset-left,img.img-fluid.column-screen-inset-right,img.img-fluid.column-screen-left,img.img-fluid.column-screen-right{width:100%}@media(min-width: 992px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.column-sidebar{grid-column:page-start/body-start !important;z-index:998}.column-leftmargin{grid-column:screen-start-inset/body-start !important;z-index:998}.no-row-height{height:1em;overflow:visible}}@media(max-width: 991.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.no-row-height{height:1em;overflow:visible}.page-columns.page-full{overflow:visible}.page-columns.toc-left .margin-caption,.page-columns.toc-left div.aside,.page-columns.toc-left aside:not(.footnotes):not(.sidebar),.page-columns.toc-left .column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.page-columns.toc-left .no-row-height{height:initial;overflow:initial}}@media(max-width: 767.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.no-row-height{height:initial;overflow:initial}#quarto-margin-sidebar{display:none}#quarto-sidebar-toc-left{display:none}.hidden-sm{display:none}}.panel-grid{display:grid;grid-template-rows:repeat(1, 1fr);grid-template-columns:repeat(24, 1fr);gap:1em}.panel-grid .g-col-1{grid-column:auto/span 1}.panel-grid .g-col-2{grid-column:auto/span 2}.panel-grid .g-col-3{grid-column:auto/span 3}.panel-grid .g-col-4{grid-column:auto/span 4}.panel-grid .g-col-5{grid-column:auto/span 5}.panel-grid .g-col-6{grid-column:auto/span 6}.panel-grid .g-col-7{grid-column:auto/span 7}.panel-grid .g-col-8{grid-column:auto/span 8}.panel-grid .g-col-9{grid-column:auto/span 9}.panel-grid .g-col-10{grid-column:auto/span 10}.panel-grid .g-col-11{grid-column:auto/span 11}.panel-grid .g-col-12{grid-column:auto/span 12}.panel-grid .g-col-13{grid-column:auto/span 13}.panel-grid .g-col-14{grid-column:auto/span 14}.panel-grid .g-col-15{grid-column:auto/span 15}.panel-grid .g-col-16{grid-column:auto/span 16}.panel-grid .g-col-17{grid-column:auto/span 17}.panel-grid .g-col-18{grid-column:auto/span 18}.panel-grid .g-col-19{grid-column:auto/span 19}.panel-grid .g-col-20{grid-column:auto/span 20}.panel-grid .g-col-21{grid-column:auto/span 21}.panel-grid .g-col-22{grid-column:auto/span 22}.panel-grid .g-col-23{grid-column:auto/span 23}.panel-grid .g-col-24{grid-column:auto/span 24}.panel-grid .g-start-1{grid-column-start:1}.panel-grid .g-start-2{grid-column-start:2}.panel-grid .g-start-3{grid-column-start:3}.panel-grid .g-start-4{grid-column-start:4}.panel-grid .g-start-5{grid-column-start:5}.panel-grid .g-start-6{grid-column-start:6}.panel-grid .g-start-7{grid-column-start:7}.panel-grid .g-start-8{grid-column-start:8}.panel-grid .g-start-9{grid-column-start:9}.panel-grid .g-start-10{grid-column-start:10}.panel-grid .g-start-11{grid-column-start:11}.panel-grid .g-start-12{grid-column-start:12}.panel-grid .g-start-13{grid-column-start:13}.panel-grid .g-start-14{grid-column-start:14}.panel-grid .g-start-15{grid-column-start:15}.panel-grid .g-start-16{grid-column-start:16}.panel-grid .g-start-17{grid-column-start:17}.panel-grid .g-start-18{grid-column-start:18}.panel-grid .g-start-19{grid-column-start:19}.panel-grid .g-start-20{grid-column-start:20}.panel-grid .g-start-21{grid-column-start:21}.panel-grid .g-start-22{grid-column-start:22}.panel-grid .g-start-23{grid-column-start:23}@media(min-width: 576px){.panel-grid .g-col-sm-1{grid-column:auto/span 1}.panel-grid .g-col-sm-2{grid-column:auto/span 2}.panel-grid .g-col-sm-3{grid-column:auto/span 3}.panel-grid .g-col-sm-4{grid-column:auto/span 4}.panel-grid .g-col-sm-5{grid-column:auto/span 5}.panel-grid .g-col-sm-6{grid-column:auto/span 6}.panel-grid .g-col-sm-7{grid-column:auto/span 7}.panel-grid .g-col-sm-8{grid-column:auto/span 8}.panel-grid .g-col-sm-9{grid-column:auto/span 9}.panel-grid .g-col-sm-10{grid-column:auto/span 10}.panel-grid .g-col-sm-11{grid-column:auto/span 11}.panel-grid .g-col-sm-12{grid-column:auto/span 12}.panel-grid .g-col-sm-13{grid-column:auto/span 13}.panel-grid .g-col-sm-14{grid-column:auto/span 14}.panel-grid .g-col-sm-15{grid-column:auto/span 15}.panel-grid .g-col-sm-16{grid-column:auto/span 16}.panel-grid .g-col-sm-17{grid-column:auto/span 17}.panel-grid .g-col-sm-18{grid-column:auto/span 18}.panel-grid .g-col-sm-19{grid-column:auto/span 19}.panel-grid .g-col-sm-20{grid-column:auto/span 20}.panel-grid .g-col-sm-21{grid-column:auto/span 21}.panel-grid .g-col-sm-22{grid-column:auto/span 22}.panel-grid .g-col-sm-23{grid-column:auto/span 23}.panel-grid .g-col-sm-24{grid-column:auto/span 24}.panel-grid .g-start-sm-1{grid-column-start:1}.panel-grid .g-start-sm-2{grid-column-start:2}.panel-grid .g-start-sm-3{grid-column-start:3}.panel-grid .g-start-sm-4{grid-column-start:4}.panel-grid .g-start-sm-5{grid-column-start:5}.panel-grid .g-start-sm-6{grid-column-start:6}.panel-grid .g-start-sm-7{grid-column-start:7}.panel-grid .g-start-sm-8{grid-column-start:8}.panel-grid .g-start-sm-9{grid-column-start:9}.panel-grid .g-start-sm-10{grid-column-start:10}.panel-grid .g-start-sm-11{grid-column-start:11}.panel-grid .g-start-sm-12{grid-column-start:12}.panel-grid .g-start-sm-13{grid-column-start:13}.panel-grid .g-start-sm-14{grid-column-start:14}.panel-grid .g-start-sm-15{grid-column-start:15}.panel-grid .g-start-sm-16{grid-column-start:16}.panel-grid .g-start-sm-17{grid-column-start:17}.panel-grid .g-start-sm-18{grid-column-start:18}.panel-grid .g-start-sm-19{grid-column-start:19}.panel-grid .g-start-sm-20{grid-column-start:20}.panel-grid .g-start-sm-21{grid-column-start:21}.panel-grid .g-start-sm-22{grid-column-start:22}.panel-grid .g-start-sm-23{grid-column-start:23}}@media(min-width: 768px){.panel-grid .g-col-md-1{grid-column:auto/span 1}.panel-grid .g-col-md-2{grid-column:auto/span 2}.panel-grid .g-col-md-3{grid-column:auto/span 3}.panel-grid .g-col-md-4{grid-column:auto/span 4}.panel-grid .g-col-md-5{grid-column:auto/span 5}.panel-grid .g-col-md-6{grid-column:auto/span 6}.panel-grid .g-col-md-7{grid-column:auto/span 7}.panel-grid .g-col-md-8{grid-column:auto/span 8}.panel-grid .g-col-md-9{grid-column:auto/span 9}.panel-grid .g-col-md-10{grid-column:auto/span 10}.panel-grid .g-col-md-11{grid-column:auto/span 11}.panel-grid .g-col-md-12{grid-column:auto/span 12}.panel-grid .g-col-md-13{grid-column:auto/span 13}.panel-grid .g-col-md-14{grid-column:auto/span 14}.panel-grid .g-col-md-15{grid-column:auto/span 15}.panel-grid .g-col-md-16{grid-column:auto/span 16}.panel-grid .g-col-md-17{grid-column:auto/span 17}.panel-grid .g-col-md-18{grid-column:auto/span 18}.panel-grid .g-col-md-19{grid-column:auto/span 19}.panel-grid .g-col-md-20{grid-column:auto/span 20}.panel-grid .g-col-md-21{grid-column:auto/span 21}.panel-grid .g-col-md-22{grid-column:auto/span 22}.panel-grid .g-col-md-23{grid-column:auto/span 23}.panel-grid .g-col-md-24{grid-column:auto/span 24}.panel-grid .g-start-md-1{grid-column-start:1}.panel-grid .g-start-md-2{grid-column-start:2}.panel-grid .g-start-md-3{grid-column-start:3}.panel-grid .g-start-md-4{grid-column-start:4}.panel-grid .g-start-md-5{grid-column-start:5}.panel-grid .g-start-md-6{grid-column-start:6}.panel-grid .g-start-md-7{grid-column-start:7}.panel-grid .g-start-md-8{grid-column-start:8}.panel-grid .g-start-md-9{grid-column-start:9}.panel-grid .g-start-md-10{grid-column-start:10}.panel-grid .g-start-md-11{grid-column-start:11}.panel-grid .g-start-md-12{grid-column-start:12}.panel-grid .g-start-md-13{grid-column-start:13}.panel-grid .g-start-md-14{grid-column-start:14}.panel-grid .g-start-md-15{grid-column-start:15}.panel-grid .g-start-md-16{grid-column-start:16}.panel-grid .g-start-md-17{grid-column-start:17}.panel-grid .g-start-md-18{grid-column-start:18}.panel-grid .g-start-md-19{grid-column-start:19}.panel-grid .g-start-md-20{grid-column-start:20}.panel-grid .g-start-md-21{grid-column-start:21}.panel-grid .g-start-md-22{grid-column-start:22}.panel-grid .g-start-md-23{grid-column-start:23}}@media(min-width: 992px){.panel-grid .g-col-lg-1{grid-column:auto/span 1}.panel-grid .g-col-lg-2{grid-column:auto/span 2}.panel-grid .g-col-lg-3{grid-column:auto/span 3}.panel-grid .g-col-lg-4{grid-column:auto/span 4}.panel-grid .g-col-lg-5{grid-column:auto/span 5}.panel-grid .g-col-lg-6{grid-column:auto/span 6}.panel-grid .g-col-lg-7{grid-column:auto/span 7}.panel-grid .g-col-lg-8{grid-column:auto/span 8}.panel-grid .g-col-lg-9{grid-column:auto/span 9}.panel-grid .g-col-lg-10{grid-column:auto/span 10}.panel-grid .g-col-lg-11{grid-column:auto/span 11}.panel-grid .g-col-lg-12{grid-column:auto/span 12}.panel-grid .g-col-lg-13{grid-column:auto/span 13}.panel-grid .g-col-lg-14{grid-column:auto/span 14}.panel-grid .g-col-lg-15{grid-column:auto/span 15}.panel-grid .g-col-lg-16{grid-column:auto/span 16}.panel-grid .g-col-lg-17{grid-column:auto/span 17}.panel-grid .g-col-lg-18{grid-column:auto/span 18}.panel-grid .g-col-lg-19{grid-column:auto/span 19}.panel-grid .g-col-lg-20{grid-column:auto/span 20}.panel-grid .g-col-lg-21{grid-column:auto/span 21}.panel-grid .g-col-lg-22{grid-column:auto/span 22}.panel-grid .g-col-lg-23{grid-column:auto/span 23}.panel-grid .g-col-lg-24{grid-column:auto/span 24}.panel-grid .g-start-lg-1{grid-column-start:1}.panel-grid .g-start-lg-2{grid-column-start:2}.panel-grid .g-start-lg-3{grid-column-start:3}.panel-grid .g-start-lg-4{grid-column-start:4}.panel-grid .g-start-lg-5{grid-column-start:5}.panel-grid .g-start-lg-6{grid-column-start:6}.panel-grid .g-start-lg-7{grid-column-start:7}.panel-grid .g-start-lg-8{grid-column-start:8}.panel-grid .g-start-lg-9{grid-column-start:9}.panel-grid .g-start-lg-10{grid-column-start:10}.panel-grid .g-start-lg-11{grid-column-start:11}.panel-grid .g-start-lg-12{grid-column-start:12}.panel-grid .g-start-lg-13{grid-column-start:13}.panel-grid .g-start-lg-14{grid-column-start:14}.panel-grid .g-start-lg-15{grid-column-start:15}.panel-grid .g-start-lg-16{grid-column-start:16}.panel-grid .g-start-lg-17{grid-column-start:17}.panel-grid .g-start-lg-18{grid-column-start:18}.panel-grid .g-start-lg-19{grid-column-start:19}.panel-grid .g-start-lg-20{grid-column-start:20}.panel-grid .g-start-lg-21{grid-column-start:21}.panel-grid .g-start-lg-22{grid-column-start:22}.panel-grid .g-start-lg-23{grid-column-start:23}}@media(min-width: 1200px){.panel-grid .g-col-xl-1{grid-column:auto/span 1}.panel-grid .g-col-xl-2{grid-column:auto/span 2}.panel-grid .g-col-xl-3{grid-column:auto/span 3}.panel-grid .g-col-xl-4{grid-column:auto/span 4}.panel-grid .g-col-xl-5{grid-column:auto/span 5}.panel-grid .g-col-xl-6{grid-column:auto/span 6}.panel-grid .g-col-xl-7{grid-column:auto/span 7}.panel-grid .g-col-xl-8{grid-column:auto/span 8}.panel-grid .g-col-xl-9{grid-column:auto/span 9}.panel-grid .g-col-xl-10{grid-column:auto/span 10}.panel-grid .g-col-xl-11{grid-column:auto/span 11}.panel-grid .g-col-xl-12{grid-column:auto/span 12}.panel-grid .g-col-xl-13{grid-column:auto/span 13}.panel-grid .g-col-xl-14{grid-column:auto/span 14}.panel-grid .g-col-xl-15{grid-column:auto/span 15}.panel-grid .g-col-xl-16{grid-column:auto/span 16}.panel-grid .g-col-xl-17{grid-column:auto/span 17}.panel-grid .g-col-xl-18{grid-column:auto/span 18}.panel-grid .g-col-xl-19{grid-column:auto/span 19}.panel-grid .g-col-xl-20{grid-column:auto/span 20}.panel-grid .g-col-xl-21{grid-column:auto/span 21}.panel-grid .g-col-xl-22{grid-column:auto/span 22}.panel-grid .g-col-xl-23{grid-column:auto/span 23}.panel-grid .g-col-xl-24{grid-column:auto/span 24}.panel-grid .g-start-xl-1{grid-column-start:1}.panel-grid .g-start-xl-2{grid-column-start:2}.panel-grid .g-start-xl-3{grid-column-start:3}.panel-grid .g-start-xl-4{grid-column-start:4}.panel-grid .g-start-xl-5{grid-column-start:5}.panel-grid .g-start-xl-6{grid-column-start:6}.panel-grid .g-start-xl-7{grid-column-start:7}.panel-grid .g-start-xl-8{grid-column-start:8}.panel-grid .g-start-xl-9{grid-column-start:9}.panel-grid .g-start-xl-10{grid-column-start:10}.panel-grid .g-start-xl-11{grid-column-start:11}.panel-grid .g-start-xl-12{grid-column-start:12}.panel-grid .g-start-xl-13{grid-column-start:13}.panel-grid .g-start-xl-14{grid-column-start:14}.panel-grid .g-start-xl-15{grid-column-start:15}.panel-grid .g-start-xl-16{grid-column-start:16}.panel-grid .g-start-xl-17{grid-column-start:17}.panel-grid .g-start-xl-18{grid-column-start:18}.panel-grid .g-start-xl-19{grid-column-start:19}.panel-grid .g-start-xl-20{grid-column-start:20}.panel-grid .g-start-xl-21{grid-column-start:21}.panel-grid .g-start-xl-22{grid-column-start:22}.panel-grid .g-start-xl-23{grid-column-start:23}}@media(min-width: 1400px){.panel-grid .g-col-xxl-1{grid-column:auto/span 1}.panel-grid .g-col-xxl-2{grid-column:auto/span 2}.panel-grid .g-col-xxl-3{grid-column:auto/span 3}.panel-grid .g-col-xxl-4{grid-column:auto/span 4}.panel-grid .g-col-xxl-5{grid-column:auto/span 5}.panel-grid .g-col-xxl-6{grid-column:auto/span 6}.panel-grid .g-col-xxl-7{grid-column:auto/span 7}.panel-grid .g-col-xxl-8{grid-column:auto/span 8}.panel-grid .g-col-xxl-9{grid-column:auto/span 9}.panel-grid .g-col-xxl-10{grid-column:auto/span 10}.panel-grid .g-col-xxl-11{grid-column:auto/span 11}.panel-grid .g-col-xxl-12{grid-column:auto/span 12}.panel-grid .g-col-xxl-13{grid-column:auto/span 13}.panel-grid .g-col-xxl-14{grid-column:auto/span 14}.panel-grid .g-col-xxl-15{grid-column:auto/span 15}.panel-grid .g-col-xxl-16{grid-column:auto/span 16}.panel-grid .g-col-xxl-17{grid-column:auto/span 17}.panel-grid .g-col-xxl-18{grid-column:auto/span 18}.panel-grid .g-col-xxl-19{grid-column:auto/span 19}.panel-grid .g-col-xxl-20{grid-column:auto/span 20}.panel-grid .g-col-xxl-21{grid-column:auto/span 21}.panel-grid .g-col-xxl-22{grid-column:auto/span 22}.panel-grid .g-col-xxl-23{grid-column:auto/span 23}.panel-grid .g-col-xxl-24{grid-column:auto/span 24}.panel-grid .g-start-xxl-1{grid-column-start:1}.panel-grid .g-start-xxl-2{grid-column-start:2}.panel-grid .g-start-xxl-3{grid-column-start:3}.panel-grid .g-start-xxl-4{grid-column-start:4}.panel-grid .g-start-xxl-5{grid-column-start:5}.panel-grid .g-start-xxl-6{grid-column-start:6}.panel-grid .g-start-xxl-7{grid-column-start:7}.panel-grid .g-start-xxl-8{grid-column-start:8}.panel-grid .g-start-xxl-9{grid-column-start:9}.panel-grid .g-start-xxl-10{grid-column-start:10}.panel-grid .g-start-xxl-11{grid-column-start:11}.panel-grid .g-start-xxl-12{grid-column-start:12}.panel-grid .g-start-xxl-13{grid-column-start:13}.panel-grid .g-start-xxl-14{grid-column-start:14}.panel-grid .g-start-xxl-15{grid-column-start:15}.panel-grid .g-start-xxl-16{grid-column-start:16}.panel-grid .g-start-xxl-17{grid-column-start:17}.panel-grid .g-start-xxl-18{grid-column-start:18}.panel-grid .g-start-xxl-19{grid-column-start:19}.panel-grid .g-start-xxl-20{grid-column-start:20}.panel-grid .g-start-xxl-21{grid-column-start:21}.panel-grid .g-start-xxl-22{grid-column-start:22}.panel-grid .g-start-xxl-23{grid-column-start:23}}main{margin-top:1em;margin-bottom:1em}h1,.h1,h2,.h2{color:inherit;margin-top:2rem;margin-bottom:1rem;font-weight:600}h1.title,.title.h1{margin-top:0}main.content>section:first-of-type>h2:first-child,main.content>section:first-of-type>.h2:first-child{margin-top:0}h2,.h2{border-bottom:1px solid #dee2e6;padding-bottom:.5rem}h3,.h3{font-weight:600}h3,.h3,h4,.h4{opacity:.9;margin-top:1.5rem}h5,.h5,h6,.h6{opacity:.9}.header-section-number{color:#6d7a86}.nav-link.active .header-section-number{color:inherit}mark,.mark{padding:0em}.panel-caption,.figure-caption,.subfigure-caption,.table-caption,figcaption,caption{font-size:.9rem;color:#6d7a86}.quarto-layout-cell[data-ref-parent] caption{color:#6d7a86}.column-margin figcaption,.margin-caption,div.aside,aside,.column-margin{color:#6d7a86;font-size:.825rem}.panel-caption.margin-caption{text-align:inherit}.column-margin.column-container p{margin-bottom:0}.column-margin.column-container>*:not(.collapse):first-child{padding-bottom:.5em;display:block}.column-margin.column-container>*:not(.collapse):not(:first-child){padding-top:.5em;padding-bottom:.5em;display:block}.column-margin.column-container>*.collapse:not(.show){display:none}@media(min-width: 768px){.column-margin.column-container .callout-margin-content:first-child{margin-top:4.5em}.column-margin.column-container .callout-margin-content-simple:first-child{margin-top:3.5em}}.margin-caption>*{padding-top:.5em;padding-bottom:.5em}@media(max-width: 767.98px){.quarto-layout-row{flex-direction:column}}.nav-tabs .nav-item{margin-top:1px;cursor:pointer}.tab-content{margin-top:0px;border-left:#dee2e6 1px solid;border-right:#dee2e6 1px solid;border-bottom:#dee2e6 1px solid;margin-left:0;padding:1em;margin-bottom:1em}@media(max-width: 767.98px){.layout-sidebar{margin-left:0;margin-right:0}}.panel-sidebar,.panel-sidebar .form-control,.panel-input,.panel-input .form-control,.selectize-dropdown{font-size:.9rem}.panel-sidebar .form-control,.panel-input .form-control{padding-top:.1rem}.tab-pane div.sourceCode{margin-top:0px}.tab-pane>p{padding-top:0}.tab-pane>p:nth-child(1){padding-top:0}.tab-pane>p:last-child{margin-bottom:0}.tab-pane>pre:last-child{margin-bottom:0}.tab-content>.tab-pane:not(.active){display:none !important}div.sourceCode{background-color:rgba(233,236,239,.65);border:1px solid rgba(233,236,239,.65);border-radius:.25rem}pre.sourceCode{background-color:rgba(0,0,0,0)}pre.sourceCode{border:none;font-size:.875em;overflow:visible !important;padding:.4em}.callout pre.sourceCode{padding-left:0}div.sourceCode{overflow-y:hidden}.callout div.sourceCode{margin-left:initial}.blockquote{font-size:inherit;padding-left:1rem;padding-right:1.5rem;color:#6d7a86}.blockquote h1:first-child,.blockquote .h1:first-child,.blockquote h2:first-child,.blockquote .h2:first-child,.blockquote h3:first-child,.blockquote .h3:first-child,.blockquote h4:first-child,.blockquote .h4:first-child,.blockquote h5:first-child,.blockquote .h5:first-child{margin-top:0}pre{background-color:initial;padding:initial;border:initial}p pre code:not(.sourceCode),li pre code:not(.sourceCode),pre code:not(.sourceCode){background-color:initial}p code:not(.sourceCode),li code:not(.sourceCode),td code:not(.sourceCode){background-color:#f8f9fa;padding:.2em}nav p code:not(.sourceCode),nav li code:not(.sourceCode),nav td code:not(.sourceCode){background-color:rgba(0,0,0,0);padding:0}td code:not(.sourceCode){white-space:pre-wrap}#quarto-embedded-source-code-modal>.modal-dialog{max-width:1000px;padding-left:1.75rem;padding-right:1.75rem}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body{padding:0}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body div.sourceCode{margin:0;padding:.2rem .2rem;border-radius:0px;border:none}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-header{padding:.7rem}.code-tools-button{font-size:1rem;padding:.15rem .15rem;margin-left:5px;color:#6c757d;background-color:rgba(0,0,0,0);transition:initial;cursor:pointer}.code-tools-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}.code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}#quarto-embedded-source-code-modal .code-copy-button>.bi::before{background-image:url('data:image/svg+xml,')}#quarto-embedded-source-code-modal .code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}.sidebar{will-change:top;transition:top 200ms linear;position:sticky;overflow-y:auto;padding-top:1.2em;max-height:100vh}.sidebar.toc-left,.sidebar.margin-sidebar{top:0px;padding-top:1em}.sidebar.quarto-banner-title-block-sidebar>*{padding-top:1.65em}figure .quarto-notebook-link{margin-top:.5em}.quarto-notebook-link{font-size:.75em;color:#6c757d;margin-bottom:1em;text-decoration:none;display:block}.quarto-notebook-link:hover{text-decoration:underline;color:#2761e3}.quarto-notebook-link::before{display:inline-block;height:.75rem;width:.75rem;margin-bottom:0em;margin-right:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:.75rem .75rem}.toc-actions i.bi,.quarto-code-links i.bi,.quarto-other-links i.bi,.quarto-alternate-notebooks i.bi,.quarto-alternate-formats i.bi{margin-right:.4em;font-size:.8rem}.quarto-other-links-text-target .quarto-code-links i.bi,.quarto-other-links-text-target .quarto-other-links i.bi{margin-right:.2em}.quarto-other-formats-text-target .quarto-alternate-formats i.bi{margin-right:.1em}.toc-actions i.bi.empty,.quarto-code-links i.bi.empty,.quarto-other-links i.bi.empty,.quarto-alternate-notebooks i.bi.empty,.quarto-alternate-formats i.bi.empty{padding-left:1em}.quarto-notebook h2,.quarto-notebook .h2{border-bottom:none}.quarto-notebook .cell-container{display:flex}.quarto-notebook .cell-container .cell{flex-grow:4}.quarto-notebook .cell-container .cell-decorator{padding-top:1.5em;padding-right:1em;text-align:right}.quarto-notebook .cell-container.code-fold .cell-decorator{padding-top:3em}.quarto-notebook .cell-code code{white-space:pre-wrap}.quarto-notebook .cell .cell-output-stderr pre code,.quarto-notebook .cell .cell-output-stdout pre code{white-space:pre-wrap;overflow-wrap:anywhere}.toc-actions,.quarto-alternate-formats,.quarto-other-links,.quarto-code-links,.quarto-alternate-notebooks{padding-left:0em}.sidebar .toc-actions a,.sidebar .quarto-alternate-formats a,.sidebar .quarto-other-links a,.sidebar .quarto-code-links a,.sidebar .quarto-alternate-notebooks a,.sidebar nav[role=doc-toc] a{text-decoration:none}.sidebar .toc-actions a:hover,.sidebar .quarto-other-links a:hover,.sidebar .quarto-code-links a:hover,.sidebar .quarto-alternate-formats a:hover,.sidebar .quarto-alternate-notebooks a:hover{color:#2761e3}.sidebar .toc-actions h2,.sidebar .toc-actions .h2,.sidebar .quarto-code-links h2,.sidebar .quarto-code-links .h2,.sidebar .quarto-other-links h2,.sidebar .quarto-other-links .h2,.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2,.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-weight:500;margin-bottom:.2rem;margin-top:.3rem;font-family:inherit;border-bottom:0;padding-bottom:0;padding-top:0px}.sidebar .toc-actions>h2,.sidebar .toc-actions>.h2,.sidebar .quarto-code-links>h2,.sidebar .quarto-code-links>.h2,.sidebar .quarto-other-links>h2,.sidebar .quarto-other-links>.h2,.sidebar .quarto-alternate-notebooks>h2,.sidebar .quarto-alternate-notebooks>.h2,.sidebar .quarto-alternate-formats>h2,.sidebar .quarto-alternate-formats>.h2{font-size:.8rem}.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-size:.875rem}.sidebar nav[role=doc-toc]>ul a{border-left:1px solid #e9ecef;padding-left:.6rem}.sidebar .toc-actions h2>ul a,.sidebar .toc-actions .h2>ul a,.sidebar .quarto-code-links h2>ul a,.sidebar .quarto-code-links .h2>ul a,.sidebar .quarto-other-links h2>ul a,.sidebar .quarto-other-links .h2>ul a,.sidebar .quarto-alternate-notebooks h2>ul a,.sidebar .quarto-alternate-notebooks .h2>ul a,.sidebar .quarto-alternate-formats h2>ul a,.sidebar .quarto-alternate-formats .h2>ul a{border-left:none;padding-left:.6rem}.sidebar .toc-actions ul a:empty,.sidebar .quarto-code-links ul a:empty,.sidebar .quarto-other-links ul a:empty,.sidebar .quarto-alternate-notebooks ul a:empty,.sidebar .quarto-alternate-formats ul a:empty,.sidebar nav[role=doc-toc]>ul a:empty{display:none}.sidebar .toc-actions ul,.sidebar .quarto-code-links ul,.sidebar .quarto-other-links ul,.sidebar .quarto-alternate-notebooks ul,.sidebar .quarto-alternate-formats ul{padding-left:0;list-style:none}.sidebar nav[role=doc-toc] ul{list-style:none;padding-left:0;list-style:none}.sidebar nav[role=doc-toc]>ul{margin-left:.45em}.quarto-margin-sidebar nav[role=doc-toc]{padding-left:.5em}.sidebar .toc-actions>ul,.sidebar .quarto-code-links>ul,.sidebar .quarto-other-links>ul,.sidebar .quarto-alternate-notebooks>ul,.sidebar .quarto-alternate-formats>ul{font-size:.8rem}.sidebar nav[role=doc-toc]>ul{font-size:.875rem}.sidebar .toc-actions ul li a,.sidebar .quarto-code-links ul li a,.sidebar .quarto-other-links ul li a,.sidebar .quarto-alternate-notebooks ul li a,.sidebar .quarto-alternate-formats ul li a,.sidebar nav[role=doc-toc]>ul li a{line-height:1.1rem;padding-bottom:.2rem;padding-top:.2rem;color:inherit}.sidebar nav[role=doc-toc] ul>li>ul>li>a{padding-left:1.2em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>a{padding-left:2.4em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>a{padding-left:3.6em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:4.8em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:6em}.sidebar nav[role=doc-toc] ul>li>a.active,.sidebar nav[role=doc-toc] ul>li>ul>li>a.active{border-left:1px solid #2761e3;color:#2761e3 !important}.sidebar nav[role=doc-toc] ul>li>a:hover,.sidebar nav[role=doc-toc] ul>li>ul>li>a:hover{color:#2761e3 !important}kbd,.kbd{color:#343a40;background-color:#f8f9fa;border:1px solid;border-radius:5px;border-color:#dee2e6}.quarto-appendix-contents div.hanging-indent{margin-left:0em}.quarto-appendix-contents div.hanging-indent div.csl-entry{margin-left:1em;text-indent:-1em}.citation a,.footnote-ref{text-decoration:none}.footnotes ol{padding-left:1em}.tippy-content>*{margin-bottom:.7em}.tippy-content>*:last-child{margin-bottom:0}.callout{margin-top:1.25rem;margin-bottom:1.25rem;border-radius:.25rem;overflow-wrap:break-word}.callout .callout-title-container{overflow-wrap:anywhere}.callout.callout-style-simple{padding:.4em .7em;border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout.callout-style-default{border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout .callout-body-container{flex-grow:1}.callout.callout-style-simple .callout-body{font-size:.9rem;font-weight:400}.callout.callout-style-default .callout-body{font-size:.9rem;font-weight:400}.callout:not(.no-icon).callout-titled.callout-style-simple .callout-body{padding-left:1.6em}.callout.callout-titled>.callout-header{padding-top:.2em;margin-bottom:-0.2em}.callout.callout-style-simple>div.callout-header{border-bottom:none;font-size:.9rem;font-weight:600;opacity:75%}.callout.callout-style-default>div.callout-header{border-bottom:none;font-weight:600;opacity:85%;font-size:.9rem;padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body{padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body>:first-child{padding-top:.5rem;margin-top:0}.callout>div.callout-header[data-bs-toggle=collapse]{cursor:pointer}.callout.callout-style-default .callout-header[aria-expanded=false],.callout.callout-style-default .callout-header[aria-expanded=true]{padding-top:0px;margin-bottom:0px;align-items:center}.callout.callout-titled .callout-body>:last-child:not(.sourceCode),.callout.callout-titled .callout-body>div>:last-child:not(.sourceCode){padding-bottom:.5rem;margin-bottom:0}.callout:not(.callout-titled) .callout-body>:first-child,.callout:not(.callout-titled) .callout-body>div>:first-child{margin-top:.25rem}.callout:not(.callout-titled) .callout-body>:last-child,.callout:not(.callout-titled) .callout-body>div>:last-child{margin-bottom:.2rem}.callout.callout-style-simple .callout-icon::before,.callout.callout-style-simple .callout-toggle::before{height:1rem;width:1rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.callout.callout-style-default .callout-icon::before,.callout.callout-style-default .callout-toggle::before{height:.9rem;width:.9rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:.9rem .9rem}.callout.callout-style-default .callout-toggle::before{margin-top:5px}.callout .callout-btn-toggle .callout-toggle::before{transition:transform .2s linear}.callout .callout-header[aria-expanded=false] .callout-toggle::before{transform:rotate(-90deg)}.callout .callout-header[aria-expanded=true] .callout-toggle::before{transform:none}.callout.callout-style-simple:not(.no-icon) div.callout-icon-container{padding-top:.2em;padding-right:.55em}.callout.callout-style-default:not(.no-icon) div.callout-icon-container{padding-top:.1em;padding-right:.35em}.callout.callout-style-default:not(.no-icon) div.callout-title-container{margin-top:-1px}.callout.callout-style-default.callout-caution:not(.no-icon) div.callout-icon-container{padding-top:.3em;padding-right:.35em}.callout>.callout-body>.callout-icon-container>.no-icon,.callout>.callout-header>.callout-icon-container>.no-icon{display:none}div.callout.callout{border-left-color:#6c757d}div.callout.callout-style-default>.callout-header{background-color:#6c757d}div.callout-note.callout{border-left-color:#2780e3}div.callout-note.callout-style-default>.callout-header{background-color:#e9f2fc}div.callout-note:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-note.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-note .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-tip.callout{border-left-color:#3fb618}div.callout-tip.callout-style-default>.callout-header{background-color:#ecf8e8}div.callout-tip:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-tip.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-tip .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-warning.callout{border-left-color:#ff7518}div.callout-warning.callout-style-default>.callout-header{background-color:#fff1e8}div.callout-warning:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-warning.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-warning .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-caution.callout{border-left-color:#f0ad4e}div.callout-caution.callout-style-default>.callout-header{background-color:#fef7ed}div.callout-caution:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-caution.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-caution .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-important.callout{border-left-color:#ff0039}div.callout-important.callout-style-default>.callout-header{background-color:#ffe6eb}div.callout-important:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-important.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-important .callout-toggle::before{background-image:url('data:image/svg+xml,')}.quarto-toggle-container{display:flex;align-items:center}.quarto-reader-toggle .bi::before,.quarto-color-scheme-toggle .bi::before{display:inline-block;height:1rem;width:1rem;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.sidebar-navigation{padding-left:20px}.navbar{background-color:#2780e3;color:#fdfeff}.navbar .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,')}.navbar .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,')}.quarto-sidebar-toggle{border-color:#dee2e6;border-bottom-left-radius:.25rem;border-bottom-right-radius:.25rem;border-style:solid;border-width:1px;overflow:hidden;border-top-width:0px;padding-top:0px !important}.quarto-sidebar-toggle-title{cursor:pointer;padding-bottom:2px;margin-left:.25em;text-align:center;font-weight:400;font-size:.775em}#quarto-content .quarto-sidebar-toggle{background:#fafafa}#quarto-content .quarto-sidebar-toggle-title{color:#343a40}.quarto-sidebar-toggle-icon{color:#dee2e6;margin-right:.5em;float:right;transition:transform .2s ease}.quarto-sidebar-toggle-icon::before{padding-top:5px}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-icon{transform:rotate(-180deg)}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-title{border-bottom:solid #dee2e6 1px}.quarto-sidebar-toggle-contents{background-color:#fff;padding-right:10px;padding-left:10px;margin-top:0px !important;transition:max-height .5s ease}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-contents{padding-top:1em;padding-bottom:10px}@media(max-width: 767.98px){.sidebar-menu-container{padding-bottom:5em}}.quarto-sidebar-toggle:not(.expanded) .quarto-sidebar-toggle-contents{padding-top:0px !important;padding-bottom:0px}nav[role=doc-toc]{z-index:1020}#quarto-sidebar>*,nav[role=doc-toc]>*{transition:opacity .1s ease,border .1s ease}#quarto-sidebar.slow>*,nav[role=doc-toc].slow>*{transition:opacity .4s ease,border .4s ease}.quarto-color-scheme-toggle:not(.alternate).top-right .bi::before{background-image:url('data:image/svg+xml,')}.quarto-color-scheme-toggle.alternate.top-right .bi::before{background-image:url('data:image/svg+xml,')}#quarto-appendix.default{border-top:1px solid #dee2e6}#quarto-appendix.default{background-color:#fff;padding-top:1.5em;margin-top:2em;z-index:998}#quarto-appendix.default .quarto-appendix-heading{margin-top:0;line-height:1.4em;font-weight:600;opacity:.9;border-bottom:none;margin-bottom:0}#quarto-appendix.default .footnotes ol,#quarto-appendix.default .footnotes ol li>p:last-of-type,#quarto-appendix.default .quarto-appendix-contents>p:last-of-type{margin-bottom:0}#quarto-appendix.default .footnotes ol{margin-left:.5em}#quarto-appendix.default .quarto-appendix-secondary-label{margin-bottom:.4em}#quarto-appendix.default .quarto-appendix-bibtex{font-size:.7em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-bibtex code.sourceCode{white-space:pre-wrap}#quarto-appendix.default .quarto-appendix-citeas{font-size:.9em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-heading{font-size:1em !important}#quarto-appendix.default *[role=doc-endnotes]>ol,#quarto-appendix.default .quarto-appendix-contents>*:not(h2):not(.h2){font-size:.9em}#quarto-appendix.default section{padding-bottom:1.5em}#quarto-appendix.default section *[role=doc-endnotes],#quarto-appendix.default section>*:not(a){opacity:.9;word-wrap:break-word}.btn.btn-quarto,div.cell-output-display .btn-quarto{--bs-btn-color: #cacccd;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #cacccd;--bs-btn-hover-bg: #52585d;--bs-btn-hover-border-color: #484e53;--bs-btn-focus-shadow-rgb: 75, 80, 85;--bs-btn-active-color: #fff;--bs-btn-active-bg: #5d6166;--bs-btn-active-border-color: #484e53;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}nav.quarto-secondary-nav.color-navbar{background-color:#2780e3;color:#fdfeff}nav.quarto-secondary-nav.color-navbar h1,nav.quarto-secondary-nav.color-navbar .h1,nav.quarto-secondary-nav.color-navbar .quarto-btn-toggle{color:#fdfeff}@media(max-width: 991.98px){body.nav-sidebar .quarto-title-banner{margin-bottom:0;padding-bottom:1em}body.nav-sidebar #title-block-header{margin-block-end:0}}p.subtitle{margin-top:.25em;margin-bottom:.5em}code a:any-link{color:inherit;text-decoration-color:#6c757d}/*! light */div.observablehq table thead tr th{background-color:var(--bs-body-bg)}input,button,select,optgroup,textarea{background-color:var(--bs-body-bg)}.code-annotated .code-copy-button{margin-right:1.25em;margin-top:0;padding-bottom:0;padding-top:3px}.code-annotation-gutter-bg{background-color:#fff}.code-annotation-gutter{background-color:rgba(233,236,239,.65)}.code-annotation-gutter,.code-annotation-gutter-bg{height:100%;width:calc(20px + .5em);position:absolute;top:0;right:0}dl.code-annotation-container-grid dt{margin-right:1em;margin-top:.25rem}dl.code-annotation-container-grid dt{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:#4b545c;border:solid #4b545c 1px;border-radius:50%;height:22px;width:22px;line-height:22px;font-size:11px;text-align:center;vertical-align:middle;text-decoration:none}dl.code-annotation-container-grid dt[data-target-cell]{cursor:pointer}dl.code-annotation-container-grid dt[data-target-cell].code-annotation-active{color:#fff;border:solid #aaa 1px;background-color:#aaa}pre.code-annotation-code{padding-top:0;padding-bottom:0}pre.code-annotation-code code{z-index:3}#code-annotation-line-highlight-gutter{width:100%;border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}#code-annotation-line-highlight{margin-left:-4em;width:calc(100% + 4em);border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#e9ecef;font-weight:bolder}code.sourceCode .code-annotation-anchor{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;height:18px;width:18px;font-size:9px;margin-top:2px}code.sourceCode button.code-annotation-anchor{padding:2px;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none}code.sourceCode a.code-annotation-anchor{line-height:18px;text-align:center;vertical-align:middle;cursor:default;text-decoration:none}@media print{.page-columns .column-screen-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:page-start-inset/page-end-inset;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}}.quarto-video{margin-bottom:1em}.table{border-top:1px solid #ebedee;border-bottom:1px solid #ebedee}.table>thead{border-top-width:0;border-bottom:1px solid #b2bac1}.table a{word-break:break-word}.table>:not(caption)>*>*{background-color:unset;color:unset}#quarto-document-content .crosstalk-input .checkbox input[type=checkbox],#quarto-document-content .crosstalk-input .checkbox-inline input[type=checkbox]{position:unset;margin-top:unset;margin-left:unset}#quarto-document-content .row{margin-left:unset;margin-right:unset}.quarto-xref{white-space:nowrap}#quarto-draft-alert{margin-top:0px;margin-bottom:0px;padding:.3em;text-align:center;font-size:.9em}#quarto-draft-alert i{margin-right:.3em}a.external:after{content:"";background-image:url('data:image/svg+xml,');background-size:contain;background-repeat:no-repeat;background-position:center center;margin-left:.2em;padding-right:.75em}div.sourceCode code a.external:after{content:none}a.external:after:hover{cursor:pointer}.quarto-ext-icon{display:inline-block;font-size:.75em;padding-left:.3em}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.quarto-title-banner{margin-bottom:1em;color:#fdfeff;background:#2780e3}.quarto-title-banner a{color:#fdfeff}.quarto-title-banner h1,.quarto-title-banner .h1,.quarto-title-banner h2,.quarto-title-banner .h2{color:#fdfeff}.quarto-title-banner .code-tools-button{color:#97cbff}.quarto-title-banner .code-tools-button:hover{color:#fdfeff}.quarto-title-banner .code-tools-button>.bi::before{background-image:url('data:image/svg+xml,')}.quarto-title-banner .code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}.quarto-title-banner .quarto-title .title{font-weight:600}.quarto-title-banner .quarto-categories{margin-top:.75em}@media(min-width: 992px){.quarto-title-banner{padding-top:2.5em;padding-bottom:2.5em}}@media(max-width: 991.98px){.quarto-title-banner{padding-top:1em;padding-bottom:1em}}@media(max-width: 767.98px){body.hypothesis-enabled #title-block-header>*{padding-right:20px}}main.quarto-banner-title-block>section:first-child>h2,main.quarto-banner-title-block>section:first-child>.h2,main.quarto-banner-title-block>section:first-child>h3,main.quarto-banner-title-block>section:first-child>.h3,main.quarto-banner-title-block>section:first-child>h4,main.quarto-banner-title-block>section:first-child>.h4{margin-top:0}.quarto-title .quarto-categories{display:flex;flex-wrap:wrap;row-gap:.5em;column-gap:.4em;padding-bottom:.5em;margin-top:.75em}.quarto-title .quarto-categories .quarto-category{padding:.25em .75em;font-size:.65em;text-transform:uppercase;border:solid 1px;border-radius:.25rem;opacity:.6}.quarto-title .quarto-categories .quarto-category a{color:inherit}.quarto-title-meta-container{display:grid;grid-template-columns:1fr auto}.quarto-title-meta-column-end{display:flex;flex-direction:column;padding-left:1em}.quarto-title-meta-column-end a .bi{margin-right:.3em}#title-block-header.quarto-title-block.default .quarto-title-meta{display:grid;grid-template-columns:repeat(2, 1fr);grid-column-gap:1em}#title-block-header.quarto-title-block.default .quarto-title .title{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-author-orcid img{margin-top:-0.2em;height:.8em;width:.8em}#title-block-header.quarto-title-block.default .quarto-title-author-email{opacity:.7}#title-block-header.quarto-title-block.default .quarto-description p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p,#title-block-header.quarto-title-block.default .quarto-title-authors p,#title-block-header.quarto-title-block.default .quarto-title-affiliations p{margin-bottom:.1em}#title-block-header.quarto-title-block.default .quarto-title-meta-heading{text-transform:uppercase;margin-top:1em;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-contents{font-size:.9em}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p.affiliation:last-of-type{margin-bottom:.1em}#title-block-header.quarto-title-block.default p.affiliation{margin-bottom:.1em}#title-block-header.quarto-title-block.default .keywords,#title-block-header.quarto-title-block.default .description,#title-block-header.quarto-title-block.default .abstract{margin-top:0}#title-block-header.quarto-title-block.default .keywords>p,#title-block-header.quarto-title-block.default .description>p,#title-block-header.quarto-title-block.default .abstract>p{font-size:.9em}#title-block-header.quarto-title-block.default .keywords>p:last-of-type,#title-block-header.quarto-title-block.default .description>p:last-of-type,#title-block-header.quarto-title-block.default .abstract>p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .keywords .block-title,#title-block-header.quarto-title-block.default .description .block-title,#title-block-header.quarto-title-block.default .abstract .block-title{margin-top:1em;text-transform:uppercase;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-author{display:grid;grid-template-columns:minmax(max-content, 1fr) 1fr;grid-column-gap:1em}.quarto-title-tools-only{display:flex;justify-content:right}body{-webkit-font-smoothing:antialiased}.badge.bg-light{color:#343a40}.progress .progress-bar{font-size:8px;line-height:8px} diff --git a/site_libs/bootstrap/bootstrap.min.js b/site_libs/bootstrap/bootstrap.min.js new file mode 100644 index 0000000..e8f21f7 --- /dev/null +++ b/site_libs/bootstrap/bootstrap.min.js @@ -0,0 +1,7 @@ +/*! + * Bootstrap v5.3.1 (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ +!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t=new Map,e={set(e,i,n){t.has(e)||t.set(e,new Map);const s=t.get(e);s.has(i)||0===s.size?s.set(i,n):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(s.keys())[0]}.`)},get:(e,i)=>t.has(e)&&t.get(e).get(i)||null,remove(e,i){if(!t.has(e))return;const n=t.get(e);n.delete(i),0===n.size&&t.delete(e)}},i="transitionend",n=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),s=t=>{t.dispatchEvent(new Event(i))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(n(t)):null,a=t=>{if(!o(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},l=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),c=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?c(t.parentNode):null},h=()=>{},d=t=>{t.offsetHeight},u=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,f=[],p=()=>"rtl"===document.documentElement.dir,m=t=>{var e;e=()=>{const e=u();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(f.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of f)t()})),f.push(e)):e()},g=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,_=(t,e,n=!0)=>{if(!n)return void g(t);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let r=!1;const a=({target:n})=>{n===e&&(r=!0,e.removeEventListener(i,a),g(t))};e.addEventListener(i,a),setTimeout((()=>{r||s(e)}),o)},b=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},v=/[^.]*(?=\..*)\.|.*/,y=/\..*/,w=/::\d+$/,A={};let E=1;const T={mouseenter:"mouseover",mouseleave:"mouseout"},C=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function O(t,e){return e&&`${e}::${E++}`||t.uidEvent||E++}function x(t){const e=O(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function k(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function L(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=I(t);return C.has(o)||(o=t),[n,s,o]}function S(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=L(e,i,n);if(e in T){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=x(t),c=l[a]||(l[a]={}),h=k(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=O(r,e.replace(v,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return P(s,{delegateTarget:r}),n.oneOff&&N.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return P(n,{delegateTarget:t}),i.oneOff&&N.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function D(t,e,i,n,s){const o=k(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function $(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&D(t,e,i,r.callable,r.delegationSelector)}function I(t){return t=t.replace(y,""),T[t]||t}const N={on(t,e,i,n){S(t,e,i,n,!1)},one(t,e,i,n){S(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=L(e,i,n),a=r!==e,l=x(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))$(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(w,"");a&&!e.includes(s)||D(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;D(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=u();let s=null,o=!0,r=!0,a=!1;e!==I(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=P(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function P(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function M(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function j(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const F={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${j(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${j(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=M(t.dataset[n])}return e},getDataAttribute:(t,e)=>M(t.getAttribute(`data-bs-${j(e)}`))};class H{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=o(e)?F.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...o(e)?F.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],r=o(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(r))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${r}" but expected type "${s}".`)}var i}}class W extends H{constructor(t,i){super(),(t=r(t))&&(this._element=t,this._config=this._getConfig(i),e.set(this._element,this.constructor.DATA_KEY,this))}dispose(){e.remove(this._element,this.constructor.DATA_KEY),N.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){_(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return e.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.1"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const B=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return n(e)},z={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!l(t)&&a(t)))},getSelectorFromElement(t){const e=B(t);return e&&z.findOne(e)?e:null},getElementFromSelector(t){const e=B(t);return e?z.findOne(e):null},getMultipleElementsFromSelector(t){const e=B(t);return e?z.find(e):[]}},R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;N.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),l(this))return;const s=z.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},q=".bs.alert",V=`close${q}`,K=`closed${q}`;class Q extends W{static get NAME(){return"alert"}close(){if(N.trigger(this._element,V).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),N.trigger(this._element,K),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Q.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(Q,"close"),m(Q);const X='[data-bs-toggle="button"]';class Y extends W{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=Y.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}N.on(document,"click.bs.button.data-api",X,(t=>{t.preventDefault();const e=t.target.closest(X);Y.getOrCreateInstance(e).toggle()})),m(Y);const U=".bs.swipe",G=`touchstart${U}`,J=`touchmove${U}`,Z=`touchend${U}`,tt=`pointerdown${U}`,et=`pointerup${U}`,it={endCallback:null,leftCallback:null,rightCallback:null},nt={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class st extends H{constructor(t,e){super(),this._element=t,t&&st.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return it}static get DefaultType(){return nt}static get NAME(){return"swipe"}dispose(){N.off(this._element,U)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),g(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&g(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(N.on(this._element,tt,(t=>this._start(t))),N.on(this._element,et,(t=>this._end(t))),this._element.classList.add("pointer-event")):(N.on(this._element,G,(t=>this._start(t))),N.on(this._element,J,(t=>this._move(t))),N.on(this._element,Z,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const ot=".bs.carousel",rt=".data-api",at="next",lt="prev",ct="left",ht="right",dt=`slide${ot}`,ut=`slid${ot}`,ft=`keydown${ot}`,pt=`mouseenter${ot}`,mt=`mouseleave${ot}`,gt=`dragstart${ot}`,_t=`load${ot}${rt}`,bt=`click${ot}${rt}`,vt="carousel",yt="active",wt=".active",At=".carousel-item",Et=wt+At,Tt={ArrowLeft:ht,ArrowRight:ct},Ct={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},Ot={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class xt extends W{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=z.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===vt&&this.cycle()}static get Default(){return Ct}static get DefaultType(){return Ot}static get NAME(){return"carousel"}next(){this._slide(at)}nextWhenVisible(){!document.hidden&&a(this._element)&&this.next()}prev(){this._slide(lt)}pause(){this._isSliding&&s(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?N.one(this._element,ut,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void N.one(this._element,ut,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?at:lt;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&N.on(this._element,ft,(t=>this._keydown(t))),"hover"===this._config.pause&&(N.on(this._element,pt,(()=>this.pause())),N.on(this._element,mt,(()=>this._maybeEnableCycle()))),this._config.touch&&st.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of z.find(".carousel-item img",this._element))N.on(t,gt,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ct)),rightCallback:()=>this._slide(this._directionToOrder(ht)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new st(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=Tt[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=z.findOne(wt,this._indicatorsElement);e.classList.remove(yt),e.removeAttribute("aria-current");const i=z.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(yt),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===at,s=e||b(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>N.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(dt).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),d(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(yt),i.classList.remove(yt,c,l),this._isSliding=!1,r(ut)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return z.findOne(Et,this._element)}_getItems(){return z.find(At,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return p()?t===ct?lt:at:t===ct?at:lt}_orderToDirection(t){return p()?t===lt?ct:ht:t===lt?ht:ct}static jQueryInterface(t){return this.each((function(){const e=xt.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}N.on(document,bt,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=z.getElementFromSelector(this);if(!e||!e.classList.contains(vt))return;t.preventDefault();const i=xt.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===F.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),N.on(window,_t,(()=>{const t=z.find('[data-bs-ride="carousel"]');for(const e of t)xt.getOrCreateInstance(e)})),m(xt);const kt=".bs.collapse",Lt=`show${kt}`,St=`shown${kt}`,Dt=`hide${kt}`,$t=`hidden${kt}`,It=`click${kt}.data-api`,Nt="show",Pt="collapse",Mt="collapsing",jt=`:scope .${Pt} .${Pt}`,Ft='[data-bs-toggle="collapse"]',Ht={parent:null,toggle:!0},Wt={parent:"(null|element)",toggle:"boolean"};class Bt extends W{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=z.find(Ft);for(const t of i){const e=z.getSelectorFromElement(t),i=z.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return Ht}static get DefaultType(){return Wt}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Bt.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(N.trigger(this._element,Lt).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(Pt),this._element.classList.add(Mt),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt,Nt),this._element.style[e]="",N.trigger(this._element,St)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(N.trigger(this._element,Dt).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,d(this._element),this._element.classList.add(Mt),this._element.classList.remove(Pt,Nt);for(const t of this._triggerArray){const e=z.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt),N.trigger(this._element,$t)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(Nt)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=r(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(Ft);for(const e of t){const t=z.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=z.find(jt,this._config.parent);return z.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Bt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}N.on(document,It,Ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of z.getMultipleElementsFromSelector(this))Bt.getOrCreateInstance(t,{toggle:!1}).toggle()})),m(Bt);var zt="top",Rt="bottom",qt="right",Vt="left",Kt="auto",Qt=[zt,Rt,qt,Vt],Xt="start",Yt="end",Ut="clippingParents",Gt="viewport",Jt="popper",Zt="reference",te=Qt.reduce((function(t,e){return t.concat([e+"-"+Xt,e+"-"+Yt])}),[]),ee=[].concat(Qt,[Kt]).reduce((function(t,e){return t.concat([e,e+"-"+Xt,e+"-"+Yt])}),[]),ie="beforeRead",ne="read",se="afterRead",oe="beforeMain",re="main",ae="afterMain",le="beforeWrite",ce="write",he="afterWrite",de=[ie,ne,se,oe,re,ae,le,ce,he];function ue(t){return t?(t.nodeName||"").toLowerCase():null}function fe(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function pe(t){return t instanceof fe(t).Element||t instanceof Element}function me(t){return t instanceof fe(t).HTMLElement||t instanceof HTMLElement}function ge(t){return"undefined"!=typeof ShadowRoot&&(t instanceof fe(t).ShadowRoot||t instanceof ShadowRoot)}const _e={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];me(s)&&ue(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});me(n)&&ue(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function be(t){return t.split("-")[0]}var ve=Math.max,ye=Math.min,we=Math.round;function Ae(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function Ee(){return!/^((?!chrome|android).)*safari/i.test(Ae())}function Te(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&me(t)&&(s=t.offsetWidth>0&&we(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&we(n.height)/t.offsetHeight||1);var r=(pe(t)?fe(t):window).visualViewport,a=!Ee()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function Ce(t){var e=Te(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Oe(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&ge(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function xe(t){return fe(t).getComputedStyle(t)}function ke(t){return["table","td","th"].indexOf(ue(t))>=0}function Le(t){return((pe(t)?t.ownerDocument:t.document)||window.document).documentElement}function Se(t){return"html"===ue(t)?t:t.assignedSlot||t.parentNode||(ge(t)?t.host:null)||Le(t)}function De(t){return me(t)&&"fixed"!==xe(t).position?t.offsetParent:null}function $e(t){for(var e=fe(t),i=De(t);i&&ke(i)&&"static"===xe(i).position;)i=De(i);return i&&("html"===ue(i)||"body"===ue(i)&&"static"===xe(i).position)?e:i||function(t){var e=/firefox/i.test(Ae());if(/Trident/i.test(Ae())&&me(t)&&"fixed"===xe(t).position)return null;var i=Se(t);for(ge(i)&&(i=i.host);me(i)&&["html","body"].indexOf(ue(i))<0;){var n=xe(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Ie(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function Ne(t,e,i){return ve(t,ye(e,i))}function Pe(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function Me(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const je={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=be(i.placement),l=Ie(a),c=[Vt,qt].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return Pe("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:Me(t,Qt))}(s.padding,i),d=Ce(o),u="y"===l?zt:Vt,f="y"===l?Rt:qt,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=$e(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,A=Ne(v,w,y),E=l;i.modifiersData[n]=((e={})[E]=A,e.centerOffset=A-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Oe(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Fe(t){return t.split("-")[1]}var He={top:"auto",right:"auto",bottom:"auto",left:"auto"};function We(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=t.isFixed,u=r.x,f=void 0===u?0:u,p=r.y,m=void 0===p?0:p,g="function"==typeof h?h({x:f,y:m}):{x:f,y:m};f=g.x,m=g.y;var _=r.hasOwnProperty("x"),b=r.hasOwnProperty("y"),v=Vt,y=zt,w=window;if(c){var A=$e(i),E="clientHeight",T="clientWidth";A===fe(i)&&"static"!==xe(A=Le(i)).position&&"absolute"===a&&(E="scrollHeight",T="scrollWidth"),(s===zt||(s===Vt||s===qt)&&o===Yt)&&(y=Rt,m-=(d&&A===w&&w.visualViewport?w.visualViewport.height:A[E])-n.height,m*=l?1:-1),s!==Vt&&(s!==zt&&s!==Rt||o!==Yt)||(v=qt,f-=(d&&A===w&&w.visualViewport?w.visualViewport.width:A[T])-n.width,f*=l?1:-1)}var C,O=Object.assign({position:a},c&&He),x=!0===h?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:we(i*s)/s||0,y:we(n*s)/s||0}}({x:f,y:m},fe(i)):{x:f,y:m};return f=x.x,m=x.y,l?Object.assign({},O,((C={})[y]=b?"0":"",C[v]=_?"0":"",C.transform=(w.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",C)):Object.assign({},O,((e={})[y]=b?m+"px":"",e[v]=_?f+"px":"",e.transform="",e))}const Be={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:be(e.placement),variation:Fe(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,We(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,We(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var ze={passive:!0};const Re={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=fe(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,ze)})),a&&l.addEventListener("resize",i.update,ze),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,ze)})),a&&l.removeEventListener("resize",i.update,ze)}},data:{}};var qe={left:"right",right:"left",bottom:"top",top:"bottom"};function Ve(t){return t.replace(/left|right|bottom|top/g,(function(t){return qe[t]}))}var Ke={start:"end",end:"start"};function Qe(t){return t.replace(/start|end/g,(function(t){return Ke[t]}))}function Xe(t){var e=fe(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function Ye(t){return Te(Le(t)).left+Xe(t).scrollLeft}function Ue(t){var e=xe(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ge(t){return["html","body","#document"].indexOf(ue(t))>=0?t.ownerDocument.body:me(t)&&Ue(t)?t:Ge(Se(t))}function Je(t,e){var i;void 0===e&&(e=[]);var n=Ge(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=fe(n),r=s?[o].concat(o.visualViewport||[],Ue(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Je(Se(r)))}function Ze(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function ti(t,e,i){return e===Gt?Ze(function(t,e){var i=fe(t),n=Le(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=Ee();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+Ye(t),y:l}}(t,i)):pe(e)?function(t,e){var i=Te(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):Ze(function(t){var e,i=Le(t),n=Xe(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ve(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ve(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+Ye(t),l=-n.scrollTop;return"rtl"===xe(s||i).direction&&(a+=ve(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Le(t)))}function ei(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?be(s):null,r=s?Fe(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case zt:e={x:a,y:i.y-n.height};break;case Rt:e={x:a,y:i.y+i.height};break;case qt:e={x:i.x+i.width,y:l};break;case Vt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?Ie(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case Xt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Yt:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ii(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.strategy,r=void 0===o?t.strategy:o,a=i.boundary,l=void 0===a?Ut:a,c=i.rootBoundary,h=void 0===c?Gt:c,d=i.elementContext,u=void 0===d?Jt:d,f=i.altBoundary,p=void 0!==f&&f,m=i.padding,g=void 0===m?0:m,_=Pe("number"!=typeof g?g:Me(g,Qt)),b=u===Jt?Zt:Jt,v=t.rects.popper,y=t.elements[p?b:u],w=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=Je(Se(t)),i=["absolute","fixed"].indexOf(xe(t).position)>=0&&me(t)?$e(t):t;return pe(i)?e.filter((function(t){return pe(t)&&Oe(t,i)&&"body"!==ue(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=ti(t,i,n);return e.top=ve(s.top,e.top),e.right=ye(s.right,e.right),e.bottom=ye(s.bottom,e.bottom),e.left=ve(s.left,e.left),e}),ti(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(pe(y)?y:y.contextElement||Le(t.elements.popper),l,h,r),A=Te(t.elements.reference),E=ei({reference:A,element:v,strategy:"absolute",placement:s}),T=Ze(Object.assign({},v,E)),C=u===Jt?T:A,O={top:w.top-C.top+_.top,bottom:C.bottom-w.bottom+_.bottom,left:w.left-C.left+_.left,right:C.right-w.right+_.right},x=t.modifiersData.offset;if(u===Jt&&x){var k=x[s];Object.keys(O).forEach((function(t){var e=[qt,Rt].indexOf(t)>=0?1:-1,i=[zt,Rt].indexOf(t)>=0?"y":"x";O[t]+=k[i]*e}))}return O}function ni(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?ee:l,h=Fe(n),d=h?a?te:te.filter((function(t){return Fe(t)===h})):Qt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ii(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[be(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const si={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=be(g),b=l||(_!==g&&p?function(t){if(be(t)===Kt)return[];var e=Ve(t);return[Qe(t),e,Qe(e)]}(g):[Ve(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(be(i)===Kt?ni(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,A=new Map,E=!0,T=v[0],C=0;C=0,S=L?"width":"height",D=ii(e,{placement:O,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),$=L?k?qt:Vt:k?Rt:zt;y[S]>w[S]&&($=Ve($));var I=Ve($),N=[];if(o&&N.push(D[x]<=0),a&&N.push(D[$]<=0,D[I]<=0),N.every((function(t){return t}))){T=O,E=!1;break}A.set(O,N)}if(E)for(var P=function(t){var e=v.find((function(e){var i=A.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==P(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function oi(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function ri(t){return[zt,qt,Rt,Vt].some((function(e){return t[e]>=0}))}const ai={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ii(e,{elementContext:"reference"}),a=ii(e,{altBoundary:!0}),l=oi(r,n),c=oi(a,s,o),h=ri(l),d=ri(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},li={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=ee.reduce((function(t,i){return t[i]=function(t,e,i){var n=be(t),s=[Vt,zt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[Vt,qt].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},ci={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=ei({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},hi={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ii(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=be(e.placement),b=Fe(e.placement),v=!b,y=Ie(_),w="x"===y?"y":"x",A=e.modifiersData.popperOffsets,E=e.rects.reference,T=e.rects.popper,C="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,O="number"==typeof C?{mainAxis:C,altAxis:C}:Object.assign({mainAxis:0,altAxis:0},C),x=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,k={x:0,y:0};if(A){if(o){var L,S="y"===y?zt:Vt,D="y"===y?Rt:qt,$="y"===y?"height":"width",I=A[y],N=I+g[S],P=I-g[D],M=f?-T[$]/2:0,j=b===Xt?E[$]:T[$],F=b===Xt?-T[$]:-E[$],H=e.elements.arrow,W=f&&H?Ce(H):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},z=B[S],R=B[D],q=Ne(0,E[$],W[$]),V=v?E[$]/2-M-q-z-O.mainAxis:j-q-z-O.mainAxis,K=v?-E[$]/2+M+q+R+O.mainAxis:F+q+R+O.mainAxis,Q=e.elements.arrow&&$e(e.elements.arrow),X=Q?"y"===y?Q.clientTop||0:Q.clientLeft||0:0,Y=null!=(L=null==x?void 0:x[y])?L:0,U=I+K-Y,G=Ne(f?ye(N,I+V-Y-X):N,I,f?ve(P,U):P);A[y]=G,k[y]=G-I}if(a){var J,Z="x"===y?zt:Vt,tt="x"===y?Rt:qt,et=A[w],it="y"===w?"height":"width",nt=et+g[Z],st=et-g[tt],ot=-1!==[zt,Vt].indexOf(_),rt=null!=(J=null==x?void 0:x[w])?J:0,at=ot?nt:et-E[it]-T[it]-rt+O.altAxis,lt=ot?et+E[it]+T[it]-rt-O.altAxis:st,ct=f&&ot?function(t,e,i){var n=Ne(t,e,i);return n>i?i:n}(at,et,lt):Ne(f?at:nt,et,f?lt:st);A[w]=ct,k[w]=ct-et}e.modifiersData[n]=k}},requiresIfExists:["offset"]};function di(t,e,i){void 0===i&&(i=!1);var n,s,o=me(e),r=me(e)&&function(t){var e=t.getBoundingClientRect(),i=we(e.width)/t.offsetWidth||1,n=we(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=Le(e),l=Te(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==ue(e)||Ue(a))&&(c=(n=e)!==fe(n)&&me(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:Xe(n)),me(e)?((h=Te(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=Ye(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function ui(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var fi={placement:"bottom",modifiers:[],strategy:"absolute"};function pi(){for(var t=arguments.length,e=new Array(t),i=0;iNumber.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(F.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...g(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=z.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>a(t)));i.length&&b(i,e,t===Ti,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=qi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=z.find(Ni);for(const i of e){const e=qi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ei,Ti].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ii)?this:z.prev(this,Ii)[0]||z.next(this,Ii)[0]||z.findOne(Ii,t.delegateTarget.parentNode),o=qi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}N.on(document,Si,Ii,qi.dataApiKeydownHandler),N.on(document,Si,Pi,qi.dataApiKeydownHandler),N.on(document,Li,qi.clearMenus),N.on(document,Di,qi.clearMenus),N.on(document,Li,Ii,(function(t){t.preventDefault(),qi.getOrCreateInstance(this).toggle()})),m(qi);const Vi="backdrop",Ki="show",Qi=`mousedown.bs.${Vi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Yi={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Ui extends H{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Yi}static get NAME(){return Vi}show(t){if(!this._config.isVisible)return void g(t);this._append();const e=this._getElement();this._config.isAnimated&&d(e),e.classList.add(Ki),this._emulateAnimation((()=>{g(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),g(t)}))):g(t)}dispose(){this._isAppended&&(N.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=r(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),N.on(t,Qi,(()=>{g(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){_(t,this._getElement(),this._config.isAnimated)}}const Gi=".bs.focustrap",Ji=`focusin${Gi}`,Zi=`keydown.tab${Gi}`,tn="backward",en={autofocus:!0,trapElement:null},nn={autofocus:"boolean",trapElement:"element"};class sn extends H{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return en}static get DefaultType(){return nn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),N.off(document,Gi),N.on(document,Ji,(t=>this._handleFocusin(t))),N.on(document,Zi,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,N.off(document,Gi))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=z.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===tn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?tn:"forward")}}const on=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",rn=".sticky-top",an="padding-right",ln="margin-right";class cn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,an,(e=>e+t)),this._setElementAttributes(on,an,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,an),this._resetElementAttributes(on,an),this._resetElementAttributes(rn,ln)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&F.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=F.getDataAttribute(t,e);null!==i?(F.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(o(t))e(t);else for(const i of z.find(t,this._element))e(i)}}const hn=".bs.modal",dn=`hide${hn}`,un=`hidePrevented${hn}`,fn=`hidden${hn}`,pn=`show${hn}`,mn=`shown${hn}`,gn=`resize${hn}`,_n=`click.dismiss${hn}`,bn=`mousedown.dismiss${hn}`,vn=`keydown.dismiss${hn}`,yn=`click${hn}.data-api`,wn="modal-open",An="show",En="modal-static",Tn={backdrop:!0,focus:!0,keyboard:!0},Cn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class On extends W{constructor(t,e){super(t,e),this._dialog=z.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new cn,this._addEventListeners()}static get Default(){return Tn}static get DefaultType(){return Cn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||N.trigger(this._element,pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(wn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(N.trigger(this._element,dn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){N.off(window,hn),N.off(this._dialog,hn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Ui({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=z.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),d(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,N.trigger(this._element,mn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){N.on(this._element,vn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),N.on(window,gn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),N.on(this._element,bn,(t=>{N.one(this._element,_n,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(wn),this._resetAdjustments(),this._scrollBar.reset(),N.trigger(this._element,fn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(N.trigger(this._element,un).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(En)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(En),this._queueCallback((()=>{this._element.classList.remove(En),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=p()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=p()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=On.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}N.on(document,yn,'[data-bs-toggle="modal"]',(function(t){const e=z.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),N.one(e,pn,(t=>{t.defaultPrevented||N.one(e,fn,(()=>{a(this)&&this.focus()}))}));const i=z.findOne(".modal.show");i&&On.getInstance(i).hide(),On.getOrCreateInstance(e).toggle(this)})),R(On),m(On);const xn=".bs.offcanvas",kn=".data-api",Ln=`load${xn}${kn}`,Sn="show",Dn="showing",$n="hiding",In=".offcanvas.show",Nn=`show${xn}`,Pn=`shown${xn}`,Mn=`hide${xn}`,jn=`hidePrevented${xn}`,Fn=`hidden${xn}`,Hn=`resize${xn}`,Wn=`click${xn}${kn}`,Bn=`keydown.dismiss${xn}`,zn={backdrop:!0,keyboard:!0,scroll:!1},Rn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class qn extends W{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return zn}static get DefaultType(){return Rn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||N.trigger(this._element,Nn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new cn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Dn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Sn),this._element.classList.remove(Dn),N.trigger(this._element,Pn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(N.trigger(this._element,Mn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add($n),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Sn,$n),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new cn).reset(),N.trigger(this._element,Fn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Ui({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():N.trigger(this._element,jn)}:null})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_addEventListeners(){N.on(this._element,Bn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():N.trigger(this._element,jn))}))}static jQueryInterface(t){return this.each((function(){const e=qn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}N.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=z.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this))return;N.one(e,Fn,(()=>{a(this)&&this.focus()}));const i=z.findOne(In);i&&i!==e&&qn.getInstance(i).hide(),qn.getOrCreateInstance(e).toggle(this)})),N.on(window,Ln,(()=>{for(const t of z.find(In))qn.getOrCreateInstance(t).show()})),N.on(window,Hn,(()=>{for(const t of z.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&qn.getOrCreateInstance(t).hide()})),R(qn),m(qn);const Vn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Yn={allowList:Vn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Un={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Gn={entry:"(string|element|function|null)",selector:"(string|element)"};class Jn extends H{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Yn}static get DefaultType(){return Un}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Gn)}_setContent(t,e,i){const n=z.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?o(e)?this._putElementInTemplate(r(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return g(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const Zn=new Set(["sanitize","allowList","sanitizeFn"]),ts="fade",es="show",is=".modal",ns="hide.bs.modal",ss="hover",os="focus",rs={AUTO:"auto",TOP:"top",RIGHT:p()?"left":"right",BOTTOM:"bottom",LEFT:p()?"right":"left"},as={allowList:Vn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},ls={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class cs extends W{constructor(t,e){if(void 0===vi)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,e),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return as}static get DefaultType(){return ls}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),N.off(this._element.closest(is),ns,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=N.trigger(this._element,this.constructor.eventName("show")),e=(c(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),N.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._queueCallback((()=>{N.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!N.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._activeTrigger.click=!1,this._activeTrigger[os]=!1,this._activeTrigger[ss]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),N.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ts,es),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ts),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Jn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ts)}_isShown(){return this.tip&&this.tip.classList.contains(es)}_createPopper(t){const e=g(this._config.placement,[this,t,this._element]),i=rs[e.toUpperCase()];return bi(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return g(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...g(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)N.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ss?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ss?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");N.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?os:ss]=!0,e._enter()})),N.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?os:ss]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},N.on(this._element.closest(is),ns,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=F.getDataAttributes(this._element);for(const t of Object.keys(e))Zn.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=cs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(cs);const hs={...cs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},ds={...cs.DefaultType,content:"(null|string|element|function)"};class us extends cs{static get Default(){return hs}static get DefaultType(){return ds}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=us.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(us);const fs=".bs.scrollspy",ps=`activate${fs}`,ms=`click${fs}`,gs=`load${fs}.data-api`,_s="active",bs="[href]",vs=".nav-link",ys=`${vs}, .nav-item > ${vs}, .list-group-item`,ws={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Es extends W{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return ws}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=r(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(N.off(this._config.target,ms),N.on(this._config.target,ms,bs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=z.find(bs,this._config.target);for(const e of t){if(!e.hash||l(e))continue;const t=z.findOne(decodeURI(e.hash),this._element);a(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(_s),this._activateParents(t),N.trigger(this._element,ps,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))z.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(_s);else for(const e of z.parents(t,".nav, .list-group"))for(const t of z.prev(e,ys))t.classList.add(_s)}_clearActiveClass(t){t.classList.remove(_s);const e=z.find(`${bs}.${_s}`,t);for(const t of e)t.classList.remove(_s)}static jQueryInterface(t){return this.each((function(){const e=Es.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(window,gs,(()=>{for(const t of z.find('[data-bs-spy="scroll"]'))Es.getOrCreateInstance(t)})),m(Es);const Ts=".bs.tab",Cs=`hide${Ts}`,Os=`hidden${Ts}`,xs=`show${Ts}`,ks=`shown${Ts}`,Ls=`click${Ts}`,Ss=`keydown${Ts}`,Ds=`load${Ts}`,$s="ArrowLeft",Is="ArrowRight",Ns="ArrowUp",Ps="ArrowDown",Ms="Home",js="End",Fs="active",Hs="fade",Ws="show",Bs=":not(.dropdown-toggle)",zs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Rs=`.nav-link${Bs}, .list-group-item${Bs}, [role="tab"]${Bs}, ${zs}`,qs=`.${Fs}[data-bs-toggle="tab"], .${Fs}[data-bs-toggle="pill"], .${Fs}[data-bs-toggle="list"]`;class Vs extends W{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),N.on(this._element,Ss,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?N.trigger(e,Cs,{relatedTarget:t}):null;N.trigger(t,xs,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Fs),this._activate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),N.trigger(t,ks,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Hs)))}_deactivate(t,e){t&&(t.classList.remove(Fs),t.blur(),this._deactivate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),N.trigger(t,Os,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Hs)))}_keydown(t){if(![$s,Is,Ns,Ps,Ms,js].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!l(t)));let i;if([Ms,js].includes(t.key))i=e[t.key===Ms?0:e.length-1];else{const n=[Is,Ps].includes(t.key);i=b(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Vs.getOrCreateInstance(i).show())}_getChildren(){return z.find(Rs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=z.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=z.findOne(t,i);s&&s.classList.toggle(n,e)};n(".dropdown-toggle",Fs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Fs)}_getInnerElement(t){return t.matches(Rs)?t:z.findOne(Rs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Vs.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(document,Ls,zs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this)||Vs.getOrCreateInstance(this).show()})),N.on(window,Ds,(()=>{for(const t of z.find(qs))Vs.getOrCreateInstance(t)})),m(Vs);const Ks=".bs.toast",Qs=`mouseover${Ks}`,Xs=`mouseout${Ks}`,Ys=`focusin${Ks}`,Us=`focusout${Ks}`,Gs=`hide${Ks}`,Js=`hidden${Ks}`,Zs=`show${Ks}`,to=`shown${Ks}`,eo="hide",io="show",no="showing",so={animation:"boolean",autohide:"boolean",delay:"number"},oo={animation:!0,autohide:!0,delay:5e3};class ro extends W{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return oo}static get DefaultType(){return so}static get NAME(){return"toast"}show(){N.trigger(this._element,Zs).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(eo),d(this._element),this._element.classList.add(io,no),this._queueCallback((()=>{this._element.classList.remove(no),N.trigger(this._element,to),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(N.trigger(this._element,Gs).defaultPrevented||(this._element.classList.add(no),this._queueCallback((()=>{this._element.classList.add(eo),this._element.classList.remove(no,io),N.trigger(this._element,Js)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(io),super.dispose()}isShown(){return this._element.classList.contains(io)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){N.on(this._element,Qs,(t=>this._onInteraction(t,!0))),N.on(this._element,Xs,(t=>this._onInteraction(t,!1))),N.on(this._element,Ys,(t=>this._onInteraction(t,!0))),N.on(this._element,Us,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=ro.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(ro),m(ro),{Alert:Q,Button:Y,Carousel:xt,Collapse:Bt,Dropdown:qi,Modal:On,Offcanvas:qn,Popover:us,ScrollSpy:Es,Tab:Vs,Toast:ro,Tooltip:cs}})); +//# sourceMappingURL=bootstrap.bundle.min.js.map \ No newline at end of file diff --git a/site_libs/clipboard/clipboard.min.js b/site_libs/clipboard/clipboard.min.js new file mode 100644 index 0000000..1103f81 --- /dev/null +++ b/site_libs/clipboard/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return b}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),r=n.n(e);function c(t){try{return document.execCommand(t)}catch(t){return}}var a=function(t){t=r()(t);return c("cut"),t};function o(t,e){var n,o,t=(n=t,o="rtl"===document.documentElement.getAttribute("dir"),(t=document.createElement("textarea")).style.fontSize="12pt",t.style.border="0",t.style.padding="0",t.style.margin="0",t.style.position="absolute",t.style[o?"right":"left"]="-9999px",o=window.pageYOffset||document.documentElement.scrollTop,t.style.top="".concat(o,"px"),t.setAttribute("readonly",""),t.value=n,t);return e.container.appendChild(t),e=r()(t),c("copy"),t.remove(),e}var f=function(t){var e=1.anchorjs-link,.anchorjs-link:focus{opacity:1}",A.sheet.cssRules.length),A.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",A.sheet.cssRules.length),A.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',A.sheet.cssRules.length)),h=document.querySelectorAll("[id]"),t=[].map.call(h,function(A){return A.id}),i=0;i\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),A=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||A||!1}}}); +// @license-end \ No newline at end of file diff --git a/site_libs/quarto-html/popper.min.js b/site_libs/quarto-html/popper.min.js new file mode 100644 index 0000000..e3726d7 --- /dev/null +++ b/site_libs/quarto-html/popper.min.js @@ -0,0 +1,6 @@ +/** + * @popperjs/core v2.11.7 - MIT License + */ + +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){"use strict";function t(e){if(null==e)return window;if("[object Window]"!==e.toString()){var t=e.ownerDocument;return t&&t.defaultView||window}return e}function n(e){return e instanceof t(e).Element||e instanceof Element}function r(e){return e instanceof t(e).HTMLElement||e instanceof HTMLElement}function o(e){return"undefined"!=typeof ShadowRoot&&(e instanceof t(e).ShadowRoot||e instanceof ShadowRoot)}var i=Math.max,a=Math.min,s=Math.round;function f(){var e=navigator.userAgentData;return null!=e&&e.brands&&Array.isArray(e.brands)?e.brands.map((function(e){return e.brand+"/"+e.version})).join(" "):navigator.userAgent}function c(){return!/^((?!chrome|android).)*safari/i.test(f())}function p(e,o,i){void 0===o&&(o=!1),void 0===i&&(i=!1);var a=e.getBoundingClientRect(),f=1,p=1;o&&r(e)&&(f=e.offsetWidth>0&&s(a.width)/e.offsetWidth||1,p=e.offsetHeight>0&&s(a.height)/e.offsetHeight||1);var u=(n(e)?t(e):window).visualViewport,l=!c()&&i,d=(a.left+(l&&u?u.offsetLeft:0))/f,h=(a.top+(l&&u?u.offsetTop:0))/p,m=a.width/f,v=a.height/p;return{width:m,height:v,top:h,right:d+m,bottom:h+v,left:d,x:d,y:h}}function u(e){var n=t(e);return{scrollLeft:n.pageXOffset,scrollTop:n.pageYOffset}}function l(e){return e?(e.nodeName||"").toLowerCase():null}function d(e){return((n(e)?e.ownerDocument:e.document)||window.document).documentElement}function h(e){return p(d(e)).left+u(e).scrollLeft}function m(e){return t(e).getComputedStyle(e)}function v(e){var t=m(e),n=t.overflow,r=t.overflowX,o=t.overflowY;return/auto|scroll|overlay|hidden/.test(n+o+r)}function y(e,n,o){void 0===o&&(o=!1);var i,a,f=r(n),c=r(n)&&function(e){var t=e.getBoundingClientRect(),n=s(t.width)/e.offsetWidth||1,r=s(t.height)/e.offsetHeight||1;return 1!==n||1!==r}(n),m=d(n),y=p(e,c,o),g={scrollLeft:0,scrollTop:0},b={x:0,y:0};return(f||!f&&!o)&&(("body"!==l(n)||v(m))&&(g=(i=n)!==t(i)&&r(i)?{scrollLeft:(a=i).scrollLeft,scrollTop:a.scrollTop}:u(i)),r(n)?((b=p(n,!0)).x+=n.clientLeft,b.y+=n.clientTop):m&&(b.x=h(m))),{x:y.left+g.scrollLeft-b.x,y:y.top+g.scrollTop-b.y,width:y.width,height:y.height}}function g(e){var t=p(e),n=e.offsetWidth,r=e.offsetHeight;return Math.abs(t.width-n)<=1&&(n=t.width),Math.abs(t.height-r)<=1&&(r=t.height),{x:e.offsetLeft,y:e.offsetTop,width:n,height:r}}function b(e){return"html"===l(e)?e:e.assignedSlot||e.parentNode||(o(e)?e.host:null)||d(e)}function x(e){return["html","body","#document"].indexOf(l(e))>=0?e.ownerDocument.body:r(e)&&v(e)?e:x(b(e))}function w(e,n){var r;void 0===n&&(n=[]);var o=x(e),i=o===(null==(r=e.ownerDocument)?void 0:r.body),a=t(o),s=i?[a].concat(a.visualViewport||[],v(o)?o:[]):o,f=n.concat(s);return i?f:f.concat(w(b(s)))}function O(e){return["table","td","th"].indexOf(l(e))>=0}function j(e){return r(e)&&"fixed"!==m(e).position?e.offsetParent:null}function E(e){for(var n=t(e),i=j(e);i&&O(i)&&"static"===m(i).position;)i=j(i);return i&&("html"===l(i)||"body"===l(i)&&"static"===m(i).position)?n:i||function(e){var t=/firefox/i.test(f());if(/Trident/i.test(f())&&r(e)&&"fixed"===m(e).position)return null;var n=b(e);for(o(n)&&(n=n.host);r(n)&&["html","body"].indexOf(l(n))<0;){var i=m(n);if("none"!==i.transform||"none"!==i.perspective||"paint"===i.contain||-1!==["transform","perspective"].indexOf(i.willChange)||t&&"filter"===i.willChange||t&&i.filter&&"none"!==i.filter)return n;n=n.parentNode}return null}(e)||n}var D="top",A="bottom",L="right",P="left",M="auto",k=[D,A,L,P],W="start",B="end",H="viewport",T="popper",R=k.reduce((function(e,t){return e.concat([t+"-"+W,t+"-"+B])}),[]),S=[].concat(k,[M]).reduce((function(e,t){return e.concat([t,t+"-"+W,t+"-"+B])}),[]),V=["beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite"];function q(e){var t=new Map,n=new Set,r=[];function o(e){n.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){if(!n.has(e)){var r=t.get(e);r&&o(r)}})),r.push(e)}return e.forEach((function(e){t.set(e.name,e)})),e.forEach((function(e){n.has(e.name)||o(e)})),r}function C(e){return e.split("-")[0]}function N(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&o(n)){var r=t;do{if(r&&e.isSameNode(r))return!0;r=r.parentNode||r.host}while(r)}return!1}function I(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function _(e,r,o){return r===H?I(function(e,n){var r=t(e),o=d(e),i=r.visualViewport,a=o.clientWidth,s=o.clientHeight,f=0,p=0;if(i){a=i.width,s=i.height;var u=c();(u||!u&&"fixed"===n)&&(f=i.offsetLeft,p=i.offsetTop)}return{width:a,height:s,x:f+h(e),y:p}}(e,o)):n(r)?function(e,t){var n=p(e,!1,"fixed"===t);return n.top=n.top+e.clientTop,n.left=n.left+e.clientLeft,n.bottom=n.top+e.clientHeight,n.right=n.left+e.clientWidth,n.width=e.clientWidth,n.height=e.clientHeight,n.x=n.left,n.y=n.top,n}(r,o):I(function(e){var t,n=d(e),r=u(e),o=null==(t=e.ownerDocument)?void 0:t.body,a=i(n.scrollWidth,n.clientWidth,o?o.scrollWidth:0,o?o.clientWidth:0),s=i(n.scrollHeight,n.clientHeight,o?o.scrollHeight:0,o?o.clientHeight:0),f=-r.scrollLeft+h(e),c=-r.scrollTop;return"rtl"===m(o||n).direction&&(f+=i(n.clientWidth,o?o.clientWidth:0)-a),{width:a,height:s,x:f,y:c}}(d(e)))}function F(e,t,o,s){var f="clippingParents"===t?function(e){var t=w(b(e)),o=["absolute","fixed"].indexOf(m(e).position)>=0&&r(e)?E(e):e;return n(o)?t.filter((function(e){return n(e)&&N(e,o)&&"body"!==l(e)})):[]}(e):[].concat(t),c=[].concat(f,[o]),p=c[0],u=c.reduce((function(t,n){var r=_(e,n,s);return t.top=i(r.top,t.top),t.right=a(r.right,t.right),t.bottom=a(r.bottom,t.bottom),t.left=i(r.left,t.left),t}),_(e,p,s));return u.width=u.right-u.left,u.height=u.bottom-u.top,u.x=u.left,u.y=u.top,u}function U(e){return e.split("-")[1]}function z(e){return["top","bottom"].indexOf(e)>=0?"x":"y"}function X(e){var t,n=e.reference,r=e.element,o=e.placement,i=o?C(o):null,a=o?U(o):null,s=n.x+n.width/2-r.width/2,f=n.y+n.height/2-r.height/2;switch(i){case D:t={x:s,y:n.y-r.height};break;case A:t={x:s,y:n.y+n.height};break;case L:t={x:n.x+n.width,y:f};break;case P:t={x:n.x-r.width,y:f};break;default:t={x:n.x,y:n.y}}var c=i?z(i):null;if(null!=c){var p="y"===c?"height":"width";switch(a){case W:t[c]=t[c]-(n[p]/2-r[p]/2);break;case B:t[c]=t[c]+(n[p]/2-r[p]/2)}}return t}function Y(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function G(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function J(e,t){void 0===t&&(t={});var r=t,o=r.placement,i=void 0===o?e.placement:o,a=r.strategy,s=void 0===a?e.strategy:a,f=r.boundary,c=void 0===f?"clippingParents":f,u=r.rootBoundary,l=void 0===u?H:u,h=r.elementContext,m=void 0===h?T:h,v=r.altBoundary,y=void 0!==v&&v,g=r.padding,b=void 0===g?0:g,x=Y("number"!=typeof b?b:G(b,k)),w=m===T?"reference":T,O=e.rects.popper,j=e.elements[y?w:m],E=F(n(j)?j:j.contextElement||d(e.elements.popper),c,l,s),P=p(e.elements.reference),M=X({reference:P,element:O,strategy:"absolute",placement:i}),W=I(Object.assign({},O,M)),B=m===T?W:P,R={top:E.top-B.top+x.top,bottom:B.bottom-E.bottom+x.bottom,left:E.left-B.left+x.left,right:B.right-E.right+x.right},S=e.modifiersData.offset;if(m===T&&S){var V=S[i];Object.keys(R).forEach((function(e){var t=[L,A].indexOf(e)>=0?1:-1,n=[D,A].indexOf(e)>=0?"y":"x";R[e]+=V[n]*t}))}return R}var K={placement:"bottom",modifiers:[],strategy:"absolute"};function Q(){for(var e=arguments.length,t=new Array(e),n=0;n=0?-1:1,i="function"==typeof n?n(Object.assign({},t,{placement:e})):n,a=i[0],s=i[1];return a=a||0,s=(s||0)*o,[P,L].indexOf(r)>=0?{x:s,y:a}:{x:a,y:s}}(n,t.rects,i),e}),{}),s=a[t.placement],f=s.x,c=s.y;null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=f,t.modifiersData.popperOffsets.y+=c),t.modifiersData[r]=a}},se={left:"right",right:"left",bottom:"top",top:"bottom"};function fe(e){return e.replace(/left|right|bottom|top/g,(function(e){return se[e]}))}var ce={start:"end",end:"start"};function pe(e){return e.replace(/start|end/g,(function(e){return ce[e]}))}function ue(e,t){void 0===t&&(t={});var n=t,r=n.placement,o=n.boundary,i=n.rootBoundary,a=n.padding,s=n.flipVariations,f=n.allowedAutoPlacements,c=void 0===f?S:f,p=U(r),u=p?s?R:R.filter((function(e){return U(e)===p})):k,l=u.filter((function(e){return c.indexOf(e)>=0}));0===l.length&&(l=u);var d=l.reduce((function(t,n){return t[n]=J(e,{placement:n,boundary:o,rootBoundary:i,padding:a})[C(n)],t}),{});return Object.keys(d).sort((function(e,t){return d[e]-d[t]}))}var le={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name;if(!t.modifiersData[r]._skip){for(var o=n.mainAxis,i=void 0===o||o,a=n.altAxis,s=void 0===a||a,f=n.fallbackPlacements,c=n.padding,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.flipVariations,h=void 0===d||d,m=n.allowedAutoPlacements,v=t.options.placement,y=C(v),g=f||(y===v||!h?[fe(v)]:function(e){if(C(e)===M)return[];var t=fe(e);return[pe(e),t,pe(t)]}(v)),b=[v].concat(g).reduce((function(e,n){return e.concat(C(n)===M?ue(t,{placement:n,boundary:p,rootBoundary:u,padding:c,flipVariations:h,allowedAutoPlacements:m}):n)}),[]),x=t.rects.reference,w=t.rects.popper,O=new Map,j=!0,E=b[0],k=0;k=0,S=R?"width":"height",V=J(t,{placement:B,boundary:p,rootBoundary:u,altBoundary:l,padding:c}),q=R?T?L:P:T?A:D;x[S]>w[S]&&(q=fe(q));var N=fe(q),I=[];if(i&&I.push(V[H]<=0),s&&I.push(V[q]<=0,V[N]<=0),I.every((function(e){return e}))){E=B,j=!1;break}O.set(B,I)}if(j)for(var _=function(e){var t=b.find((function(t){var n=O.get(t);if(n)return n.slice(0,e).every((function(e){return e}))}));if(t)return E=t,"break"},F=h?3:1;F>0;F--){if("break"===_(F))break}t.placement!==E&&(t.modifiersData[r]._skip=!0,t.placement=E,t.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function de(e,t,n){return i(e,a(t,n))}var he={name:"preventOverflow",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.mainAxis,s=void 0===o||o,f=n.altAxis,c=void 0!==f&&f,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.padding,h=n.tether,m=void 0===h||h,v=n.tetherOffset,y=void 0===v?0:v,b=J(t,{boundary:p,rootBoundary:u,padding:d,altBoundary:l}),x=C(t.placement),w=U(t.placement),O=!w,j=z(x),M="x"===j?"y":"x",k=t.modifiersData.popperOffsets,B=t.rects.reference,H=t.rects.popper,T="function"==typeof y?y(Object.assign({},t.rects,{placement:t.placement})):y,R="number"==typeof T?{mainAxis:T,altAxis:T}:Object.assign({mainAxis:0,altAxis:0},T),S=t.modifiersData.offset?t.modifiersData.offset[t.placement]:null,V={x:0,y:0};if(k){if(s){var q,N="y"===j?D:P,I="y"===j?A:L,_="y"===j?"height":"width",F=k[j],X=F+b[N],Y=F-b[I],G=m?-H[_]/2:0,K=w===W?B[_]:H[_],Q=w===W?-H[_]:-B[_],Z=t.elements.arrow,$=m&&Z?g(Z):{width:0,height:0},ee=t.modifiersData["arrow#persistent"]?t.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},te=ee[N],ne=ee[I],re=de(0,B[_],$[_]),oe=O?B[_]/2-G-re-te-R.mainAxis:K-re-te-R.mainAxis,ie=O?-B[_]/2+G+re+ne+R.mainAxis:Q+re+ne+R.mainAxis,ae=t.elements.arrow&&E(t.elements.arrow),se=ae?"y"===j?ae.clientTop||0:ae.clientLeft||0:0,fe=null!=(q=null==S?void 0:S[j])?q:0,ce=F+ie-fe,pe=de(m?a(X,F+oe-fe-se):X,F,m?i(Y,ce):Y);k[j]=pe,V[j]=pe-F}if(c){var ue,le="x"===j?D:P,he="x"===j?A:L,me=k[M],ve="y"===M?"height":"width",ye=me+b[le],ge=me-b[he],be=-1!==[D,P].indexOf(x),xe=null!=(ue=null==S?void 0:S[M])?ue:0,we=be?ye:me-B[ve]-H[ve]-xe+R.altAxis,Oe=be?me+B[ve]+H[ve]-xe-R.altAxis:ge,je=m&&be?function(e,t,n){var r=de(e,t,n);return r>n?n:r}(we,me,Oe):de(m?we:ye,me,m?Oe:ge);k[M]=je,V[M]=je-me}t.modifiersData[r]=V}},requiresIfExists:["offset"]};var me={name:"arrow",enabled:!0,phase:"main",fn:function(e){var t,n=e.state,r=e.name,o=e.options,i=n.elements.arrow,a=n.modifiersData.popperOffsets,s=C(n.placement),f=z(s),c=[P,L].indexOf(s)>=0?"height":"width";if(i&&a){var p=function(e,t){return Y("number"!=typeof(e="function"==typeof e?e(Object.assign({},t.rects,{placement:t.placement})):e)?e:G(e,k))}(o.padding,n),u=g(i),l="y"===f?D:P,d="y"===f?A:L,h=n.rects.reference[c]+n.rects.reference[f]-a[f]-n.rects.popper[c],m=a[f]-n.rects.reference[f],v=E(i),y=v?"y"===f?v.clientHeight||0:v.clientWidth||0:0,b=h/2-m/2,x=p[l],w=y-u[c]-p[d],O=y/2-u[c]/2+b,j=de(x,O,w),M=f;n.modifiersData[r]=((t={})[M]=j,t.centerOffset=j-O,t)}},effect:function(e){var t=e.state,n=e.options.element,r=void 0===n?"[data-popper-arrow]":n;null!=r&&("string"!=typeof r||(r=t.elements.popper.querySelector(r)))&&N(t.elements.popper,r)&&(t.elements.arrow=r)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function ve(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function ye(e){return[D,L,A,P].some((function(t){return e[t]>=0}))}var ge={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(e){var t=e.state,n=e.name,r=t.rects.reference,o=t.rects.popper,i=t.modifiersData.preventOverflow,a=J(t,{elementContext:"reference"}),s=J(t,{altBoundary:!0}),f=ve(a,r),c=ve(s,o,i),p=ye(f),u=ye(c);t.modifiersData[n]={referenceClippingOffsets:f,popperEscapeOffsets:c,isReferenceHidden:p,hasPopperEscaped:u},t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-reference-hidden":p,"data-popper-escaped":u})}},be=Z({defaultModifiers:[ee,te,oe,ie]}),xe=[ee,te,oe,ie,ae,le,he,me,ge],we=Z({defaultModifiers:xe});e.applyStyles=ie,e.arrow=me,e.computeStyles=oe,e.createPopper=we,e.createPopperLite=be,e.defaultModifiers=xe,e.detectOverflow=J,e.eventListeners=ee,e.flip=le,e.hide=ge,e.offset=ae,e.popperGenerator=Z,e.popperOffsets=te,e.preventOverflow=he,Object.defineProperty(e,"__esModule",{value:!0})})); + diff --git a/site_libs/quarto-html/quarto-syntax-highlighting.css b/site_libs/quarto-html/quarto-syntax-highlighting.css new file mode 100644 index 0000000..b30ce57 --- /dev/null +++ b/site_libs/quarto-html/quarto-syntax-highlighting.css @@ -0,0 +1,205 @@ +/* quarto syntax highlight colors */ +:root { + --quarto-hl-ot-color: #003B4F; + --quarto-hl-at-color: #657422; + --quarto-hl-ss-color: #20794D; + --quarto-hl-an-color: #5E5E5E; + --quarto-hl-fu-color: #4758AB; + --quarto-hl-st-color: #20794D; + --quarto-hl-cf-color: #003B4F; + --quarto-hl-op-color: #5E5E5E; + --quarto-hl-er-color: #AD0000; + --quarto-hl-bn-color: #AD0000; + --quarto-hl-al-color: #AD0000; + --quarto-hl-va-color: #111111; + --quarto-hl-bu-color: inherit; + --quarto-hl-ex-color: inherit; + --quarto-hl-pp-color: #AD0000; + --quarto-hl-in-color: #5E5E5E; + --quarto-hl-vs-color: #20794D; + --quarto-hl-wa-color: #5E5E5E; + --quarto-hl-do-color: #5E5E5E; + --quarto-hl-im-color: #00769E; + --quarto-hl-ch-color: #20794D; + --quarto-hl-dt-color: #AD0000; + --quarto-hl-fl-color: #AD0000; + --quarto-hl-co-color: #5E5E5E; + --quarto-hl-cv-color: #5E5E5E; + --quarto-hl-cn-color: #8f5902; + --quarto-hl-sc-color: #5E5E5E; + --quarto-hl-dv-color: #AD0000; + --quarto-hl-kw-color: #003B4F; +} + +/* other quarto variables */ +:root { + --quarto-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; +} + +pre > code.sourceCode > span { + color: #003B4F; +} + +code span { + color: #003B4F; +} + +code.sourceCode > span { + color: #003B4F; +} + +div.sourceCode, +div.sourceCode pre.sourceCode { + color: #003B4F; +} + +code span.ot { + color: #003B4F; + font-style: inherit; +} + +code span.at { + color: #657422; + font-style: inherit; +} + +code span.ss { + color: #20794D; + font-style: inherit; +} + +code span.an { + color: #5E5E5E; + font-style: inherit; +} + +code span.fu { + color: #4758AB; + font-style: inherit; +} + +code span.st { + color: #20794D; + font-style: inherit; +} + +code span.cf { + color: #003B4F; + font-weight: bold; + font-style: inherit; +} + +code span.op { + color: #5E5E5E; + font-style: inherit; +} + +code span.er { + color: #AD0000; + font-style: inherit; +} + +code span.bn { + color: #AD0000; + font-style: inherit; +} + +code span.al { + color: #AD0000; + font-style: inherit; +} + +code span.va { + color: #111111; + font-style: inherit; +} + +code span.bu { + font-style: inherit; +} + +code span.ex { + font-style: inherit; +} + +code span.pp { + color: #AD0000; + font-style: inherit; +} + +code span.in { + color: #5E5E5E; + font-style: inherit; +} + +code span.vs { + color: #20794D; + font-style: inherit; +} + +code span.wa { + color: #5E5E5E; + font-style: italic; +} + +code span.do { + color: #5E5E5E; + font-style: italic; +} + +code span.im { + color: #00769E; + font-style: inherit; +} + +code span.ch { + color: #20794D; + font-style: inherit; +} + +code span.dt { + color: #AD0000; + font-style: inherit; +} + +code span.fl { + color: #AD0000; + font-style: inherit; +} + +code span.co { + color: #5E5E5E; + font-style: inherit; +} + +code span.cv { + color: #5E5E5E; + font-style: italic; +} + +code span.cn { + color: #8f5902; + font-style: inherit; +} + +code span.sc { + color: #5E5E5E; + font-style: inherit; +} + +code span.dv { + color: #AD0000; + font-style: inherit; +} + +code span.kw { + color: #003B4F; + font-weight: bold; + font-style: inherit; +} + +.prevent-inlining { + content: " { + // Find any conflicting margin elements and add margins to the + // top to prevent overlap + const marginChildren = window.document.querySelectorAll( + ".column-margin.column-container > *, .margin-caption, .aside" + ); + + let lastBottom = 0; + for (const marginChild of marginChildren) { + if (marginChild.offsetParent !== null) { + // clear the top margin so we recompute it + marginChild.style.marginTop = null; + const top = marginChild.getBoundingClientRect().top + window.scrollY; + if (top < lastBottom) { + const marginChildStyle = window.getComputedStyle(marginChild); + const marginBottom = parseFloat(marginChildStyle["marginBottom"]); + const margin = lastBottom - top + marginBottom; + marginChild.style.marginTop = `${margin}px`; + } + const styles = window.getComputedStyle(marginChild); + const marginTop = parseFloat(styles["marginTop"]); + lastBottom = top + marginChild.getBoundingClientRect().height + marginTop; + } + } +}; + +window.document.addEventListener("DOMContentLoaded", function (_event) { + // Recompute the position of margin elements anytime the body size changes + if (window.ResizeObserver) { + const resizeObserver = new window.ResizeObserver( + throttle(() => { + layoutMarginEls(); + if ( + window.document.body.getBoundingClientRect().width < 990 && + isReaderMode() + ) { + quartoToggleReader(); + } + }, 50) + ); + resizeObserver.observe(window.document.body); + } + + const tocEl = window.document.querySelector('nav.toc-active[role="doc-toc"]'); + const sidebarEl = window.document.getElementById("quarto-sidebar"); + const leftTocEl = window.document.getElementById("quarto-sidebar-toc-left"); + const marginSidebarEl = window.document.getElementById( + "quarto-margin-sidebar" + ); + // function to determine whether the element has a previous sibling that is active + const prevSiblingIsActiveLink = (el) => { + const sibling = el.previousElementSibling; + if (sibling && sibling.tagName === "A") { + return sibling.classList.contains("active"); + } else { + return false; + } + }; + + // fire slideEnter for bootstrap tab activations (for htmlwidget resize behavior) + function fireSlideEnter(e) { + const event = window.document.createEvent("Event"); + event.initEvent("slideenter", true, true); + window.document.dispatchEvent(event); + } + const tabs = window.document.querySelectorAll('a[data-bs-toggle="tab"]'); + tabs.forEach((tab) => { + tab.addEventListener("shown.bs.tab", fireSlideEnter); + }); + + // fire slideEnter for tabby tab activations (for htmlwidget resize behavior) + document.addEventListener("tabby", fireSlideEnter, false); + + // Track scrolling and mark TOC links as active + // get table of contents and sidebar (bail if we don't have at least one) + const tocLinks = tocEl + ? [...tocEl.querySelectorAll("a[data-scroll-target]")] + : []; + const makeActive = (link) => tocLinks[link].classList.add("active"); + const removeActive = (link) => tocLinks[link].classList.remove("active"); + const removeAllActive = () => + [...Array(tocLinks.length).keys()].forEach((link) => removeActive(link)); + + // activate the anchor for a section associated with this TOC entry + tocLinks.forEach((link) => { + link.addEventListener("click", () => { + if (link.href.indexOf("#") !== -1) { + const anchor = link.href.split("#")[1]; + const heading = window.document.querySelector( + `[data-anchor-id="${anchor}"]` + ); + if (heading) { + // Add the class + heading.classList.add("reveal-anchorjs-link"); + + // function to show the anchor + const handleMouseout = () => { + heading.classList.remove("reveal-anchorjs-link"); + heading.removeEventListener("mouseout", handleMouseout); + }; + + // add a function to clear the anchor when the user mouses out of it + heading.addEventListener("mouseout", handleMouseout); + } + } + }); + }); + + const sections = tocLinks.map((link) => { + const target = link.getAttribute("data-scroll-target"); + if (target.startsWith("#")) { + return window.document.getElementById(decodeURI(`${target.slice(1)}`)); + } else { + return window.document.querySelector(decodeURI(`${target}`)); + } + }); + + const sectionMargin = 200; + let currentActive = 0; + // track whether we've initialized state the first time + let init = false; + + const updateActiveLink = () => { + // The index from bottom to top (e.g. reversed list) + let sectionIndex = -1; + if ( + window.innerHeight + window.pageYOffset >= + window.document.body.offsetHeight + ) { + // This is the no-scroll case where last section should be the active one + sectionIndex = 0; + } else { + // This finds the last section visible on screen that should be made active + sectionIndex = [...sections].reverse().findIndex((section) => { + if (section) { + return window.pageYOffset >= section.offsetTop - sectionMargin; + } else { + return false; + } + }); + } + if (sectionIndex > -1) { + const current = sections.length - sectionIndex - 1; + if (current !== currentActive) { + removeAllActive(); + currentActive = current; + makeActive(current); + if (init) { + window.dispatchEvent(sectionChanged); + } + init = true; + } + } + }; + + const inHiddenRegion = (top, bottom, hiddenRegions) => { + for (const region of hiddenRegions) { + if (top <= region.bottom && bottom >= region.top) { + return true; + } + } + return false; + }; + + const categorySelector = "header.quarto-title-block .quarto-category"; + const activateCategories = (href) => { + // Find any categories + // Surround them with a link pointing back to: + // #category=Authoring + try { + const categoryEls = window.document.querySelectorAll(categorySelector); + for (const categoryEl of categoryEls) { + const categoryText = categoryEl.textContent; + if (categoryText) { + const link = `${href}#category=${encodeURIComponent(categoryText)}`; + const linkEl = window.document.createElement("a"); + linkEl.setAttribute("href", link); + for (const child of categoryEl.childNodes) { + linkEl.append(child); + } + categoryEl.appendChild(linkEl); + } + } + } catch { + // Ignore errors + } + }; + function hasTitleCategories() { + return window.document.querySelector(categorySelector) !== null; + } + + function offsetRelativeUrl(url) { + const offset = getMeta("quarto:offset"); + return offset ? offset + url : url; + } + + function offsetAbsoluteUrl(url) { + const offset = getMeta("quarto:offset"); + const baseUrl = new URL(offset, window.location); + + const projRelativeUrl = url.replace(baseUrl, ""); + if (projRelativeUrl.startsWith("/")) { + return projRelativeUrl; + } else { + return "/" + projRelativeUrl; + } + } + + // read a meta tag value + function getMeta(metaName) { + const metas = window.document.getElementsByTagName("meta"); + for (let i = 0; i < metas.length; i++) { + if (metas[i].getAttribute("name") === metaName) { + return metas[i].getAttribute("content"); + } + } + return ""; + } + + async function findAndActivateCategories() { + const currentPagePath = offsetAbsoluteUrl(window.location.href); + const response = await fetch(offsetRelativeUrl("listings.json")); + if (response.status == 200) { + return response.json().then(function (listingPaths) { + const listingHrefs = []; + for (const listingPath of listingPaths) { + const pathWithoutLeadingSlash = listingPath.listing.substring(1); + for (const item of listingPath.items) { + if ( + item === currentPagePath || + item === currentPagePath + "index.html" + ) { + // Resolve this path against the offset to be sure + // we already are using the correct path to the listing + // (this adjusts the listing urls to be rooted against + // whatever root the page is actually running against) + const relative = offsetRelativeUrl(pathWithoutLeadingSlash); + const baseUrl = window.location; + const resolvedPath = new URL(relative, baseUrl); + listingHrefs.push(resolvedPath.pathname); + break; + } + } + } + + // Look up the tree for a nearby linting and use that if we find one + const nearestListing = findNearestParentListing( + offsetAbsoluteUrl(window.location.pathname), + listingHrefs + ); + if (nearestListing) { + activateCategories(nearestListing); + } else { + // See if the referrer is a listing page for this item + const referredRelativePath = offsetAbsoluteUrl(document.referrer); + const referrerListing = listingHrefs.find((listingHref) => { + const isListingReferrer = + listingHref === referredRelativePath || + listingHref === referredRelativePath + "index.html"; + return isListingReferrer; + }); + + if (referrerListing) { + // Try to use the referrer if possible + activateCategories(referrerListing); + } else if (listingHrefs.length > 0) { + // Otherwise, just fall back to the first listing + activateCategories(listingHrefs[0]); + } + } + }); + } + } + if (hasTitleCategories()) { + findAndActivateCategories(); + } + + const findNearestParentListing = (href, listingHrefs) => { + if (!href || !listingHrefs) { + return undefined; + } + // Look up the tree for a nearby linting and use that if we find one + const relativeParts = href.substring(1).split("/"); + while (relativeParts.length > 0) { + const path = relativeParts.join("/"); + for (const listingHref of listingHrefs) { + if (listingHref.startsWith(path)) { + return listingHref; + } + } + relativeParts.pop(); + } + + return undefined; + }; + + const manageSidebarVisiblity = (el, placeholderDescriptor) => { + let isVisible = true; + let elRect; + + return (hiddenRegions) => { + if (el === null) { + return; + } + + // Find the last element of the TOC + const lastChildEl = el.lastElementChild; + + if (lastChildEl) { + // Converts the sidebar to a menu + const convertToMenu = () => { + for (const child of el.children) { + child.style.opacity = 0; + child.style.overflow = "hidden"; + child.style.pointerEvents = "none"; + } + + nexttick(() => { + const toggleContainer = window.document.createElement("div"); + toggleContainer.style.width = "100%"; + toggleContainer.classList.add("zindex-over-content"); + toggleContainer.classList.add("quarto-sidebar-toggle"); + toggleContainer.classList.add("headroom-target"); // Marks this to be managed by headeroom + toggleContainer.id = placeholderDescriptor.id; + toggleContainer.style.position = "fixed"; + + const toggleIcon = window.document.createElement("i"); + toggleIcon.classList.add("quarto-sidebar-toggle-icon"); + toggleIcon.classList.add("bi"); + toggleIcon.classList.add("bi-caret-down-fill"); + + const toggleTitle = window.document.createElement("div"); + const titleEl = window.document.body.querySelector( + placeholderDescriptor.titleSelector + ); + if (titleEl) { + toggleTitle.append( + titleEl.textContent || titleEl.innerText, + toggleIcon + ); + } + toggleTitle.classList.add("zindex-over-content"); + toggleTitle.classList.add("quarto-sidebar-toggle-title"); + toggleContainer.append(toggleTitle); + + const toggleContents = window.document.createElement("div"); + toggleContents.classList = el.classList; + toggleContents.classList.add("zindex-over-content"); + toggleContents.classList.add("quarto-sidebar-toggle-contents"); + for (const child of el.children) { + if (child.id === "toc-title") { + continue; + } + + const clone = child.cloneNode(true); + clone.style.opacity = 1; + clone.style.pointerEvents = null; + clone.style.display = null; + toggleContents.append(clone); + } + toggleContents.style.height = "0px"; + const positionToggle = () => { + // position the element (top left of parent, same width as parent) + if (!elRect) { + elRect = el.getBoundingClientRect(); + } + toggleContainer.style.left = `${elRect.left}px`; + toggleContainer.style.top = `${elRect.top}px`; + toggleContainer.style.width = `${elRect.width}px`; + }; + positionToggle(); + + toggleContainer.append(toggleContents); + el.parentElement.prepend(toggleContainer); + + // Process clicks + let tocShowing = false; + // Allow the caller to control whether this is dismissed + // when it is clicked (e.g. sidebar navigation supports + // opening and closing the nav tree, so don't dismiss on click) + const clickEl = placeholderDescriptor.dismissOnClick + ? toggleContainer + : toggleTitle; + + const closeToggle = () => { + if (tocShowing) { + toggleContainer.classList.remove("expanded"); + toggleContents.style.height = "0px"; + tocShowing = false; + } + }; + + // Get rid of any expanded toggle if the user scrolls + window.document.addEventListener( + "scroll", + throttle(() => { + closeToggle(); + }, 50) + ); + + // Handle positioning of the toggle + window.addEventListener( + "resize", + throttle(() => { + elRect = undefined; + positionToggle(); + }, 50) + ); + + window.addEventListener("quarto-hrChanged", () => { + elRect = undefined; + }); + + // Process the click + clickEl.onclick = () => { + if (!tocShowing) { + toggleContainer.classList.add("expanded"); + toggleContents.style.height = null; + tocShowing = true; + } else { + closeToggle(); + } + }; + }); + }; + + // Converts a sidebar from a menu back to a sidebar + const convertToSidebar = () => { + for (const child of el.children) { + child.style.opacity = 1; + child.style.overflow = null; + child.style.pointerEvents = null; + } + + const placeholderEl = window.document.getElementById( + placeholderDescriptor.id + ); + if (placeholderEl) { + placeholderEl.remove(); + } + + el.classList.remove("rollup"); + }; + + if (isReaderMode()) { + convertToMenu(); + isVisible = false; + } else { + // Find the top and bottom o the element that is being managed + const elTop = el.offsetTop; + const elBottom = + elTop + lastChildEl.offsetTop + lastChildEl.offsetHeight; + + if (!isVisible) { + // If the element is current not visible reveal if there are + // no conflicts with overlay regions + if (!inHiddenRegion(elTop, elBottom, hiddenRegions)) { + convertToSidebar(); + isVisible = true; + } + } else { + // If the element is visible, hide it if it conflicts with overlay regions + // and insert a placeholder toggle (or if we're in reader mode) + if (inHiddenRegion(elTop, elBottom, hiddenRegions)) { + convertToMenu(); + isVisible = false; + } + } + } + } + }; + }; + + const tabEls = document.querySelectorAll('a[data-bs-toggle="tab"]'); + for (const tabEl of tabEls) { + const id = tabEl.getAttribute("data-bs-target"); + if (id) { + const columnEl = document.querySelector( + `${id} .column-margin, .tabset-margin-content` + ); + if (columnEl) + tabEl.addEventListener("shown.bs.tab", function (event) { + const el = event.srcElement; + if (el) { + const visibleCls = `${el.id}-margin-content`; + // walk up until we find a parent tabset + let panelTabsetEl = el.parentElement; + while (panelTabsetEl) { + if (panelTabsetEl.classList.contains("panel-tabset")) { + break; + } + panelTabsetEl = panelTabsetEl.parentElement; + } + + if (panelTabsetEl) { + const prevSib = panelTabsetEl.previousElementSibling; + if ( + prevSib && + prevSib.classList.contains("tabset-margin-container") + ) { + const childNodes = prevSib.querySelectorAll( + ".tabset-margin-content" + ); + for (const childEl of childNodes) { + if (childEl.classList.contains(visibleCls)) { + childEl.classList.remove("collapse"); + } else { + childEl.classList.add("collapse"); + } + } + } + } + } + + layoutMarginEls(); + }); + } + } + + // Manage the visibility of the toc and the sidebar + const marginScrollVisibility = manageSidebarVisiblity(marginSidebarEl, { + id: "quarto-toc-toggle", + titleSelector: "#toc-title", + dismissOnClick: true, + }); + const sidebarScrollVisiblity = manageSidebarVisiblity(sidebarEl, { + id: "quarto-sidebarnav-toggle", + titleSelector: ".title", + dismissOnClick: false, + }); + let tocLeftScrollVisibility; + if (leftTocEl) { + tocLeftScrollVisibility = manageSidebarVisiblity(leftTocEl, { + id: "quarto-lefttoc-toggle", + titleSelector: "#toc-title", + dismissOnClick: true, + }); + } + + // Find the first element that uses formatting in special columns + const conflictingEls = window.document.body.querySelectorAll( + '[class^="column-"], [class*=" column-"], aside, [class*="margin-caption"], [class*=" margin-caption"], [class*="margin-ref"], [class*=" margin-ref"]' + ); + + // Filter all the possibly conflicting elements into ones + // the do conflict on the left or ride side + const arrConflictingEls = Array.from(conflictingEls); + const leftSideConflictEls = arrConflictingEls.filter((el) => { + if (el.tagName === "ASIDE") { + return false; + } + return Array.from(el.classList).find((className) => { + return ( + className !== "column-body" && + className.startsWith("column-") && + !className.endsWith("right") && + !className.endsWith("container") && + className !== "column-margin" + ); + }); + }); + const rightSideConflictEls = arrConflictingEls.filter((el) => { + if (el.tagName === "ASIDE") { + return true; + } + + const hasMarginCaption = Array.from(el.classList).find((className) => { + return className == "margin-caption"; + }); + if (hasMarginCaption) { + return true; + } + + return Array.from(el.classList).find((className) => { + return ( + className !== "column-body" && + !className.endsWith("container") && + className.startsWith("column-") && + !className.endsWith("left") + ); + }); + }); + + const kOverlapPaddingSize = 10; + function toRegions(els) { + return els.map((el) => { + const boundRect = el.getBoundingClientRect(); + const top = + boundRect.top + + document.documentElement.scrollTop - + kOverlapPaddingSize; + return { + top, + bottom: top + el.scrollHeight + 2 * kOverlapPaddingSize, + }; + }); + } + + let hasObserved = false; + const visibleItemObserver = (els) => { + let visibleElements = [...els]; + const intersectionObserver = new IntersectionObserver( + (entries, _observer) => { + entries.forEach((entry) => { + if (entry.isIntersecting) { + if (visibleElements.indexOf(entry.target) === -1) { + visibleElements.push(entry.target); + } + } else { + visibleElements = visibleElements.filter((visibleEntry) => { + return visibleEntry !== entry; + }); + } + }); + + if (!hasObserved) { + hideOverlappedSidebars(); + } + hasObserved = true; + }, + {} + ); + els.forEach((el) => { + intersectionObserver.observe(el); + }); + + return { + getVisibleEntries: () => { + return visibleElements; + }, + }; + }; + + const rightElementObserver = visibleItemObserver(rightSideConflictEls); + const leftElementObserver = visibleItemObserver(leftSideConflictEls); + + const hideOverlappedSidebars = () => { + marginScrollVisibility(toRegions(rightElementObserver.getVisibleEntries())); + sidebarScrollVisiblity(toRegions(leftElementObserver.getVisibleEntries())); + if (tocLeftScrollVisibility) { + tocLeftScrollVisibility( + toRegions(leftElementObserver.getVisibleEntries()) + ); + } + }; + + window.quartoToggleReader = () => { + // Applies a slow class (or removes it) + // to update the transition speed + const slowTransition = (slow) => { + const manageTransition = (id, slow) => { + const el = document.getElementById(id); + if (el) { + if (slow) { + el.classList.add("slow"); + } else { + el.classList.remove("slow"); + } + } + }; + + manageTransition("TOC", slow); + manageTransition("quarto-sidebar", slow); + }; + const readerMode = !isReaderMode(); + setReaderModeValue(readerMode); + + // If we're entering reader mode, slow the transition + if (readerMode) { + slowTransition(readerMode); + } + highlightReaderToggle(readerMode); + hideOverlappedSidebars(); + + // If we're exiting reader mode, restore the non-slow transition + if (!readerMode) { + slowTransition(!readerMode); + } + }; + + const highlightReaderToggle = (readerMode) => { + const els = document.querySelectorAll(".quarto-reader-toggle"); + if (els) { + els.forEach((el) => { + if (readerMode) { + el.classList.add("reader"); + } else { + el.classList.remove("reader"); + } + }); + } + }; + + const setReaderModeValue = (val) => { + if (window.location.protocol !== "file:") { + window.localStorage.setItem("quarto-reader-mode", val); + } else { + localReaderMode = val; + } + }; + + const isReaderMode = () => { + if (window.location.protocol !== "file:") { + return window.localStorage.getItem("quarto-reader-mode") === "true"; + } else { + return localReaderMode; + } + }; + let localReaderMode = null; + + const tocOpenDepthStr = tocEl?.getAttribute("data-toc-expanded"); + const tocOpenDepth = tocOpenDepthStr ? Number(tocOpenDepthStr) : 1; + + // Walk the TOC and collapse/expand nodes + // Nodes are expanded if: + // - they are top level + // - they have children that are 'active' links + // - they are directly below an link that is 'active' + const walk = (el, depth) => { + // Tick depth when we enter a UL + if (el.tagName === "UL") { + depth = depth + 1; + } + + // It this is active link + let isActiveNode = false; + if (el.tagName === "A" && el.classList.contains("active")) { + isActiveNode = true; + } + + // See if there is an active child to this element + let hasActiveChild = false; + for (child of el.children) { + hasActiveChild = walk(child, depth) || hasActiveChild; + } + + // Process the collapse state if this is an UL + if (el.tagName === "UL") { + if (tocOpenDepth === -1 && depth > 1) { + // toc-expand: false + el.classList.add("collapse"); + } else if ( + depth <= tocOpenDepth || + hasActiveChild || + prevSiblingIsActiveLink(el) + ) { + el.classList.remove("collapse"); + } else { + el.classList.add("collapse"); + } + + // untick depth when we leave a UL + depth = depth - 1; + } + return hasActiveChild || isActiveNode; + }; + + // walk the TOC and expand / collapse any items that should be shown + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + + // Throttle the scroll event and walk peridiocally + window.document.addEventListener( + "scroll", + throttle(() => { + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + if (!isReaderMode()) { + hideOverlappedSidebars(); + } + }, 5) + ); + window.addEventListener( + "resize", + throttle(() => { + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + if (!isReaderMode()) { + hideOverlappedSidebars(); + } + }, 10) + ); + hideOverlappedSidebars(); + highlightReaderToggle(isReaderMode()); +}); + +// grouped tabsets +window.addEventListener("pageshow", (_event) => { + function getTabSettings() { + const data = localStorage.getItem("quarto-persistent-tabsets-data"); + if (!data) { + localStorage.setItem("quarto-persistent-tabsets-data", "{}"); + return {}; + } + if (data) { + return JSON.parse(data); + } + } + + function setTabSettings(data) { + localStorage.setItem( + "quarto-persistent-tabsets-data", + JSON.stringify(data) + ); + } + + function setTabState(groupName, groupValue) { + const data = getTabSettings(); + data[groupName] = groupValue; + setTabSettings(data); + } + + function toggleTab(tab, active) { + const tabPanelId = tab.getAttribute("aria-controls"); + const tabPanel = document.getElementById(tabPanelId); + if (active) { + tab.classList.add("active"); + tabPanel.classList.add("active"); + } else { + tab.classList.remove("active"); + tabPanel.classList.remove("active"); + } + } + + function toggleAll(selectedGroup, selectorsToSync) { + for (const [thisGroup, tabs] of Object.entries(selectorsToSync)) { + const active = selectedGroup === thisGroup; + for (const tab of tabs) { + toggleTab(tab, active); + } + } + } + + function findSelectorsToSyncByLanguage() { + const result = {}; + const tabs = Array.from( + document.querySelectorAll(`div[data-group] a[id^='tabset-']`) + ); + for (const item of tabs) { + const div = item.parentElement.parentElement.parentElement; + const group = div.getAttribute("data-group"); + if (!result[group]) { + result[group] = {}; + } + const selectorsToSync = result[group]; + const value = item.innerHTML; + if (!selectorsToSync[value]) { + selectorsToSync[value] = []; + } + selectorsToSync[value].push(item); + } + return result; + } + + function setupSelectorSync() { + const selectorsToSync = findSelectorsToSyncByLanguage(); + Object.entries(selectorsToSync).forEach(([group, tabSetsByValue]) => { + Object.entries(tabSetsByValue).forEach(([value, items]) => { + items.forEach((item) => { + item.addEventListener("click", (_event) => { + setTabState(group, value); + toggleAll(value, selectorsToSync[group]); + }); + }); + }); + }); + return selectorsToSync; + } + + const selectorsToSync = setupSelectorSync(); + for (const [group, selectedName] of Object.entries(getTabSettings())) { + const selectors = selectorsToSync[group]; + // it's possible that stale state gives us empty selections, so we explicitly check here. + if (selectors) { + toggleAll(selectedName, selectors); + } + } +}); + +function throttle(func, wait) { + let waiting = false; + return function () { + if (!waiting) { + func.apply(this, arguments); + waiting = true; + setTimeout(function () { + waiting = false; + }, wait); + } + }; +} + +function nexttick(func) { + return setTimeout(func, 0); +} diff --git a/site_libs/quarto-html/tippy.css b/site_libs/quarto-html/tippy.css new file mode 100644 index 0000000..e6ae635 --- /dev/null +++ b/site_libs/quarto-html/tippy.css @@ -0,0 +1 @@ +.tippy-box[data-animation=fade][data-state=hidden]{opacity:0}[data-tippy-root]{max-width:calc(100vw - 10px)}.tippy-box{position:relative;background-color:#333;color:#fff;border-radius:4px;font-size:14px;line-height:1.4;white-space:normal;outline:0;transition-property:transform,visibility,opacity}.tippy-box[data-placement^=top]>.tippy-arrow{bottom:0}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-7px;left:0;border-width:8px 8px 0;border-top-color:initial;transform-origin:center top}.tippy-box[data-placement^=bottom]>.tippy-arrow{top:0}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-7px;left:0;border-width:0 8px 8px;border-bottom-color:initial;transform-origin:center bottom}.tippy-box[data-placement^=left]>.tippy-arrow{right:0}.tippy-box[data-placement^=left]>.tippy-arrow:before{border-width:8px 0 8px 8px;border-left-color:initial;right:-7px;transform-origin:center left}.tippy-box[data-placement^=right]>.tippy-arrow{left:0}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-7px;border-width:8px 8px 8px 0;border-right-color:initial;transform-origin:center right}.tippy-box[data-inertia][data-state=visible]{transition-timing-function:cubic-bezier(.54,1.5,.38,1.11)}.tippy-arrow{width:16px;height:16px;color:#333}.tippy-arrow:before{content:"";position:absolute;border-color:transparent;border-style:solid}.tippy-content{position:relative;padding:5px 9px;z-index:1} \ No newline at end of file diff --git a/site_libs/quarto-html/tippy.umd.min.js b/site_libs/quarto-html/tippy.umd.min.js new file mode 100644 index 0000000..ca292be --- /dev/null +++ b/site_libs/quarto-html/tippy.umd.min.js @@ -0,0 +1,2 @@ +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t(require("@popperjs/core")):"function"==typeof define&&define.amd?define(["@popperjs/core"],t):(e=e||self).tippy=t(e.Popper)}(this,(function(e){"use strict";var t={passive:!0,capture:!0},n=function(){return document.body};function r(e,t,n){if(Array.isArray(e)){var r=e[t];return null==r?Array.isArray(n)?n[t]:n:r}return e}function o(e,t){var n={}.toString.call(e);return 0===n.indexOf("[object")&&n.indexOf(t+"]")>-1}function i(e,t){return"function"==typeof e?e.apply(void 0,t):e}function a(e,t){return 0===t?e:function(r){clearTimeout(n),n=setTimeout((function(){e(r)}),t)};var n}function s(e,t){var n=Object.assign({},e);return t.forEach((function(e){delete n[e]})),n}function u(e){return[].concat(e)}function c(e,t){-1===e.indexOf(t)&&e.push(t)}function p(e){return e.split("-")[0]}function f(e){return[].slice.call(e)}function l(e){return Object.keys(e).reduce((function(t,n){return void 0!==e[n]&&(t[n]=e[n]),t}),{})}function d(){return document.createElement("div")}function v(e){return["Element","Fragment"].some((function(t){return o(e,t)}))}function m(e){return o(e,"MouseEvent")}function g(e){return!(!e||!e._tippy||e._tippy.reference!==e)}function h(e){return v(e)?[e]:function(e){return o(e,"NodeList")}(e)?f(e):Array.isArray(e)?e:f(document.querySelectorAll(e))}function b(e,t){e.forEach((function(e){e&&(e.style.transitionDuration=t+"ms")}))}function y(e,t){e.forEach((function(e){e&&e.setAttribute("data-state",t)}))}function w(e){var t,n=u(e)[0];return null!=n&&null!=(t=n.ownerDocument)&&t.body?n.ownerDocument:document}function E(e,t,n){var r=t+"EventListener";["transitionend","webkitTransitionEnd"].forEach((function(t){e[r](t,n)}))}function O(e,t){for(var n=t;n;){var r;if(e.contains(n))return!0;n=null==n.getRootNode||null==(r=n.getRootNode())?void 0:r.host}return!1}var x={isTouch:!1},C=0;function T(){x.isTouch||(x.isTouch=!0,window.performance&&document.addEventListener("mousemove",A))}function A(){var e=performance.now();e-C<20&&(x.isTouch=!1,document.removeEventListener("mousemove",A)),C=e}function L(){var e=document.activeElement;if(g(e)){var t=e._tippy;e.blur&&!t.state.isVisible&&e.blur()}}var D=!!("undefined"!=typeof window&&"undefined"!=typeof document)&&!!window.msCrypto,R=Object.assign({appendTo:n,aria:{content:"auto",expanded:"auto"},delay:0,duration:[300,250],getReferenceClientRect:null,hideOnClick:!0,ignoreAttributes:!1,interactive:!1,interactiveBorder:2,interactiveDebounce:0,moveTransition:"",offset:[0,10],onAfterUpdate:function(){},onBeforeUpdate:function(){},onCreate:function(){},onDestroy:function(){},onHidden:function(){},onHide:function(){},onMount:function(){},onShow:function(){},onShown:function(){},onTrigger:function(){},onUntrigger:function(){},onClickOutside:function(){},placement:"top",plugins:[],popperOptions:{},render:null,showOnCreate:!1,touch:!0,trigger:"mouseenter focus",triggerTarget:null},{animateFill:!1,followCursor:!1,inlinePositioning:!1,sticky:!1},{allowHTML:!1,animation:"fade",arrow:!0,content:"",inertia:!1,maxWidth:350,role:"tooltip",theme:"",zIndex:9999}),k=Object.keys(R);function P(e){var t=(e.plugins||[]).reduce((function(t,n){var r,o=n.name,i=n.defaultValue;o&&(t[o]=void 0!==e[o]?e[o]:null!=(r=R[o])?r:i);return t}),{});return Object.assign({},e,t)}function j(e,t){var n=Object.assign({},t,{content:i(t.content,[e])},t.ignoreAttributes?{}:function(e,t){return(t?Object.keys(P(Object.assign({},R,{plugins:t}))):k).reduce((function(t,n){var r=(e.getAttribute("data-tippy-"+n)||"").trim();if(!r)return t;if("content"===n)t[n]=r;else try{t[n]=JSON.parse(r)}catch(e){t[n]=r}return t}),{})}(e,t.plugins));return n.aria=Object.assign({},R.aria,n.aria),n.aria={expanded:"auto"===n.aria.expanded?t.interactive:n.aria.expanded,content:"auto"===n.aria.content?t.interactive?null:"describedby":n.aria.content},n}function M(e,t){e.innerHTML=t}function V(e){var t=d();return!0===e?t.className="tippy-arrow":(t.className="tippy-svg-arrow",v(e)?t.appendChild(e):M(t,e)),t}function I(e,t){v(t.content)?(M(e,""),e.appendChild(t.content)):"function"!=typeof t.content&&(t.allowHTML?M(e,t.content):e.textContent=t.content)}function S(e){var t=e.firstElementChild,n=f(t.children);return{box:t,content:n.find((function(e){return e.classList.contains("tippy-content")})),arrow:n.find((function(e){return e.classList.contains("tippy-arrow")||e.classList.contains("tippy-svg-arrow")})),backdrop:n.find((function(e){return e.classList.contains("tippy-backdrop")}))}}function N(e){var t=d(),n=d();n.className="tippy-box",n.setAttribute("data-state","hidden"),n.setAttribute("tabindex","-1");var r=d();function o(n,r){var o=S(t),i=o.box,a=o.content,s=o.arrow;r.theme?i.setAttribute("data-theme",r.theme):i.removeAttribute("data-theme"),"string"==typeof r.animation?i.setAttribute("data-animation",r.animation):i.removeAttribute("data-animation"),r.inertia?i.setAttribute("data-inertia",""):i.removeAttribute("data-inertia"),i.style.maxWidth="number"==typeof r.maxWidth?r.maxWidth+"px":r.maxWidth,r.role?i.setAttribute("role",r.role):i.removeAttribute("role"),n.content===r.content&&n.allowHTML===r.allowHTML||I(a,e.props),r.arrow?s?n.arrow!==r.arrow&&(i.removeChild(s),i.appendChild(V(r.arrow))):i.appendChild(V(r.arrow)):s&&i.removeChild(s)}return r.className="tippy-content",r.setAttribute("data-state","hidden"),I(r,e.props),t.appendChild(n),n.appendChild(r),o(e.props,e.props),{popper:t,onUpdate:o}}N.$$tippy=!0;var B=1,H=[],U=[];function _(o,s){var v,g,h,C,T,A,L,k,M=j(o,Object.assign({},R,P(l(s)))),V=!1,I=!1,N=!1,_=!1,F=[],W=a(we,M.interactiveDebounce),X=B++,Y=(k=M.plugins).filter((function(e,t){return k.indexOf(e)===t})),$={id:X,reference:o,popper:d(),popperInstance:null,props:M,state:{isEnabled:!0,isVisible:!1,isDestroyed:!1,isMounted:!1,isShown:!1},plugins:Y,clearDelayTimeouts:function(){clearTimeout(v),clearTimeout(g),cancelAnimationFrame(h)},setProps:function(e){if($.state.isDestroyed)return;ae("onBeforeUpdate",[$,e]),be();var t=$.props,n=j(o,Object.assign({},t,l(e),{ignoreAttributes:!0}));$.props=n,he(),t.interactiveDebounce!==n.interactiveDebounce&&(ce(),W=a(we,n.interactiveDebounce));t.triggerTarget&&!n.triggerTarget?u(t.triggerTarget).forEach((function(e){e.removeAttribute("aria-expanded")})):n.triggerTarget&&o.removeAttribute("aria-expanded");ue(),ie(),J&&J(t,n);$.popperInstance&&(Ce(),Ae().forEach((function(e){requestAnimationFrame(e._tippy.popperInstance.forceUpdate)})));ae("onAfterUpdate",[$,e])},setContent:function(e){$.setProps({content:e})},show:function(){var e=$.state.isVisible,t=$.state.isDestroyed,o=!$.state.isEnabled,a=x.isTouch&&!$.props.touch,s=r($.props.duration,0,R.duration);if(e||t||o||a)return;if(te().hasAttribute("disabled"))return;if(ae("onShow",[$],!1),!1===$.props.onShow($))return;$.state.isVisible=!0,ee()&&(z.style.visibility="visible");ie(),de(),$.state.isMounted||(z.style.transition="none");if(ee()){var u=re(),p=u.box,f=u.content;b([p,f],0)}A=function(){var e;if($.state.isVisible&&!_){if(_=!0,z.offsetHeight,z.style.transition=$.props.moveTransition,ee()&&$.props.animation){var t=re(),n=t.box,r=t.content;b([n,r],s),y([n,r],"visible")}se(),ue(),c(U,$),null==(e=$.popperInstance)||e.forceUpdate(),ae("onMount",[$]),$.props.animation&&ee()&&function(e,t){me(e,t)}(s,(function(){$.state.isShown=!0,ae("onShown",[$])}))}},function(){var e,t=$.props.appendTo,r=te();e=$.props.interactive&&t===n||"parent"===t?r.parentNode:i(t,[r]);e.contains(z)||e.appendChild(z);$.state.isMounted=!0,Ce()}()},hide:function(){var e=!$.state.isVisible,t=$.state.isDestroyed,n=!$.state.isEnabled,o=r($.props.duration,1,R.duration);if(e||t||n)return;if(ae("onHide",[$],!1),!1===$.props.onHide($))return;$.state.isVisible=!1,$.state.isShown=!1,_=!1,V=!1,ee()&&(z.style.visibility="hidden");if(ce(),ve(),ie(!0),ee()){var i=re(),a=i.box,s=i.content;$.props.animation&&(b([a,s],o),y([a,s],"hidden"))}se(),ue(),$.props.animation?ee()&&function(e,t){me(e,(function(){!$.state.isVisible&&z.parentNode&&z.parentNode.contains(z)&&t()}))}(o,$.unmount):$.unmount()},hideWithInteractivity:function(e){ne().addEventListener("mousemove",W),c(H,W),W(e)},enable:function(){$.state.isEnabled=!0},disable:function(){$.hide(),$.state.isEnabled=!1},unmount:function(){$.state.isVisible&&$.hide();if(!$.state.isMounted)return;Te(),Ae().forEach((function(e){e._tippy.unmount()})),z.parentNode&&z.parentNode.removeChild(z);U=U.filter((function(e){return e!==$})),$.state.isMounted=!1,ae("onHidden",[$])},destroy:function(){if($.state.isDestroyed)return;$.clearDelayTimeouts(),$.unmount(),be(),delete o._tippy,$.state.isDestroyed=!0,ae("onDestroy",[$])}};if(!M.render)return $;var q=M.render($),z=q.popper,J=q.onUpdate;z.setAttribute("data-tippy-root",""),z.id="tippy-"+$.id,$.popper=z,o._tippy=$,z._tippy=$;var G=Y.map((function(e){return e.fn($)})),K=o.hasAttribute("aria-expanded");return he(),ue(),ie(),ae("onCreate",[$]),M.showOnCreate&&Le(),z.addEventListener("mouseenter",(function(){$.props.interactive&&$.state.isVisible&&$.clearDelayTimeouts()})),z.addEventListener("mouseleave",(function(){$.props.interactive&&$.props.trigger.indexOf("mouseenter")>=0&&ne().addEventListener("mousemove",W)})),$;function Q(){var e=$.props.touch;return Array.isArray(e)?e:[e,0]}function Z(){return"hold"===Q()[0]}function ee(){var e;return!(null==(e=$.props.render)||!e.$$tippy)}function te(){return L||o}function ne(){var e=te().parentNode;return e?w(e):document}function re(){return S(z)}function oe(e){return $.state.isMounted&&!$.state.isVisible||x.isTouch||C&&"focus"===C.type?0:r($.props.delay,e?0:1,R.delay)}function ie(e){void 0===e&&(e=!1),z.style.pointerEvents=$.props.interactive&&!e?"":"none",z.style.zIndex=""+$.props.zIndex}function ae(e,t,n){var r;(void 0===n&&(n=!0),G.forEach((function(n){n[e]&&n[e].apply(n,t)})),n)&&(r=$.props)[e].apply(r,t)}function se(){var e=$.props.aria;if(e.content){var t="aria-"+e.content,n=z.id;u($.props.triggerTarget||o).forEach((function(e){var r=e.getAttribute(t);if($.state.isVisible)e.setAttribute(t,r?r+" "+n:n);else{var o=r&&r.replace(n,"").trim();o?e.setAttribute(t,o):e.removeAttribute(t)}}))}}function ue(){!K&&$.props.aria.expanded&&u($.props.triggerTarget||o).forEach((function(e){$.props.interactive?e.setAttribute("aria-expanded",$.state.isVisible&&e===te()?"true":"false"):e.removeAttribute("aria-expanded")}))}function ce(){ne().removeEventListener("mousemove",W),H=H.filter((function(e){return e!==W}))}function pe(e){if(!x.isTouch||!N&&"mousedown"!==e.type){var t=e.composedPath&&e.composedPath()[0]||e.target;if(!$.props.interactive||!O(z,t)){if(u($.props.triggerTarget||o).some((function(e){return O(e,t)}))){if(x.isTouch)return;if($.state.isVisible&&$.props.trigger.indexOf("click")>=0)return}else ae("onClickOutside",[$,e]);!0===$.props.hideOnClick&&($.clearDelayTimeouts(),$.hide(),I=!0,setTimeout((function(){I=!1})),$.state.isMounted||ve())}}}function fe(){N=!0}function le(){N=!1}function de(){var e=ne();e.addEventListener("mousedown",pe,!0),e.addEventListener("touchend",pe,t),e.addEventListener("touchstart",le,t),e.addEventListener("touchmove",fe,t)}function ve(){var e=ne();e.removeEventListener("mousedown",pe,!0),e.removeEventListener("touchend",pe,t),e.removeEventListener("touchstart",le,t),e.removeEventListener("touchmove",fe,t)}function me(e,t){var n=re().box;function r(e){e.target===n&&(E(n,"remove",r),t())}if(0===e)return t();E(n,"remove",T),E(n,"add",r),T=r}function ge(e,t,n){void 0===n&&(n=!1),u($.props.triggerTarget||o).forEach((function(r){r.addEventListener(e,t,n),F.push({node:r,eventType:e,handler:t,options:n})}))}function he(){var e;Z()&&(ge("touchstart",ye,{passive:!0}),ge("touchend",Ee,{passive:!0})),(e=$.props.trigger,e.split(/\s+/).filter(Boolean)).forEach((function(e){if("manual"!==e)switch(ge(e,ye),e){case"mouseenter":ge("mouseleave",Ee);break;case"focus":ge(D?"focusout":"blur",Oe);break;case"focusin":ge("focusout",Oe)}}))}function be(){F.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),F=[]}function ye(e){var t,n=!1;if($.state.isEnabled&&!xe(e)&&!I){var r="focus"===(null==(t=C)?void 0:t.type);C=e,L=e.currentTarget,ue(),!$.state.isVisible&&m(e)&&H.forEach((function(t){return t(e)})),"click"===e.type&&($.props.trigger.indexOf("mouseenter")<0||V)&&!1!==$.props.hideOnClick&&$.state.isVisible?n=!0:Le(e),"click"===e.type&&(V=!n),n&&!r&&De(e)}}function we(e){var t=e.target,n=te().contains(t)||z.contains(t);"mousemove"===e.type&&n||function(e,t){var n=t.clientX,r=t.clientY;return e.every((function(e){var t=e.popperRect,o=e.popperState,i=e.props.interactiveBorder,a=p(o.placement),s=o.modifiersData.offset;if(!s)return!0;var u="bottom"===a?s.top.y:0,c="top"===a?s.bottom.y:0,f="right"===a?s.left.x:0,l="left"===a?s.right.x:0,d=t.top-r+u>i,v=r-t.bottom-c>i,m=t.left-n+f>i,g=n-t.right-l>i;return d||v||m||g}))}(Ae().concat(z).map((function(e){var t,n=null==(t=e._tippy.popperInstance)?void 0:t.state;return n?{popperRect:e.getBoundingClientRect(),popperState:n,props:M}:null})).filter(Boolean),e)&&(ce(),De(e))}function Ee(e){xe(e)||$.props.trigger.indexOf("click")>=0&&V||($.props.interactive?$.hideWithInteractivity(e):De(e))}function Oe(e){$.props.trigger.indexOf("focusin")<0&&e.target!==te()||$.props.interactive&&e.relatedTarget&&z.contains(e.relatedTarget)||De(e)}function xe(e){return!!x.isTouch&&Z()!==e.type.indexOf("touch")>=0}function Ce(){Te();var t=$.props,n=t.popperOptions,r=t.placement,i=t.offset,a=t.getReferenceClientRect,s=t.moveTransition,u=ee()?S(z).arrow:null,c=a?{getBoundingClientRect:a,contextElement:a.contextElement||te()}:o,p=[{name:"offset",options:{offset:i}},{name:"preventOverflow",options:{padding:{top:2,bottom:2,left:5,right:5}}},{name:"flip",options:{padding:5}},{name:"computeStyles",options:{adaptive:!s}},{name:"$$tippy",enabled:!0,phase:"beforeWrite",requires:["computeStyles"],fn:function(e){var t=e.state;if(ee()){var n=re().box;["placement","reference-hidden","escaped"].forEach((function(e){"placement"===e?n.setAttribute("data-placement",t.placement):t.attributes.popper["data-popper-"+e]?n.setAttribute("data-"+e,""):n.removeAttribute("data-"+e)})),t.attributes.popper={}}}}];ee()&&u&&p.push({name:"arrow",options:{element:u,padding:3}}),p.push.apply(p,(null==n?void 0:n.modifiers)||[]),$.popperInstance=e.createPopper(c,z,Object.assign({},n,{placement:r,onFirstUpdate:A,modifiers:p}))}function Te(){$.popperInstance&&($.popperInstance.destroy(),$.popperInstance=null)}function Ae(){return f(z.querySelectorAll("[data-tippy-root]"))}function Le(e){$.clearDelayTimeouts(),e&&ae("onTrigger",[$,e]),de();var t=oe(!0),n=Q(),r=n[0],o=n[1];x.isTouch&&"hold"===r&&o&&(t=o),t?v=setTimeout((function(){$.show()}),t):$.show()}function De(e){if($.clearDelayTimeouts(),ae("onUntrigger",[$,e]),$.state.isVisible){if(!($.props.trigger.indexOf("mouseenter")>=0&&$.props.trigger.indexOf("click")>=0&&["mouseleave","mousemove"].indexOf(e.type)>=0&&V)){var t=oe(!1);t?g=setTimeout((function(){$.state.isVisible&&$.hide()}),t):h=requestAnimationFrame((function(){$.hide()}))}}else ve()}}function F(e,n){void 0===n&&(n={});var r=R.plugins.concat(n.plugins||[]);document.addEventListener("touchstart",T,t),window.addEventListener("blur",L);var o=Object.assign({},n,{plugins:r}),i=h(e).reduce((function(e,t){var n=t&&_(t,o);return n&&e.push(n),e}),[]);return v(e)?i[0]:i}F.defaultProps=R,F.setDefaultProps=function(e){Object.keys(e).forEach((function(t){R[t]=e[t]}))},F.currentInput=x;var W=Object.assign({},e.applyStyles,{effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow)}}),X={mouseover:"mouseenter",focusin:"focus",click:"click"};var Y={name:"animateFill",defaultValue:!1,fn:function(e){var t;if(null==(t=e.props.render)||!t.$$tippy)return{};var n=S(e.popper),r=n.box,o=n.content,i=e.props.animateFill?function(){var e=d();return e.className="tippy-backdrop",y([e],"hidden"),e}():null;return{onCreate:function(){i&&(r.insertBefore(i,r.firstElementChild),r.setAttribute("data-animatefill",""),r.style.overflow="hidden",e.setProps({arrow:!1,animation:"shift-away"}))},onMount:function(){if(i){var e=r.style.transitionDuration,t=Number(e.replace("ms",""));o.style.transitionDelay=Math.round(t/10)+"ms",i.style.transitionDuration=e,y([i],"visible")}},onShow:function(){i&&(i.style.transitionDuration="0ms")},onHide:function(){i&&y([i],"hidden")}}}};var $={clientX:0,clientY:0},q=[];function z(e){var t=e.clientX,n=e.clientY;$={clientX:t,clientY:n}}var J={name:"followCursor",defaultValue:!1,fn:function(e){var t=e.reference,n=w(e.props.triggerTarget||t),r=!1,o=!1,i=!0,a=e.props;function s(){return"initial"===e.props.followCursor&&e.state.isVisible}function u(){n.addEventListener("mousemove",f)}function c(){n.removeEventListener("mousemove",f)}function p(){r=!0,e.setProps({getReferenceClientRect:null}),r=!1}function f(n){var r=!n.target||t.contains(n.target),o=e.props.followCursor,i=n.clientX,a=n.clientY,s=t.getBoundingClientRect(),u=i-s.left,c=a-s.top;!r&&e.props.interactive||e.setProps({getReferenceClientRect:function(){var e=t.getBoundingClientRect(),n=i,r=a;"initial"===o&&(n=e.left+u,r=e.top+c);var s="horizontal"===o?e.top:r,p="vertical"===o?e.right:n,f="horizontal"===o?e.bottom:r,l="vertical"===o?e.left:n;return{width:p-l,height:f-s,top:s,right:p,bottom:f,left:l}}})}function l(){e.props.followCursor&&(q.push({instance:e,doc:n}),function(e){e.addEventListener("mousemove",z)}(n))}function d(){0===(q=q.filter((function(t){return t.instance!==e}))).filter((function(e){return e.doc===n})).length&&function(e){e.removeEventListener("mousemove",z)}(n)}return{onCreate:l,onDestroy:d,onBeforeUpdate:function(){a=e.props},onAfterUpdate:function(t,n){var i=n.followCursor;r||void 0!==i&&a.followCursor!==i&&(d(),i?(l(),!e.state.isMounted||o||s()||u()):(c(),p()))},onMount:function(){e.props.followCursor&&!o&&(i&&(f($),i=!1),s()||u())},onTrigger:function(e,t){m(t)&&($={clientX:t.clientX,clientY:t.clientY}),o="focus"===t.type},onHidden:function(){e.props.followCursor&&(p(),c(),i=!0)}}}};var G={name:"inlinePositioning",defaultValue:!1,fn:function(e){var t,n=e.reference;var r=-1,o=!1,i=[],a={name:"tippyInlinePositioning",enabled:!0,phase:"afterWrite",fn:function(o){var a=o.state;e.props.inlinePositioning&&(-1!==i.indexOf(a.placement)&&(i=[]),t!==a.placement&&-1===i.indexOf(a.placement)&&(i.push(a.placement),e.setProps({getReferenceClientRect:function(){return function(e){return function(e,t,n,r){if(n.length<2||null===e)return t;if(2===n.length&&r>=0&&n[0].left>n[1].right)return n[r]||t;switch(e){case"top":case"bottom":var o=n[0],i=n[n.length-1],a="top"===e,s=o.top,u=i.bottom,c=a?o.left:i.left,p=a?o.right:i.right;return{top:s,bottom:u,left:c,right:p,width:p-c,height:u-s};case"left":case"right":var f=Math.min.apply(Math,n.map((function(e){return e.left}))),l=Math.max.apply(Math,n.map((function(e){return e.right}))),d=n.filter((function(t){return"left"===e?t.left===f:t.right===l})),v=d[0].top,m=d[d.length-1].bottom;return{top:v,bottom:m,left:f,right:l,width:l-f,height:m-v};default:return t}}(p(e),n.getBoundingClientRect(),f(n.getClientRects()),r)}(a.placement)}})),t=a.placement)}};function s(){var t;o||(t=function(e,t){var n;return{popperOptions:Object.assign({},e.popperOptions,{modifiers:[].concat(((null==(n=e.popperOptions)?void 0:n.modifiers)||[]).filter((function(e){return e.name!==t.name})),[t])})}}(e.props,a),o=!0,e.setProps(t),o=!1)}return{onCreate:s,onAfterUpdate:s,onTrigger:function(t,n){if(m(n)){var o=f(e.reference.getClientRects()),i=o.find((function(e){return e.left-2<=n.clientX&&e.right+2>=n.clientX&&e.top-2<=n.clientY&&e.bottom+2>=n.clientY})),a=o.indexOf(i);r=a>-1?a:r}},onHidden:function(){r=-1}}}};var K={name:"sticky",defaultValue:!1,fn:function(e){var t=e.reference,n=e.popper;function r(t){return!0===e.props.sticky||e.props.sticky===t}var o=null,i=null;function a(){var s=r("reference")?(e.popperInstance?e.popperInstance.state.elements.reference:t).getBoundingClientRect():null,u=r("popper")?n.getBoundingClientRect():null;(s&&Q(o,s)||u&&Q(i,u))&&e.popperInstance&&e.popperInstance.update(),o=s,i=u,e.state.isMounted&&requestAnimationFrame(a)}return{onMount:function(){e.props.sticky&&a()}}}};function Q(e,t){return!e||!t||(e.top!==t.top||e.right!==t.right||e.bottom!==t.bottom||e.left!==t.left)}return F.setDefaultProps({plugins:[Y,J,G,K],render:N}),F.createSingleton=function(e,t){var n;void 0===t&&(t={});var r,o=e,i=[],a=[],c=t.overrides,p=[],f=!1;function l(){a=o.map((function(e){return u(e.props.triggerTarget||e.reference)})).reduce((function(e,t){return e.concat(t)}),[])}function v(){i=o.map((function(e){return e.reference}))}function m(e){o.forEach((function(t){e?t.enable():t.disable()}))}function g(e){return o.map((function(t){var n=t.setProps;return t.setProps=function(o){n(o),t.reference===r&&e.setProps(o)},function(){t.setProps=n}}))}function h(e,t){var n=a.indexOf(t);if(t!==r){r=t;var s=(c||[]).concat("content").reduce((function(e,t){return e[t]=o[n].props[t],e}),{});e.setProps(Object.assign({},s,{getReferenceClientRect:"function"==typeof s.getReferenceClientRect?s.getReferenceClientRect:function(){var e;return null==(e=i[n])?void 0:e.getBoundingClientRect()}}))}}m(!1),v(),l();var b={fn:function(){return{onDestroy:function(){m(!0)},onHidden:function(){r=null},onClickOutside:function(e){e.props.showOnCreate&&!f&&(f=!0,r=null)},onShow:function(e){e.props.showOnCreate&&!f&&(f=!0,h(e,i[0]))},onTrigger:function(e,t){h(e,t.currentTarget)}}}},y=F(d(),Object.assign({},s(t,["overrides"]),{plugins:[b].concat(t.plugins||[]),triggerTarget:a,popperOptions:Object.assign({},t.popperOptions,{modifiers:[].concat((null==(n=t.popperOptions)?void 0:n.modifiers)||[],[W])})})),w=y.show;y.show=function(e){if(w(),!r&&null==e)return h(y,i[0]);if(!r||null!=e){if("number"==typeof e)return i[e]&&h(y,i[e]);if(o.indexOf(e)>=0){var t=e.reference;return h(y,t)}return i.indexOf(e)>=0?h(y,e):void 0}},y.showNext=function(){var e=i[0];if(!r)return y.show(0);var t=i.indexOf(r);y.show(i[t+1]||e)},y.showPrevious=function(){var e=i[i.length-1];if(!r)return y.show(e);var t=i.indexOf(r),n=i[t-1]||e;y.show(n)};var E=y.setProps;return y.setProps=function(e){c=e.overrides||c,E(e)},y.setInstances=function(e){m(!0),p.forEach((function(e){return e()})),o=e,m(!1),v(),l(),p=g(y),y.setProps({triggerTarget:a})},p=g(y),y},F.delegate=function(e,n){var r=[],o=[],i=!1,a=n.target,c=s(n,["target"]),p=Object.assign({},c,{trigger:"manual",touch:!1}),f=Object.assign({touch:R.touch},c,{showOnCreate:!0}),l=F(e,p);function d(e){if(e.target&&!i){var t=e.target.closest(a);if(t){var r=t.getAttribute("data-tippy-trigger")||n.trigger||R.trigger;if(!t._tippy&&!("touchstart"===e.type&&"boolean"==typeof f.touch||"touchstart"!==e.type&&r.indexOf(X[e.type])<0)){var s=F(t,f);s&&(o=o.concat(s))}}}}function v(e,t,n,o){void 0===o&&(o=!1),e.addEventListener(t,n,o),r.push({node:e,eventType:t,handler:n,options:o})}return u(l).forEach((function(e){var n=e.destroy,a=e.enable,s=e.disable;e.destroy=function(e){void 0===e&&(e=!0),e&&o.forEach((function(e){e.destroy()})),o=[],r.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),r=[],n()},e.enable=function(){a(),o.forEach((function(e){return e.enable()})),i=!1},e.disable=function(){s(),o.forEach((function(e){return e.disable()})),i=!0},function(e){var n=e.reference;v(n,"touchstart",d,t),v(n,"mouseover",d),v(n,"focusin",d),v(n,"click",d)}(e)})),l},F.hideAll=function(e){var t=void 0===e?{}:e,n=t.exclude,r=t.duration;U.forEach((function(e){var t=!1;if(n&&(t=g(n)?e.reference===n:e.popper===n.popper),!t){var o=e.props.duration;e.setProps({duration:r}),e.hide(),e.state.isDestroyed||e.setProps({duration:o})}}))},F.roundArrow='',F})); + diff --git a/site_libs/quarto-nav/headroom.min.js b/site_libs/quarto-nav/headroom.min.js new file mode 100644 index 0000000..b08f1df --- /dev/null +++ b/site_libs/quarto-nav/headroom.min.js @@ -0,0 +1,7 @@ +/*! + * headroom.js v0.12.0 - Give your page some headroom. Hide your header until you need it + * Copyright (c) 2020 Nick Williams - http://wicky.nillia.ms/headroom.js + * License: MIT + */ + +!function(t,n){"object"==typeof exports&&"undefined"!=typeof module?module.exports=n():"function"==typeof define&&define.amd?define(n):(t=t||self).Headroom=n()}(this,function(){"use strict";function t(){return"undefined"!=typeof window}function d(t){return function(t){return t&&t.document&&function(t){return 9===t.nodeType}(t.document)}(t)?function(t){var n=t.document,o=n.body,s=n.documentElement;return{scrollHeight:function(){return Math.max(o.scrollHeight,s.scrollHeight,o.offsetHeight,s.offsetHeight,o.clientHeight,s.clientHeight)},height:function(){return t.innerHeight||s.clientHeight||o.clientHeight},scrollY:function(){return void 0!==t.pageYOffset?t.pageYOffset:(s||o.parentNode||o).scrollTop}}}(t):function(t){return{scrollHeight:function(){return Math.max(t.scrollHeight,t.offsetHeight,t.clientHeight)},height:function(){return Math.max(t.offsetHeight,t.clientHeight)},scrollY:function(){return t.scrollTop}}}(t)}function n(t,s,e){var n,o=function(){var n=!1;try{var t={get passive(){n=!0}};window.addEventListener("test",t,t),window.removeEventListener("test",t,t)}catch(t){n=!1}return n}(),i=!1,r=d(t),l=r.scrollY(),a={};function c(){var t=Math.round(r.scrollY()),n=r.height(),o=r.scrollHeight();a.scrollY=t,a.lastScrollY=l,a.direction=ls.tolerance[a.direction],e(a),l=t,i=!1}function h(){i||(i=!0,n=requestAnimationFrame(c))}var u=!!o&&{passive:!0,capture:!1};return t.addEventListener("scroll",h,u),c(),{destroy:function(){cancelAnimationFrame(n),t.removeEventListener("scroll",h,u)}}}function o(t){return t===Object(t)?t:{down:t,up:t}}function s(t,n){n=n||{},Object.assign(this,s.options,n),this.classes=Object.assign({},s.options.classes,n.classes),this.elem=t,this.tolerance=o(this.tolerance),this.offset=o(this.offset),this.initialised=!1,this.frozen=!1}return s.prototype={constructor:s,init:function(){return s.cutsTheMustard&&!this.initialised&&(this.addClass("initial"),this.initialised=!0,setTimeout(function(t){t.scrollTracker=n(t.scroller,{offset:t.offset,tolerance:t.tolerance},t.update.bind(t))},100,this)),this},destroy:function(){this.initialised=!1,Object.keys(this.classes).forEach(this.removeClass,this),this.scrollTracker.destroy()},unpin:function(){!this.hasClass("pinned")&&this.hasClass("unpinned")||(this.addClass("unpinned"),this.removeClass("pinned"),this.onUnpin&&this.onUnpin.call(this))},pin:function(){this.hasClass("unpinned")&&(this.addClass("pinned"),this.removeClass("unpinned"),this.onPin&&this.onPin.call(this))},freeze:function(){this.frozen=!0,this.addClass("frozen")},unfreeze:function(){this.frozen=!1,this.removeClass("frozen")},top:function(){this.hasClass("top")||(this.addClass("top"),this.removeClass("notTop"),this.onTop&&this.onTop.call(this))},notTop:function(){this.hasClass("notTop")||(this.addClass("notTop"),this.removeClass("top"),this.onNotTop&&this.onNotTop.call(this))},bottom:function(){this.hasClass("bottom")||(this.addClass("bottom"),this.removeClass("notBottom"),this.onBottom&&this.onBottom.call(this))},notBottom:function(){this.hasClass("notBottom")||(this.addClass("notBottom"),this.removeClass("bottom"),this.onNotBottom&&this.onNotBottom.call(this))},shouldUnpin:function(t){return"down"===t.direction&&!t.top&&t.toleranceExceeded},shouldPin:function(t){return"up"===t.direction&&t.toleranceExceeded||t.top},addClass:function(t){this.elem.classList.add.apply(this.elem.classList,this.classes[t].split(" "))},removeClass:function(t){this.elem.classList.remove.apply(this.elem.classList,this.classes[t].split(" "))},hasClass:function(t){return this.classes[t].split(" ").every(function(t){return this.classList.contains(t)},this.elem)},update:function(t){t.isOutOfBounds||!0!==this.frozen&&(t.top?this.top():this.notTop(),t.bottom?this.bottom():this.notBottom(),this.shouldUnpin(t)?this.unpin():this.shouldPin(t)&&this.pin())}},s.options={tolerance:{up:0,down:0},offset:0,scroller:t()?window:null,classes:{frozen:"headroom--frozen",pinned:"headroom--pinned",unpinned:"headroom--unpinned",top:"headroom--top",notTop:"headroom--not-top",bottom:"headroom--bottom",notBottom:"headroom--not-bottom",initial:"headroom"}},s.cutsTheMustard=!!(t()&&function(){}.bind&&"classList"in document.documentElement&&Object.assign&&Object.keys&&requestAnimationFrame),s}); diff --git a/site_libs/quarto-nav/quarto-nav.js b/site_libs/quarto-nav/quarto-nav.js new file mode 100644 index 0000000..38cc430 --- /dev/null +++ b/site_libs/quarto-nav/quarto-nav.js @@ -0,0 +1,325 @@ +const headroomChanged = new CustomEvent("quarto-hrChanged", { + detail: {}, + bubbles: true, + cancelable: false, + composed: false, +}); + +const announceDismiss = () => { + const annEl = window.document.getElementById("quarto-announcement"); + if (annEl) { + annEl.remove(); + + const annId = annEl.getAttribute("data-announcement-id"); + window.localStorage.setItem(`quarto-announce-${annId}`, "true"); + } +}; + +const announceRegister = () => { + const annEl = window.document.getElementById("quarto-announcement"); + if (annEl) { + const annId = annEl.getAttribute("data-announcement-id"); + const isDismissed = + window.localStorage.getItem(`quarto-announce-${annId}`) || false; + if (isDismissed) { + announceDismiss(); + return; + } else { + annEl.classList.remove("hidden"); + } + + const actionEl = annEl.querySelector(".quarto-announcement-action"); + if (actionEl) { + actionEl.addEventListener("click", function (e) { + e.preventDefault(); + // Hide the bar immediately + announceDismiss(); + }); + } + } +}; + +window.document.addEventListener("DOMContentLoaded", function () { + let init = false; + + announceRegister(); + + // Manage the back to top button, if one is present. + let lastScrollTop = window.pageYOffset || document.documentElement.scrollTop; + const scrollDownBuffer = 5; + const scrollUpBuffer = 35; + const btn = document.getElementById("quarto-back-to-top"); + const hideBackToTop = () => { + btn.style.display = "none"; + }; + const showBackToTop = () => { + btn.style.display = "inline-block"; + }; + if (btn) { + window.document.addEventListener( + "scroll", + function () { + const currentScrollTop = + window.pageYOffset || document.documentElement.scrollTop; + + // Shows and hides the button 'intelligently' as the user scrolls + if (currentScrollTop - scrollDownBuffer > lastScrollTop) { + hideBackToTop(); + lastScrollTop = currentScrollTop <= 0 ? 0 : currentScrollTop; + } else if (currentScrollTop < lastScrollTop - scrollUpBuffer) { + showBackToTop(); + lastScrollTop = currentScrollTop <= 0 ? 0 : currentScrollTop; + } + + // Show the button at the bottom, hides it at the top + if (currentScrollTop <= 0) { + hideBackToTop(); + } else if ( + window.innerHeight + currentScrollTop >= + document.body.offsetHeight + ) { + showBackToTop(); + } + }, + false + ); + } + + function throttle(func, wait) { + var timeout; + return function () { + const context = this; + const args = arguments; + const later = function () { + clearTimeout(timeout); + timeout = null; + func.apply(context, args); + }; + + if (!timeout) { + timeout = setTimeout(later, wait); + } + }; + } + + function headerOffset() { + // Set an offset if there is are fixed top navbar + const headerEl = window.document.querySelector("header.fixed-top"); + if (headerEl) { + return headerEl.clientHeight; + } else { + return 0; + } + } + + function footerOffset() { + const footerEl = window.document.querySelector("footer.footer"); + if (footerEl) { + return footerEl.clientHeight; + } else { + return 0; + } + } + + function dashboardOffset() { + const dashboardNavEl = window.document.getElementById( + "quarto-dashboard-header" + ); + if (dashboardNavEl !== null) { + return dashboardNavEl.clientHeight; + } else { + return 0; + } + } + + function updateDocumentOffsetWithoutAnimation() { + updateDocumentOffset(false); + } + + function updateDocumentOffset(animated) { + // set body offset + const topOffset = headerOffset(); + const bodyOffset = topOffset + footerOffset() + dashboardOffset(); + const bodyEl = window.document.body; + bodyEl.setAttribute("data-bs-offset", topOffset); + bodyEl.style.paddingTop = topOffset + "px"; + + // deal with sidebar offsets + const sidebars = window.document.querySelectorAll( + ".sidebar, .headroom-target" + ); + sidebars.forEach((sidebar) => { + if (!animated) { + sidebar.classList.add("notransition"); + // Remove the no transition class after the animation has time to complete + setTimeout(function () { + sidebar.classList.remove("notransition"); + }, 201); + } + + if (window.Headroom && sidebar.classList.contains("sidebar-unpinned")) { + sidebar.style.top = "0"; + sidebar.style.maxHeight = "100vh"; + } else { + sidebar.style.top = topOffset + "px"; + sidebar.style.maxHeight = "calc(100vh - " + topOffset + "px)"; + } + }); + + // allow space for footer + const mainContainer = window.document.querySelector(".quarto-container"); + if (mainContainer) { + mainContainer.style.minHeight = "calc(100vh - " + bodyOffset + "px)"; + } + + // link offset + let linkStyle = window.document.querySelector("#quarto-target-style"); + if (!linkStyle) { + linkStyle = window.document.createElement("style"); + linkStyle.setAttribute("id", "quarto-target-style"); + window.document.head.appendChild(linkStyle); + } + while (linkStyle.firstChild) { + linkStyle.removeChild(linkStyle.firstChild); + } + if (topOffset > 0) { + linkStyle.appendChild( + window.document.createTextNode(` + section:target::before { + content: ""; + display: block; + height: ${topOffset}px; + margin: -${topOffset}px 0 0; + }`) + ); + } + if (init) { + window.dispatchEvent(headroomChanged); + } + init = true; + } + + // initialize headroom + var header = window.document.querySelector("#quarto-header"); + if (header && window.Headroom) { + const headroom = new window.Headroom(header, { + tolerance: 5, + onPin: function () { + const sidebars = window.document.querySelectorAll( + ".sidebar, .headroom-target" + ); + sidebars.forEach((sidebar) => { + sidebar.classList.remove("sidebar-unpinned"); + }); + updateDocumentOffset(); + }, + onUnpin: function () { + const sidebars = window.document.querySelectorAll( + ".sidebar, .headroom-target" + ); + sidebars.forEach((sidebar) => { + sidebar.classList.add("sidebar-unpinned"); + }); + updateDocumentOffset(); + }, + }); + headroom.init(); + + let frozen = false; + window.quartoToggleHeadroom = function () { + if (frozen) { + headroom.unfreeze(); + frozen = false; + } else { + headroom.freeze(); + frozen = true; + } + }; + } + + window.addEventListener( + "hashchange", + function (e) { + if ( + getComputedStyle(document.documentElement).scrollBehavior !== "smooth" + ) { + window.scrollTo(0, window.pageYOffset - headerOffset()); + } + }, + false + ); + + // Observe size changed for the header + const headerEl = window.document.querySelector("header.fixed-top"); + if (headerEl && window.ResizeObserver) { + const observer = new window.ResizeObserver(() => { + setTimeout(updateDocumentOffsetWithoutAnimation, 0); + }); + observer.observe(headerEl, { + attributes: true, + childList: true, + characterData: true, + }); + } else { + window.addEventListener( + "resize", + throttle(updateDocumentOffsetWithoutAnimation, 50) + ); + } + setTimeout(updateDocumentOffsetWithoutAnimation, 250); + + // fixup index.html links if we aren't on the filesystem + if (window.location.protocol !== "file:") { + const links = window.document.querySelectorAll("a"); + for (let i = 0; i < links.length; i++) { + if (links[i].href) { + links[i].dataset.originalHref = links[i].href; + links[i].href = links[i].href.replace(/\/index\.html/, "/"); + } + } + + // Fixup any sharing links that require urls + // Append url to any sharing urls + const sharingLinks = window.document.querySelectorAll( + "a.sidebar-tools-main-item, a.quarto-navigation-tool, a.quarto-navbar-tools, a.quarto-navbar-tools-item" + ); + for (let i = 0; i < sharingLinks.length; i++) { + const sharingLink = sharingLinks[i]; + const href = sharingLink.getAttribute("href"); + if (href) { + sharingLink.setAttribute( + "href", + href.replace("|url|", window.location.href) + ); + } + } + + // Scroll the active navigation item into view, if necessary + const navSidebar = window.document.querySelector("nav#quarto-sidebar"); + if (navSidebar) { + // Find the active item + const activeItem = navSidebar.querySelector("li.sidebar-item a.active"); + if (activeItem) { + // Wait for the scroll height and height to resolve by observing size changes on the + // nav element that is scrollable + const resizeObserver = new ResizeObserver((_entries) => { + // The bottom of the element + const elBottom = activeItem.offsetTop; + const viewBottom = navSidebar.scrollTop + navSidebar.clientHeight; + + // The element height and scroll height are the same, then we are still loading + if (viewBottom !== navSidebar.scrollHeight) { + // Determine if the item isn't visible and scroll to it + if (elBottom >= viewBottom) { + navSidebar.scrollTop = elBottom; + } + + // stop observing now since we've completed the scroll + resizeObserver.unobserve(navSidebar); + } + }); + resizeObserver.observe(navSidebar); + } + } + } +}); diff --git a/site_libs/quarto-search/autocomplete.umd.js b/site_libs/quarto-search/autocomplete.umd.js new file mode 100644 index 0000000..ae0063a --- /dev/null +++ b/site_libs/quarto-search/autocomplete.umd.js @@ -0,0 +1,3 @@ +/*! @algolia/autocomplete-js 1.11.1 | MIT License | © Algolia, Inc. and contributors | https://github.com/algolia/autocomplete */ +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self)["@algolia/autocomplete-js"]={})}(this,(function(e){"use strict";function t(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function n(e){for(var n=1;n=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function a(e,t){return function(e){if(Array.isArray(e))return e}(e)||function(e,t){var n=null==e?null:"undefined"!=typeof Symbol&&e[Symbol.iterator]||e["@@iterator"];if(null!=n){var r,o,i,u,a=[],l=!0,c=!1;try{if(i=(n=n.call(e)).next,0===t){if(Object(n)!==n)return;l=!1}else for(;!(l=(r=i.call(n)).done)&&(a.push(r.value),a.length!==t);l=!0);}catch(e){c=!0,o=e}finally{try{if(!l&&null!=n.return&&(u=n.return(),Object(u)!==u))return}finally{if(c)throw o}}return a}}(e,t)||c(e,t)||function(){throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function l(e){return function(e){if(Array.isArray(e))return s(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||c(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function c(e,t){if(e){if("string"==typeof e)return s(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);return"Object"===n&&e.constructor&&(n=e.constructor.name),"Map"===n||"Set"===n?Array.from(e):"Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)?s(e,t):void 0}}function s(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);ne.length)&&(t=e.length);for(var n=0,r=new Array(t);ne.length)&&(t=e.length);for(var n=0,r=new Array(t);n=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function x(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function N(e){for(var t=1;t1&&void 0!==arguments[1]?arguments[1]:20,n=[],r=0;r=3||2===n&&r>=4||1===n&&r>=10);function i(t,n,r){if(o&&void 0!==r){var i=r[0].__autocomplete_algoliaCredentials,u={"X-Algolia-Application-Id":i.appId,"X-Algolia-API-Key":i.apiKey};e.apply(void 0,[t].concat(D(n),[{headers:u}]))}else e.apply(void 0,[t].concat(D(n)))}return{init:function(t,n){e("init",{appId:t,apiKey:n})},setUserToken:function(t){e("setUserToken",t)},clickedObjectIDsAfterSearch:function(){for(var e=arguments.length,t=new Array(e),n=0;n0&&i("clickedObjectIDsAfterSearch",B(t),t[0].items)},clickedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n0&&i("clickedObjectIDs",B(t),t[0].items)},clickedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r0&&e.apply(void 0,["clickedFilters"].concat(n))},convertedObjectIDsAfterSearch:function(){for(var e=arguments.length,t=new Array(e),n=0;n0&&i("convertedObjectIDsAfterSearch",B(t),t[0].items)},convertedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n0&&i("convertedObjectIDs",B(t),t[0].items)},convertedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r0&&e.apply(void 0,["convertedFilters"].concat(n))},viewedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n0&&t.reduce((function(e,t){var n=t.items,r=k(t,A);return[].concat(D(e),D(q(N(N({},r),{},{objectIDs:(null==n?void 0:n.map((function(e){return e.objectID})))||r.objectIDs})).map((function(e){return{items:n,payload:e}}))))}),[]).forEach((function(e){var t=e.items;return i("viewedObjectIDs",[e.payload],t)}))},viewedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r0&&e.apply(void 0,["viewedFilters"].concat(n))}}}function F(e){var t=e.items.reduce((function(e,t){var n;return e[t.__autocomplete_indexName]=(null!==(n=e[t.__autocomplete_indexName])&&void 0!==n?n:[]).concat(t),e}),{});return Object.keys(t).map((function(e){return{index:e,items:t[e],algoliaSource:["autocomplete"]}}))}function L(e){return e.objectID&&e.__autocomplete_indexName&&e.__autocomplete_queryID}function U(e){return U="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},U(e)}function M(e){return function(e){if(Array.isArray(e))return H(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return H(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return H(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function H(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n0&&z({onItemsChange:r,items:n,insights:a,state:t}))}}),0);return{name:"aa.algoliaInsightsPlugin",subscribe:function(e){var t=e.setContext,n=e.onSelect,r=e.onActive;function l(e){t({algoliaInsightsPlugin:{__algoliaSearchParameters:W({clickAnalytics:!0},e?{userToken:e}:{}),insights:a}})}u("addAlgoliaAgent","insights-plugin"),l(),u("onUserTokenChange",l),u("getUserToken",null,(function(e,t){l(t)})),n((function(e){var t=e.item,n=e.state,r=e.event,i=e.source;L(t)&&o({state:n,event:r,insights:a,item:t,insightsEvents:[W({eventName:"Item Selected"},j({item:t,items:i.getItems().filter(L)}))]})})),r((function(e){var t=e.item,n=e.source,r=e.state,o=e.event;L(t)&&i({state:r,event:o,insights:a,item:t,insightsEvents:[W({eventName:"Item Active"},j({item:t,items:n.getItems().filter(L)}))]})}))},onStateChange:function(e){var t=e.state;c({state:t})},__autocomplete_pluginOptions:e}}function J(e,t){var n=t;return{then:function(t,r){return J(e.then(Y(t,n,e),Y(r,n,e)),n)},catch:function(t){return J(e.catch(Y(t,n,e)),n)},finally:function(t){return t&&n.onCancelList.push(t),J(e.finally(Y(t&&function(){return n.onCancelList=[],t()},n,e)),n)},cancel:function(){n.isCanceled=!0;var e=n.onCancelList;n.onCancelList=[],e.forEach((function(e){e()}))},isCanceled:function(){return!0===n.isCanceled}}}function X(e){return J(e,{isCanceled:!1,onCancelList:[]})}function Y(e,t,n){return e?function(n){return t.isCanceled?n:e(n)}:n}function Z(e,t,n,r){if(!n)return null;if(e<0&&(null===t||null!==r&&0===t))return n+e;var o=(null===t?-1:t)+e;return o<=-1||o>=n?null===r?null:0:o}function ee(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function te(e){for(var t=1;te.length)&&(t=e.length);for(var n=0,r=new Array(t);n0},reshape:function(e){return e.sources}},e),{},{id:null!==(n=e.id)&&void 0!==n?n:d(),plugins:o,initialState:he({activeItemId:null,query:"",completion:null,collections:[],isOpen:!1,status:"idle",context:{}},e.initialState),onStateChange:function(t){var n;null===(n=e.onStateChange)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onStateChange)||void 0===n?void 0:n.call(e,t)}))},onSubmit:function(t){var n;null===(n=e.onSubmit)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onSubmit)||void 0===n?void 0:n.call(e,t)}))},onReset:function(t){var n;null===(n=e.onReset)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onReset)||void 0===n?void 0:n.call(e,t)}))},getSources:function(n){return Promise.all([].concat(ye(o.map((function(e){return e.getSources}))),[e.getSources]).filter(Boolean).map((function(e){return function(e,t){var n=[];return Promise.resolve(e(t)).then((function(e){return Promise.all(e.filter((function(e){return Boolean(e)})).map((function(e){if(e.sourceId,n.includes(e.sourceId))throw new Error("[Autocomplete] The `sourceId` ".concat(JSON.stringify(e.sourceId)," is not unique."));n.push(e.sourceId);var t={getItemInputValue:function(e){return e.state.query},getItemUrl:function(){},onSelect:function(e){(0,e.setIsOpen)(!1)},onActive:O,onResolve:O};Object.keys(t).forEach((function(e){t[e].__default=!0}));var r=te(te({},t),e);return Promise.resolve(r)})))}))}(e,n)}))).then((function(e){return m(e)})).then((function(e){return e.map((function(e){return he(he({},e),{},{onSelect:function(n){e.onSelect(n),t.forEach((function(e){var t;return null===(t=e.onSelect)||void 0===t?void 0:t.call(e,n)}))},onActive:function(n){e.onActive(n),t.forEach((function(e){var t;return null===(t=e.onActive)||void 0===t?void 0:t.call(e,n)}))},onResolve:function(n){e.onResolve(n),t.forEach((function(e){var t;return null===(t=e.onResolve)||void 0===t?void 0:t.call(e,n)}))}})}))}))},navigator:he({navigate:function(e){var t=e.itemUrl;r.location.assign(t)},navigateNewTab:function(e){var t=e.itemUrl,n=r.open(t,"_blank","noopener");null==n||n.focus()},navigateNewWindow:function(e){var t=e.itemUrl;r.open(t,"_blank","noopener")}},e.navigator)})}function Se(e){return Se="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Se(e)}function je(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Pe(e){for(var t=1;te.length)&&(t=e.length);for(var n=0,r=new Array(t);n=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}var He,Ve,We,Ke=null,Qe=(He=-1,Ve=-1,We=void 0,function(e){var t=++He;return Promise.resolve(e).then((function(e){return We&&t=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function et(e){return et="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},et(e)}var tt=["props","refresh","store"],nt=["inputElement","formElement","panelElement"],rt=["inputElement"],ot=["inputElement","maxLength"],it=["source"],ut=["item","source"];function at(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function lt(e){for(var t=1;t=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function ft(e){var t=e.props,n=e.refresh,r=e.store,o=st(e,tt);return{getEnvironmentProps:function(e){var n=e.inputElement,o=e.formElement,i=e.panelElement;function u(e){!r.getState().isOpen&&r.pendingRequests.isEmpty()||e.target===n||!1===[o,i].some((function(t){return n=t,r=e.target,n===r||n.contains(r);var n,r}))&&(r.dispatch("blur",null),t.debug||r.pendingRequests.cancelAll())}return lt({onTouchStart:u,onMouseDown:u,onTouchMove:function(e){!1!==r.getState().isOpen&&n===t.environment.document.activeElement&&e.target!==n&&n.blur()}},st(e,nt))},getRootProps:function(e){return lt({role:"combobox","aria-expanded":r.getState().isOpen,"aria-haspopup":"listbox","aria-owns":r.getState().isOpen?r.getState().collections.map((function(e){var n=e.source;return ie(t.id,"list",n)})).join(" "):void 0,"aria-labelledby":ie(t.id,"label")},e)},getFormProps:function(e){return e.inputElement,lt({action:"",noValidate:!0,role:"search",onSubmit:function(i){var u;i.preventDefault(),t.onSubmit(lt({event:i,refresh:n,state:r.getState()},o)),r.dispatch("submit",null),null===(u=e.inputElement)||void 0===u||u.blur()},onReset:function(i){var u;i.preventDefault(),t.onReset(lt({event:i,refresh:n,state:r.getState()},o)),r.dispatch("reset",null),null===(u=e.inputElement)||void 0===u||u.focus()}},st(e,rt))},getLabelProps:function(e){return lt({htmlFor:ie(t.id,"input"),id:ie(t.id,"label")},e)},getInputProps:function(e){var i;function u(e){(t.openOnFocus||Boolean(r.getState().query))&&$e(lt({event:e,props:t,query:r.getState().completion||r.getState().query,refresh:n,store:r},o)),r.dispatch("focus",null)}var a=e||{};a.inputElement;var l=a.maxLength,c=void 0===l?512:l,s=st(a,ot),f=oe(r.getState()),p=function(e){return Boolean(e&&e.match(ue))}((null===(i=t.environment.navigator)||void 0===i?void 0:i.userAgent)||""),m=t.enterKeyHint||(null!=f&&f.itemUrl&&!p?"go":"search");return lt({"aria-autocomplete":"both","aria-activedescendant":r.getState().isOpen&&null!==r.getState().activeItemId?ie(t.id,"item-".concat(r.getState().activeItemId),null==f?void 0:f.source):void 0,"aria-controls":r.getState().isOpen?r.getState().collections.map((function(e){var n=e.source;return ie(t.id,"list",n)})).join(" "):void 0,"aria-labelledby":ie(t.id,"label"),value:r.getState().completion||r.getState().query,id:ie(t.id,"input"),autoComplete:"off",autoCorrect:"off",autoCapitalize:"off",enterKeyHint:m,spellCheck:"false",autoFocus:t.autoFocus,placeholder:t.placeholder,maxLength:c,type:"search",onChange:function(e){$e(lt({event:e,props:t,query:e.currentTarget.value.slice(0,c),refresh:n,store:r},o))},onKeyDown:function(e){!function(e){var t=e.event,n=e.props,r=e.refresh,o=e.store,i=Ze(e,Ge);if("ArrowUp"===t.key||"ArrowDown"===t.key){var u=function(){var e=oe(o.getState()),t=n.environment.document.getElementById(ie(n.id,"item-".concat(o.getState().activeItemId),null==e?void 0:e.source));t&&(t.scrollIntoViewIfNeeded?t.scrollIntoViewIfNeeded(!1):t.scrollIntoView(!1))},a=function(){var e=oe(o.getState());if(null!==o.getState().activeItemId&&e){var n=e.item,u=e.itemInputValue,a=e.itemUrl,l=e.source;l.onActive(Xe({event:t,item:n,itemInputValue:u,itemUrl:a,refresh:r,source:l,state:o.getState()},i))}};t.preventDefault(),!1===o.getState().isOpen&&(n.openOnFocus||Boolean(o.getState().query))?$e(Xe({event:t,props:n,query:o.getState().query,refresh:r,store:o},i)).then((function(){o.dispatch(t.key,{nextActiveItemId:n.defaultActiveItemId}),a(),setTimeout(u,0)})):(o.dispatch(t.key,{}),a(),u())}else if("Escape"===t.key)t.preventDefault(),o.dispatch(t.key,null),o.pendingRequests.cancelAll();else if("Tab"===t.key)o.dispatch("blur",null),o.pendingRequests.cancelAll();else if("Enter"===t.key){if(null===o.getState().activeItemId||o.getState().collections.every((function(e){return 0===e.items.length})))return void(n.debug||o.pendingRequests.cancelAll());t.preventDefault();var l=oe(o.getState()),c=l.item,s=l.itemInputValue,f=l.itemUrl,p=l.source;if(t.metaKey||t.ctrlKey)void 0!==f&&(p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),n.navigator.navigateNewTab({itemUrl:f,item:c,state:o.getState()}));else if(t.shiftKey)void 0!==f&&(p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),n.navigator.navigateNewWindow({itemUrl:f,item:c,state:o.getState()}));else if(t.altKey);else{if(void 0!==f)return p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),void n.navigator.navigate({itemUrl:f,item:c,state:o.getState()});$e(Xe({event:t,nextState:{isOpen:!1},props:n,query:s,refresh:r,store:o},i)).then((function(){p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i))}))}}}(lt({event:e,props:t,refresh:n,store:r},o))},onFocus:u,onBlur:O,onClick:function(n){e.inputElement!==t.environment.document.activeElement||r.getState().isOpen||u(n)}},s)},getPanelProps:function(e){return lt({onMouseDown:function(e){e.preventDefault()},onMouseLeave:function(){r.dispatch("mouseleave",null)}},e)},getListProps:function(e){var n=e||{},r=n.source,o=st(n,it);return lt({role:"listbox","aria-labelledby":ie(t.id,"label"),id:ie(t.id,"list",r)},o)},getItemProps:function(e){var i=e.item,u=e.source,a=st(e,ut);return lt({id:ie(t.id,"item-".concat(i.__autocomplete_id),u),role:"option","aria-selected":r.getState().activeItemId===i.__autocomplete_id,onMouseMove:function(e){if(i.__autocomplete_id!==r.getState().activeItemId){r.dispatch("mousemove",i.__autocomplete_id);var t=oe(r.getState());if(null!==r.getState().activeItemId&&t){var u=t.item,a=t.itemInputValue,l=t.itemUrl,c=t.source;c.onActive(lt({event:e,item:u,itemInputValue:a,itemUrl:l,refresh:n,source:c,state:r.getState()},o))}}},onMouseDown:function(e){e.preventDefault()},onClick:function(e){var a=u.getItemInputValue({item:i,state:r.getState()}),l=u.getItemUrl({item:i,state:r.getState()});(l?Promise.resolve():$e(lt({event:e,nextState:{isOpen:!1},props:t,query:a,refresh:n,store:r},o))).then((function(){u.onSelect(lt({event:e,item:i,itemInputValue:a,itemUrl:l,refresh:n,source:u,state:r.getState()},o))}))}},a)}}}function pt(e){return pt="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},pt(e)}function mt(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function vt(e){for(var t=1;t=5&&((o||!e&&5===r)&&(u.push(r,0,o,n),r=6),e&&(u.push(r,e,0,n),r=6)),o=""},l=0;l"===t?(r=1,o=""):o=t+o[0]:i?t===i?i="":o+=t:'"'===t||"'"===t?i=t:">"===t?(a(),r=1):r&&("="===t?(r=5,n=o,o=""):"/"===t&&(r<5||">"===e[l][c+1])?(a(),3===r&&(u=u[0]),r=u,(u=u[0]).push(2,0,r),r=0):" "===t||"\t"===t||"\n"===t||"\r"===t?(a(),r=2):o+=t),3===r&&"!--"===o&&(r=4,u=u[0])}return a(),u}(e)),t),arguments,[])).length>1?t:t[0]}var kt=function(e){var t=e.environment,n=t.document.createElementNS("http://www.w3.org/2000/svg","svg");n.setAttribute("class","aa-ClearIcon"),n.setAttribute("viewBox","0 0 24 24"),n.setAttribute("width","18"),n.setAttribute("height","18"),n.setAttribute("fill","currentColor");var r=t.document.createElementNS("http://www.w3.org/2000/svg","path");return r.setAttribute("d","M5.293 6.707l5.293 5.293-5.293 5.293c-0.391 0.391-0.391 1.024 0 1.414s1.024 0.391 1.414 0l5.293-5.293 5.293 5.293c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414l-5.293-5.293 5.293-5.293c0.391-0.391 0.391-1.024 0-1.414s-1.024-0.391-1.414 0l-5.293 5.293-5.293-5.293c-0.391-0.391-1.024-0.391-1.414 0s-0.391 1.024 0 1.414z"),n.appendChild(r),n};function xt(e,t){if("string"==typeof t){var n=e.document.querySelector(t);return"The element ".concat(JSON.stringify(t)," is not in the document."),n}return t}function Nt(){for(var e=arguments.length,t=new Array(e),n=0;n2&&(u.children=arguments.length>3?Jt.call(arguments,2):n),"function"==typeof e&&null!=e.defaultProps)for(i in e.defaultProps)void 0===u[i]&&(u[i]=e.defaultProps[i]);return sn(e,u,r,o,null)}function sn(e,t,n,r,o){var i={type:e,props:t,key:n,ref:r,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,__h:null,constructor:void 0,__v:null==o?++Yt:o};return null==o&&null!=Xt.vnode&&Xt.vnode(i),i}function fn(e){return e.children}function pn(e,t){this.props=e,this.context=t}function mn(e,t){if(null==t)return e.__?mn(e.__,e.__.__k.indexOf(e)+1):null;for(var n;tt&&Zt.sort(nn));yn.__r=0}function bn(e,t,n,r,o,i,u,a,l,c){var s,f,p,m,v,d,y,b=r&&r.__k||on,g=b.length;for(n.__k=[],s=0;s0?sn(m.type,m.props,m.key,m.ref?m.ref:null,m.__v):m)){if(m.__=n,m.__b=n.__b+1,null===(p=b[s])||p&&m.key==p.key&&m.type===p.type)b[s]=void 0;else for(f=0;f=0;t--)if((n=e.__k[t])&&(r=On(n)))return r;return null}function _n(e,t,n){"-"===t[0]?e.setProperty(t,null==n?"":n):e[t]=null==n?"":"number"!=typeof n||un.test(t)?n:n+"px"}function Sn(e,t,n,r,o){var i;e:if("style"===t)if("string"==typeof n)e.style.cssText=n;else{if("string"==typeof r&&(e.style.cssText=r=""),r)for(t in r)n&&t in n||_n(e.style,t,"");if(n)for(t in n)r&&n[t]===r[t]||_n(e.style,t,n[t])}else if("o"===t[0]&&"n"===t[1])i=t!==(t=t.replace(/Capture$/,"")),t=t.toLowerCase()in e?t.toLowerCase().slice(2):t.slice(2),e.l||(e.l={}),e.l[t+i]=n,n?r||e.addEventListener(t,i?Pn:jn,i):e.removeEventListener(t,i?Pn:jn,i);else if("dangerouslySetInnerHTML"!==t){if(o)t=t.replace(/xlink(H|:h)/,"h").replace(/sName$/,"s");else if("width"!==t&&"height"!==t&&"href"!==t&&"list"!==t&&"form"!==t&&"tabIndex"!==t&&"download"!==t&&t in e)try{e[t]=null==n?"":n;break e}catch(e){}"function"==typeof n||(null==n||!1===n&&"-"!==t[4]?e.removeAttribute(t):e.setAttribute(t,n))}}function jn(e){return this.l[e.type+!1](Xt.event?Xt.event(e):e)}function Pn(e){return this.l[e.type+!0](Xt.event?Xt.event(e):e)}function wn(e,t,n,r,o,i,u,a,l){var c,s,f,p,m,v,d,y,b,g,h,O,_,S,j,P=t.type;if(void 0!==t.constructor)return null;null!=n.__h&&(l=n.__h,a=t.__e=n.__e,t.__h=null,i=[a]),(c=Xt.__b)&&c(t);try{e:if("function"==typeof P){if(y=t.props,b=(c=P.contextType)&&r[c.__c],g=c?b?b.props.value:c.__:r,n.__c?d=(s=t.__c=n.__c).__=s.__E:("prototype"in P&&P.prototype.render?t.__c=s=new P(y,g):(t.__c=s=new pn(y,g),s.constructor=P,s.render=Cn),b&&b.sub(s),s.props=y,s.state||(s.state={}),s.context=g,s.__n=r,f=s.__d=!0,s.__h=[],s._sb=[]),null==s.__s&&(s.__s=s.state),null!=P.getDerivedStateFromProps&&(s.__s==s.state&&(s.__s=an({},s.__s)),an(s.__s,P.getDerivedStateFromProps(y,s.__s))),p=s.props,m=s.state,s.__v=t,f)null==P.getDerivedStateFromProps&&null!=s.componentWillMount&&s.componentWillMount(),null!=s.componentDidMount&&s.__h.push(s.componentDidMount);else{if(null==P.getDerivedStateFromProps&&y!==p&&null!=s.componentWillReceiveProps&&s.componentWillReceiveProps(y,g),!s.__e&&null!=s.shouldComponentUpdate&&!1===s.shouldComponentUpdate(y,s.__s,g)||t.__v===n.__v){for(t.__v!==n.__v&&(s.props=y,s.state=s.__s,s.__d=!1),s.__e=!1,t.__e=n.__e,t.__k=n.__k,t.__k.forEach((function(e){e&&(e.__=t)})),h=0;h0&&void 0!==arguments[0]?arguments[0]:[];return{get:function(){return e},add:function(t){var n=e[e.length-1];(null==n?void 0:n.isHighlighted)===t.isHighlighted?e[e.length-1]={value:n.value+t.value,isHighlighted:n.isHighlighted}:e.push(t)}}}(n?[{value:n,isHighlighted:!1}]:[]);return t.forEach((function(e){var t=e.split(xn);r.add({value:t[0],isHighlighted:!0}),""!==t[1]&&r.add({value:t[1],isHighlighted:!1})})),r.get()}function Tn(e){return function(e){if(Array.isArray(e))return qn(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return qn(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return qn(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function qn(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n",""":'"',"'":"'"},Fn=new RegExp(/\w/i),Ln=/&(amp|quot|lt|gt|#39);/g,Un=RegExp(Ln.source);function Mn(e,t){var n,r,o,i=e[t],u=(null===(n=e[t+1])||void 0===n?void 0:n.isHighlighted)||!0,a=(null===(r=e[t-1])||void 0===r?void 0:r.isHighlighted)||!0;return Fn.test((o=i.value)&&Un.test(o)?o.replace(Ln,(function(e){return Rn[e]})):o)||a!==u?i.isHighlighted:a}function Hn(e){return Hn="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Hn(e)}function Vn(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Wn(e){for(var t=1;te.length)&&(t=e.length);for(var n=0,r=new Array(t);n=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function ur(e){return function(e){if(Array.isArray(e))return ar(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return ar(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return ar(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function ar(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n0;if(!O.value.core.openOnFocus&&!t.query)return n;var r=Boolean(y.current||O.value.renderer.renderNoResults);return!n&&r||n},__autocomplete_metadata:{userAgents:br,options:e}}))})),j=f(n({collections:[],completion:null,context:{},isOpen:!1,query:"",activeItemId:null,status:"idle"},O.value.core.initialState)),P={getEnvironmentProps:O.value.renderer.getEnvironmentProps,getFormProps:O.value.renderer.getFormProps,getInputProps:O.value.renderer.getInputProps,getItemProps:O.value.renderer.getItemProps,getLabelProps:O.value.renderer.getLabelProps,getListProps:O.value.renderer.getListProps,getPanelProps:O.value.renderer.getPanelProps,getRootProps:O.value.renderer.getRootProps},w={setActiveItemId:S.value.setActiveItemId,setQuery:S.value.setQuery,setCollections:S.value.setCollections,setIsOpen:S.value.setIsOpen,setStatus:S.value.setStatus,setContext:S.value.setContext,refresh:S.value.refresh,navigator:S.value.navigator},I=m((function(){return Ct.bind(O.value.renderer.renderer.createElement)})),A=m((function(){return Gt({autocomplete:S.value,autocompleteScopeApi:w,classNames:O.value.renderer.classNames,environment:O.value.core.environment,isDetached:_.value,placeholder:O.value.core.placeholder,propGetters:P,setIsModalOpen:k,state:j.current,translations:O.value.renderer.translations})}));function E(){Ht(A.value.panel,{style:_.value?{}:yr({panelPlacement:O.value.renderer.panelPlacement,container:A.value.root,form:A.value.form,environment:O.value.core.environment})})}function D(e){j.current=e;var t={autocomplete:S.value,autocompleteScopeApi:w,classNames:O.value.renderer.classNames,components:O.value.renderer.components,container:O.value.renderer.container,html:I.value,dom:A.value,panelContainer:_.value?A.value.detachedContainer:O.value.renderer.panelContainer,propGetters:P,state:j.current,renderer:O.value.renderer.renderer},r=!b(e)&&!y.current&&O.value.renderer.renderNoResults||O.value.renderer.render;!function(e){var t=e.autocomplete,r=e.autocompleteScopeApi,o=e.dom,i=e.propGetters,u=e.state;Vt(o.root,i.getRootProps(n({state:u,props:t.getRootProps({})},r))),Vt(o.input,i.getInputProps(n({state:u,props:t.getInputProps({inputElement:o.input}),inputElement:o.input},r))),Ht(o.label,{hidden:"stalled"===u.status}),Ht(o.loadingIndicator,{hidden:"stalled"!==u.status}),Ht(o.clearButton,{hidden:!u.query}),Ht(o.detachedSearchButtonQuery,{textContent:u.query}),Ht(o.detachedSearchButtonPlaceholder,{hidden:Boolean(u.query)})}(t),function(e,t){var r=t.autocomplete,o=t.autocompleteScopeApi,u=t.classNames,a=t.html,l=t.dom,c=t.panelContainer,s=t.propGetters,f=t.state,p=t.components,m=t.renderer;if(f.isOpen){c.contains(l.panel)||"loading"===f.status||c.appendChild(l.panel),l.panel.classList.toggle("aa-Panel--stalled","stalled"===f.status);var v=f.collections.filter((function(e){var t=e.source,n=e.items;return t.templates.noResults||n.length>0})).map((function(e,t){var l=e.source,c=e.items;return m.createElement("section",{key:t,className:u.source,"data-autocomplete-source-id":l.sourceId},l.templates.header&&m.createElement("div",{className:u.sourceHeader},l.templates.header({components:p,createElement:m.createElement,Fragment:m.Fragment,items:c,source:l,state:f,html:a})),l.templates.noResults&&0===c.length?m.createElement("div",{className:u.sourceNoResults},l.templates.noResults({components:p,createElement:m.createElement,Fragment:m.Fragment,source:l,state:f,html:a})):m.createElement("ul",i({className:u.list},s.getListProps(n({state:f,props:r.getListProps({source:l})},o))),c.map((function(e){var t=r.getItemProps({item:e,source:l});return m.createElement("li",i({key:t.id,className:u.item},s.getItemProps(n({state:f,props:t},o))),l.templates.item({components:p,createElement:m.createElement,Fragment:m.Fragment,item:e,state:f,html:a}))}))),l.templates.footer&&m.createElement("div",{className:u.sourceFooter},l.templates.footer({components:p,createElement:m.createElement,Fragment:m.Fragment,items:c,source:l,state:f,html:a})))})),d=m.createElement(m.Fragment,null,m.createElement("div",{className:u.panelLayout},v),m.createElement("div",{className:"aa-GradientBottom"})),y=v.reduce((function(e,t){return e[t.props["data-autocomplete-source-id"]]=t,e}),{});e(n(n({children:d,state:f,sections:v,elements:y},m),{},{components:p,html:a},o),l.panel)}else c.contains(l.panel)&&c.removeChild(l.panel)}(r,t)}function C(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};l();var t=O.value.renderer,n=t.components,r=u(t,gr);g.current=qt(r,O.value.core,{components:Bt(n,(function(e){return!e.value.hasOwnProperty("__autocomplete_componentName")})),initialState:j.current},e),v(),c(),S.value.refresh().then((function(){D(j.current)}))}function k(e){requestAnimationFrame((function(){var t=O.value.core.environment.document.body.contains(A.value.detachedOverlay);e!==t&&(e?(O.value.core.environment.document.body.appendChild(A.value.detachedOverlay),O.value.core.environment.document.body.classList.add("aa-Detached"),A.value.input.focus()):(O.value.core.environment.document.body.removeChild(A.value.detachedOverlay),O.value.core.environment.document.body.classList.remove("aa-Detached")))}))}return a((function(){var e=S.value.getEnvironmentProps({formElement:A.value.form,panelElement:A.value.panel,inputElement:A.value.input});return Ht(O.value.core.environment,e),function(){Ht(O.value.core.environment,Object.keys(e).reduce((function(e,t){return n(n({},e),{},o({},t,void 0))}),{}))}})),a((function(){var e=_.value?O.value.core.environment.document.body:O.value.renderer.panelContainer,t=_.value?A.value.detachedOverlay:A.value.panel;return _.value&&j.current.isOpen&&k(!0),D(j.current),function(){e.contains(t)&&e.removeChild(t)}})),a((function(){var e=O.value.renderer.container;return e.appendChild(A.value.root),function(){e.removeChild(A.value.root)}})),a((function(){var e=p((function(e){D(e.state)}),0);return h.current=function(t){var n=t.state,r=t.prevState;(_.value&&r.isOpen!==n.isOpen&&k(n.isOpen),_.value||!n.isOpen||r.isOpen||E(),n.query!==r.query)&&O.value.core.environment.document.querySelectorAll(".aa-Panel--scrollable").forEach((function(e){0!==e.scrollTop&&(e.scrollTop=0)}));e({state:n})},function(){h.current=void 0}})),a((function(){var e=p((function(){var e=_.value;_.value=O.value.core.environment.matchMedia(O.value.renderer.detachedMediaQuery).matches,e!==_.value?C({}):requestAnimationFrame(E)}),20);return O.value.core.environment.addEventListener("resize",e),function(){O.value.core.environment.removeEventListener("resize",e)}})),a((function(){if(!_.value)return function(){};function e(e){A.value.detachedContainer.classList.toggle("aa-DetachedContainer--modal",e)}function t(t){e(t.matches)}var n=O.value.core.environment.matchMedia(getComputedStyle(O.value.core.environment.document.documentElement).getPropertyValue("--aa-detached-modal-media-query"));e(n.matches);var r=Boolean(n.addEventListener);return r?n.addEventListener("change",t):n.addListener(t),function(){r?n.removeEventListener("change",t):n.removeListener(t)}})),a((function(){return requestAnimationFrame(E),function(){}})),n(n({},w),{},{update:C,destroy:function(){l()}})},e.getAlgoliaFacets=function(e){var t=hr({transformResponse:function(e){return e.facetHits}}),r=e.queries.map((function(e){return n(n({},e),{},{type:"facet"})}));return t(n(n({},e),{},{queries:r}))},e.getAlgoliaResults=Or,Object.defineProperty(e,"__esModule",{value:!0})})); + diff --git a/site_libs/quarto-search/fuse.min.js b/site_libs/quarto-search/fuse.min.js new file mode 100644 index 0000000..adc2835 --- /dev/null +++ b/site_libs/quarto-search/fuse.min.js @@ -0,0 +1,9 @@ +/** + * Fuse.js v6.6.2 - Lightweight fuzzy-search (http://fusejs.io) + * + * Copyright (c) 2022 Kiro Risk (http://kiro.me) + * All Rights Reserved. Apache Software License 2.0 + * + * http://www.apache.org/licenses/LICENSE-2.0 + */ +var e,t;e=this,t=function(){"use strict";function e(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function t(t){for(var n=1;ne.length)&&(t=e.length);for(var n=0,r=new Array(t);n0&&void 0!==arguments[0]?arguments[0]:1,t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:3,n=new Map,r=Math.pow(10,t);return{get:function(t){var i=t.match(C).length;if(n.has(i))return n.get(i);var o=1/Math.pow(i,.5*e),c=parseFloat(Math.round(o*r)/r);return n.set(i,c),c},clear:function(){n.clear()}}}var $=function(){function e(){var t=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{},n=t.getFn,i=void 0===n?I.getFn:n,o=t.fieldNormWeight,c=void 0===o?I.fieldNormWeight:o;r(this,e),this.norm=E(c,3),this.getFn=i,this.isCreated=!1,this.setIndexRecords()}return o(e,[{key:"setSources",value:function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[];this.docs=e}},{key:"setIndexRecords",value:function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[];this.records=e}},{key:"setKeys",value:function(){var e=this,t=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[];this.keys=t,this._keysMap={},t.forEach((function(t,n){e._keysMap[t.id]=n}))}},{key:"create",value:function(){var e=this;!this.isCreated&&this.docs.length&&(this.isCreated=!0,g(this.docs[0])?this.docs.forEach((function(t,n){e._addString(t,n)})):this.docs.forEach((function(t,n){e._addObject(t,n)})),this.norm.clear())}},{key:"add",value:function(e){var t=this.size();g(e)?this._addString(e,t):this._addObject(e,t)}},{key:"removeAt",value:function(e){this.records.splice(e,1);for(var t=e,n=this.size();t2&&void 0!==arguments[2]?arguments[2]:{},r=n.getFn,i=void 0===r?I.getFn:r,o=n.fieldNormWeight,c=void 0===o?I.fieldNormWeight:o,a=new $({getFn:i,fieldNormWeight:c});return a.setKeys(e.map(_)),a.setSources(t),a.create(),a}function R(e){var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{},n=t.errors,r=void 0===n?0:n,i=t.currentLocation,o=void 0===i?0:i,c=t.expectedLocation,a=void 0===c?0:c,s=t.distance,u=void 0===s?I.distance:s,h=t.ignoreLocation,l=void 0===h?I.ignoreLocation:h,f=r/e.length;if(l)return f;var d=Math.abs(a-o);return u?f+d/u:d?1:f}function N(){for(var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[],t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:I.minMatchCharLength,n=[],r=-1,i=-1,o=0,c=e.length;o=t&&n.push([r,i]),r=-1)}return e[o-1]&&o-r>=t&&n.push([r,o-1]),n}var P=32;function W(e){for(var t={},n=0,r=e.length;n1&&void 0!==arguments[1]?arguments[1]:{},o=i.location,c=void 0===o?I.location:o,a=i.threshold,s=void 0===a?I.threshold:a,u=i.distance,h=void 0===u?I.distance:u,l=i.includeMatches,f=void 0===l?I.includeMatches:l,d=i.findAllMatches,v=void 0===d?I.findAllMatches:d,g=i.minMatchCharLength,y=void 0===g?I.minMatchCharLength:g,p=i.isCaseSensitive,m=void 0===p?I.isCaseSensitive:p,k=i.ignoreLocation,M=void 0===k?I.ignoreLocation:k;if(r(this,e),this.options={location:c,threshold:s,distance:h,includeMatches:f,findAllMatches:v,minMatchCharLength:y,isCaseSensitive:m,ignoreLocation:M},this.pattern=m?t:t.toLowerCase(),this.chunks=[],this.pattern.length){var b=function(e,t){n.chunks.push({pattern:e,alphabet:W(e),startIndex:t})},x=this.pattern.length;if(x>P){for(var w=0,L=x%P,S=x-L;w3&&void 0!==arguments[3]?arguments[3]:{},i=r.location,o=void 0===i?I.location:i,c=r.distance,a=void 0===c?I.distance:c,s=r.threshold,u=void 0===s?I.threshold:s,h=r.findAllMatches,l=void 0===h?I.findAllMatches:h,f=r.minMatchCharLength,d=void 0===f?I.minMatchCharLength:f,v=r.includeMatches,g=void 0===v?I.includeMatches:v,y=r.ignoreLocation,p=void 0===y?I.ignoreLocation:y;if(t.length>P)throw new Error(w(P));for(var m,k=t.length,M=e.length,b=Math.max(0,Math.min(o,M)),x=u,L=b,S=d>1||g,_=S?Array(M):[];(m=e.indexOf(t,L))>-1;){var O=R(t,{currentLocation:m,expectedLocation:b,distance:a,ignoreLocation:p});if(x=Math.min(O,x),L=m+k,S)for(var j=0;j=z;q-=1){var B=q-1,J=n[e.charAt(B)];if(S&&(_[B]=+!!J),K[q]=(K[q+1]<<1|1)&J,F&&(K[q]|=(A[q+1]|A[q])<<1|1|A[q+1]),K[q]&$&&(C=R(t,{errors:F,currentLocation:B,expectedLocation:b,distance:a,ignoreLocation:p}))<=x){if(x=C,(L=B)<=b)break;z=Math.max(1,2*b-L)}}if(R(t,{errors:F+1,currentLocation:b,expectedLocation:b,distance:a,ignoreLocation:p})>x)break;A=K}var U={isMatch:L>=0,score:Math.max(.001,C)};if(S){var V=N(_,d);V.length?g&&(U.indices=V):U.isMatch=!1}return U}(e,n,i,{location:c+o,distance:a,threshold:s,findAllMatches:u,minMatchCharLength:h,includeMatches:r,ignoreLocation:l}),p=y.isMatch,m=y.score,k=y.indices;p&&(g=!0),v+=m,p&&k&&(d=[].concat(f(d),f(k)))}));var y={isMatch:g,score:g?v/this.chunks.length:1};return g&&r&&(y.indices=d),y}}]),e}(),z=function(){function e(t){r(this,e),this.pattern=t}return o(e,[{key:"search",value:function(){}}],[{key:"isMultiMatch",value:function(e){return D(e,this.multiRegex)}},{key:"isSingleMatch",value:function(e){return D(e,this.singleRegex)}}]),e}();function D(e,t){var n=e.match(t);return n?n[1]:null}var K=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=e===this.pattern;return{isMatch:t,score:t?0:1,indices:[0,this.pattern.length-1]}}}],[{key:"type",get:function(){return"exact"}},{key:"multiRegex",get:function(){return/^="(.*)"$/}},{key:"singleRegex",get:function(){return/^=(.*)$/}}]),n}(z),q=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=-1===e.indexOf(this.pattern);return{isMatch:t,score:t?0:1,indices:[0,e.length-1]}}}],[{key:"type",get:function(){return"inverse-exact"}},{key:"multiRegex",get:function(){return/^!"(.*)"$/}},{key:"singleRegex",get:function(){return/^!(.*)$/}}]),n}(z),B=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=e.startsWith(this.pattern);return{isMatch:t,score:t?0:1,indices:[0,this.pattern.length-1]}}}],[{key:"type",get:function(){return"prefix-exact"}},{key:"multiRegex",get:function(){return/^\^"(.*)"$/}},{key:"singleRegex",get:function(){return/^\^(.*)$/}}]),n}(z),J=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=!e.startsWith(this.pattern);return{isMatch:t,score:t?0:1,indices:[0,e.length-1]}}}],[{key:"type",get:function(){return"inverse-prefix-exact"}},{key:"multiRegex",get:function(){return/^!\^"(.*)"$/}},{key:"singleRegex",get:function(){return/^!\^(.*)$/}}]),n}(z),U=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=e.endsWith(this.pattern);return{isMatch:t,score:t?0:1,indices:[e.length-this.pattern.length,e.length-1]}}}],[{key:"type",get:function(){return"suffix-exact"}},{key:"multiRegex",get:function(){return/^"(.*)"\$$/}},{key:"singleRegex",get:function(){return/^(.*)\$$/}}]),n}(z),V=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){var t=!e.endsWith(this.pattern);return{isMatch:t,score:t?0:1,indices:[0,e.length-1]}}}],[{key:"type",get:function(){return"inverse-suffix-exact"}},{key:"multiRegex",get:function(){return/^!"(.*)"\$$/}},{key:"singleRegex",get:function(){return/^!(.*)\$$/}}]),n}(z),G=function(e){a(n,e);var t=l(n);function n(e){var i,o=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{},c=o.location,a=void 0===c?I.location:c,s=o.threshold,u=void 0===s?I.threshold:s,h=o.distance,l=void 0===h?I.distance:h,f=o.includeMatches,d=void 0===f?I.includeMatches:f,v=o.findAllMatches,g=void 0===v?I.findAllMatches:v,y=o.minMatchCharLength,p=void 0===y?I.minMatchCharLength:y,m=o.isCaseSensitive,k=void 0===m?I.isCaseSensitive:m,M=o.ignoreLocation,b=void 0===M?I.ignoreLocation:M;return r(this,n),(i=t.call(this,e))._bitapSearch=new T(e,{location:a,threshold:u,distance:l,includeMatches:d,findAllMatches:g,minMatchCharLength:p,isCaseSensitive:k,ignoreLocation:b}),i}return o(n,[{key:"search",value:function(e){return this._bitapSearch.searchIn(e)}}],[{key:"type",get:function(){return"fuzzy"}},{key:"multiRegex",get:function(){return/^"(.*)"$/}},{key:"singleRegex",get:function(){return/^(.*)$/}}]),n}(z),H=function(e){a(n,e);var t=l(n);function n(e){return r(this,n),t.call(this,e)}return o(n,[{key:"search",value:function(e){for(var t,n=0,r=[],i=this.pattern.length;(t=e.indexOf(this.pattern,n))>-1;)n=t+i,r.push([t,n-1]);var o=!!r.length;return{isMatch:o,score:o?0:1,indices:r}}}],[{key:"type",get:function(){return"include"}},{key:"multiRegex",get:function(){return/^'"(.*)"$/}},{key:"singleRegex",get:function(){return/^'(.*)$/}}]),n}(z),Q=[K,H,B,J,V,U,q,G],X=Q.length,Y=/ +(?=(?:[^\"]*\"[^\"]*\")*[^\"]*$)/;function Z(e){var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{};return e.split("|").map((function(e){for(var n=e.trim().split(Y).filter((function(e){return e&&!!e.trim()})),r=[],i=0,o=n.length;i1&&void 0!==arguments[1]?arguments[1]:{},i=n.isCaseSensitive,o=void 0===i?I.isCaseSensitive:i,c=n.includeMatches,a=void 0===c?I.includeMatches:c,s=n.minMatchCharLength,u=void 0===s?I.minMatchCharLength:s,h=n.ignoreLocation,l=void 0===h?I.ignoreLocation:h,f=n.findAllMatches,d=void 0===f?I.findAllMatches:f,v=n.location,g=void 0===v?I.location:v,y=n.threshold,p=void 0===y?I.threshold:y,m=n.distance,k=void 0===m?I.distance:m;r(this,e),this.query=null,this.options={isCaseSensitive:o,includeMatches:a,minMatchCharLength:u,findAllMatches:d,ignoreLocation:l,location:g,threshold:p,distance:k},this.pattern=o?t:t.toLowerCase(),this.query=Z(this.pattern,this.options)}return o(e,[{key:"searchIn",value:function(e){var t=this.query;if(!t)return{isMatch:!1,score:1};var n=this.options,r=n.includeMatches;e=n.isCaseSensitive?e:e.toLowerCase();for(var i=0,o=[],c=0,a=0,s=t.length;a-1&&(n.refIndex=e.idx),t.matches.push(n)}}))}function ve(e,t){t.score=e.score}function ge(e,t){var n=arguments.length>2&&void 0!==arguments[2]?arguments[2]:{},r=n.includeMatches,i=void 0===r?I.includeMatches:r,o=n.includeScore,c=void 0===o?I.includeScore:o,a=[];return i&&a.push(de),c&&a.push(ve),e.map((function(e){var n=e.idx,r={item:t[n],refIndex:n};return a.length&&a.forEach((function(t){t(e,r)})),r}))}var ye=function(){function e(n){var i=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{},o=arguments.length>2?arguments[2]:void 0;r(this,e),this.options=t(t({},I),i),this.options.useExtendedSearch,this._keyStore=new S(this.options.keys),this.setCollection(n,o)}return o(e,[{key:"setCollection",value:function(e,t){if(this._docs=e,t&&!(t instanceof $))throw new Error("Incorrect 'index' type");this._myIndex=t||F(this.options.keys,this._docs,{getFn:this.options.getFn,fieldNormWeight:this.options.fieldNormWeight})}},{key:"add",value:function(e){k(e)&&(this._docs.push(e),this._myIndex.add(e))}},{key:"remove",value:function(){for(var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:function(){return!1},t=[],n=0,r=this._docs.length;n1&&void 0!==arguments[1]?arguments[1]:{},n=t.limit,r=void 0===n?-1:n,i=this.options,o=i.includeMatches,c=i.includeScore,a=i.shouldSort,s=i.sortFn,u=i.ignoreFieldNorm,h=g(e)?g(this._docs[0])?this._searchStringList(e):this._searchObjectList(e):this._searchLogical(e);return fe(h,{ignoreFieldNorm:u}),a&&h.sort(s),y(r)&&r>-1&&(h=h.slice(0,r)),ge(h,this._docs,{includeMatches:o,includeScore:c})}},{key:"_searchStringList",value:function(e){var t=re(e,this.options),n=this._myIndex.records,r=[];return n.forEach((function(e){var n=e.v,i=e.i,o=e.n;if(k(n)){var c=t.searchIn(n),a=c.isMatch,s=c.score,u=c.indices;a&&r.push({item:n,idx:i,matches:[{score:s,value:n,norm:o,indices:u}]})}})),r}},{key:"_searchLogical",value:function(e){var t=this,n=function(e,t){var n=(arguments.length>2&&void 0!==arguments[2]?arguments[2]:{}).auto,r=void 0===n||n,i=function e(n){var i=Object.keys(n),o=ue(n);if(!o&&i.length>1&&!se(n))return e(le(n));if(he(n)){var c=o?n[ce]:i[0],a=o?n[ae]:n[c];if(!g(a))throw new Error(x(c));var s={keyId:j(c),pattern:a};return r&&(s.searcher=re(a,t)),s}var u={children:[],operator:i[0]};return i.forEach((function(t){var r=n[t];v(r)&&r.forEach((function(t){u.children.push(e(t))}))})),u};return se(e)||(e=le(e)),i(e)}(e,this.options),r=function e(n,r,i){if(!n.children){var o=n.keyId,c=n.searcher,a=t._findMatches({key:t._keyStore.get(o),value:t._myIndex.getValueForItemAtKeyId(r,o),searcher:c});return a&&a.length?[{idx:i,item:r,matches:a}]:[]}for(var s=[],u=0,h=n.children.length;u1&&void 0!==arguments[1]?arguments[1]:{},n=t.getFn,r=void 0===n?I.getFn:n,i=t.fieldNormWeight,o=void 0===i?I.fieldNormWeight:i,c=e.keys,a=e.records,s=new $({getFn:r,fieldNormWeight:o});return s.setKeys(c),s.setIndexRecords(a),s},ye.config=I,function(){ne.push.apply(ne,arguments)}(te),ye},"object"==typeof exports&&"undefined"!=typeof module?module.exports=t():"function"==typeof define&&define.amd?define(t):(e="undefined"!=typeof globalThis?globalThis:e||self).Fuse=t(); \ No newline at end of file diff --git a/site_libs/quarto-search/quarto-search.js b/site_libs/quarto-search/quarto-search.js new file mode 100644 index 0000000..d788a95 --- /dev/null +++ b/site_libs/quarto-search/quarto-search.js @@ -0,0 +1,1290 @@ +const kQueryArg = "q"; +const kResultsArg = "show-results"; + +// If items don't provide a URL, then both the navigator and the onSelect +// function aren't called (and therefore, the default implementation is used) +// +// We're using this sentinel URL to signal to those handlers that this +// item is a more item (along with the type) and can be handled appropriately +const kItemTypeMoreHref = "0767FDFD-0422-4E5A-BC8A-3BE11E5BBA05"; + +window.document.addEventListener("DOMContentLoaded", function (_event) { + // Ensure that search is available on this page. If it isn't, + // should return early and not do anything + var searchEl = window.document.getElementById("quarto-search"); + if (!searchEl) return; + + const { autocomplete } = window["@algolia/autocomplete-js"]; + + let quartoSearchOptions = {}; + let language = {}; + const searchOptionEl = window.document.getElementById( + "quarto-search-options" + ); + if (searchOptionEl) { + const jsonStr = searchOptionEl.textContent; + quartoSearchOptions = JSON.parse(jsonStr); + language = quartoSearchOptions.language; + } + + // note the search mode + if (quartoSearchOptions.type === "overlay") { + searchEl.classList.add("type-overlay"); + } else { + searchEl.classList.add("type-textbox"); + } + + // Used to determine highlighting behavior for this page + // A `q` query param is expected when the user follows a search + // to this page + const currentUrl = new URL(window.location); + const query = currentUrl.searchParams.get(kQueryArg); + const showSearchResults = currentUrl.searchParams.get(kResultsArg); + const mainEl = window.document.querySelector("main"); + + // highlight matches on the page + if (query && mainEl) { + // perform any highlighting + highlight(escapeRegExp(query), mainEl); + + // fix up the URL to remove the q query param + const replacementUrl = new URL(window.location); + replacementUrl.searchParams.delete(kQueryArg); + window.history.replaceState({}, "", replacementUrl); + } + + // function to clear highlighting on the page when the search query changes + // (e.g. if the user edits the query or clears it) + let highlighting = true; + const resetHighlighting = (searchTerm) => { + if (mainEl && highlighting && query && searchTerm !== query) { + clearHighlight(query, mainEl); + highlighting = false; + } + }; + + // Clear search highlighting when the user scrolls sufficiently + const resetFn = () => { + resetHighlighting(""); + window.removeEventListener("quarto-hrChanged", resetFn); + window.removeEventListener("quarto-sectionChanged", resetFn); + }; + + // Register this event after the initial scrolling and settling of events + // on the page + window.addEventListener("quarto-hrChanged", resetFn); + window.addEventListener("quarto-sectionChanged", resetFn); + + // Responsively switch to overlay mode if the search is present on the navbar + // Note that switching the sidebar to overlay mode requires more coordinate (not just + // the media query since we generate different HTML for sidebar overlays than we do + // for sidebar input UI) + const detachedMediaQuery = + quartoSearchOptions.type === "overlay" ? "all" : "(max-width: 991px)"; + + // If configured, include the analytics client to send insights + const plugins = configurePlugins(quartoSearchOptions); + + let lastState = null; + const { setIsOpen, setQuery, setCollections } = autocomplete({ + container: searchEl, + detachedMediaQuery: detachedMediaQuery, + defaultActiveItemId: 0, + panelContainer: "#quarto-search-results", + panelPlacement: quartoSearchOptions["panel-placement"], + debug: false, + openOnFocus: true, + plugins, + classNames: { + form: "d-flex", + }, + placeholder: language["search-text-placeholder"], + translations: { + clearButtonTitle: language["search-clear-button-title"], + detachedCancelButtonText: language["search-detached-cancel-button-title"], + submitButtonTitle: language["search-submit-button-title"], + }, + initialState: { + query, + }, + getItemUrl({ item }) { + return item.href; + }, + onStateChange({ state }) { + // If this is a file URL, note that + + // Perhaps reset highlighting + resetHighlighting(state.query); + + // If the panel just opened, ensure the panel is positioned properly + if (state.isOpen) { + if (lastState && !lastState.isOpen) { + setTimeout(() => { + positionPanel(quartoSearchOptions["panel-placement"]); + }, 150); + } + } + + // Perhaps show the copy link + showCopyLink(state.query, quartoSearchOptions); + + lastState = state; + }, + reshape({ sources, state }) { + return sources.map((source) => { + try { + const items = source.getItems(); + + // Validate the items + validateItems(items); + + // group the items by document + const groupedItems = new Map(); + items.forEach((item) => { + const hrefParts = item.href.split("#"); + const baseHref = hrefParts[0]; + const isDocumentItem = hrefParts.length === 1; + + const items = groupedItems.get(baseHref); + if (!items) { + groupedItems.set(baseHref, [item]); + } else { + // If the href for this item matches the document + // exactly, place this item first as it is the item that represents + // the document itself + if (isDocumentItem) { + items.unshift(item); + } else { + items.push(item); + } + groupedItems.set(baseHref, items); + } + }); + + const reshapedItems = []; + let count = 1; + for (const [_key, value] of groupedItems) { + const firstItem = value[0]; + reshapedItems.push({ + ...firstItem, + type: kItemTypeDoc, + }); + + const collapseMatches = quartoSearchOptions["collapse-after"]; + const collapseCount = + typeof collapseMatches === "number" ? collapseMatches : 1; + + if (value.length > 1) { + const target = `search-more-${count}`; + const isExpanded = + state.context.expanded && + state.context.expanded.includes(target); + + const remainingCount = value.length - collapseCount; + + for (let i = 1; i < value.length; i++) { + if (collapseMatches && i === collapseCount) { + reshapedItems.push({ + target, + title: isExpanded + ? language["search-hide-matches-text"] + : remainingCount === 1 + ? `${remainingCount} ${language["search-more-match-text"]}` + : `${remainingCount} ${language["search-more-matches-text"]}`, + type: kItemTypeMore, + href: kItemTypeMoreHref, + }); + } + + if (isExpanded || !collapseMatches || i < collapseCount) { + reshapedItems.push({ + ...value[i], + type: kItemTypeItem, + target, + }); + } + } + } + count += 1; + } + + return { + ...source, + getItems() { + return reshapedItems; + }, + }; + } catch (error) { + // Some form of error occurred + return { + ...source, + getItems() { + return [ + { + title: error.name || "An Error Occurred While Searching", + text: + error.message || + "An unknown error occurred while attempting to perform the requested search.", + type: kItemTypeError, + }, + ]; + }, + }; + } + }); + }, + navigator: { + navigate({ itemUrl }) { + if (itemUrl !== offsetURL(kItemTypeMoreHref)) { + window.location.assign(itemUrl); + } + }, + navigateNewTab({ itemUrl }) { + if (itemUrl !== offsetURL(kItemTypeMoreHref)) { + const windowReference = window.open(itemUrl, "_blank", "noopener"); + if (windowReference) { + windowReference.focus(); + } + } + }, + navigateNewWindow({ itemUrl }) { + if (itemUrl !== offsetURL(kItemTypeMoreHref)) { + window.open(itemUrl, "_blank", "noopener"); + } + }, + }, + getSources({ state, setContext, setActiveItemId, refresh }) { + return [ + { + sourceId: "documents", + getItemUrl({ item }) { + if (item.href) { + return offsetURL(item.href); + } else { + return undefined; + } + }, + onSelect({ + item, + state, + setContext, + setIsOpen, + setActiveItemId, + refresh, + }) { + if (item.type === kItemTypeMore) { + toggleExpanded(item, state, setContext, setActiveItemId, refresh); + + // Toggle more + setIsOpen(true); + } + }, + getItems({ query }) { + if (query === null || query === "") { + return []; + } + + const limit = quartoSearchOptions.limit; + if (quartoSearchOptions.algolia) { + return algoliaSearch(query, limit, quartoSearchOptions.algolia); + } else { + // Fuse search options + const fuseSearchOptions = { + isCaseSensitive: false, + shouldSort: true, + minMatchCharLength: 2, + limit: limit, + }; + + return readSearchData().then(function (fuse) { + return fuseSearch(query, fuse, fuseSearchOptions); + }); + } + }, + templates: { + noResults({ createElement }) { + const hasQuery = lastState.query; + + return createElement( + "div", + { + class: `quarto-search-no-results${ + hasQuery ? "" : " no-query" + }`, + }, + language["search-no-results-text"] + ); + }, + header({ items, createElement }) { + // count the documents + const count = items.filter((item) => { + return item.type === kItemTypeDoc; + }).length; + + if (count > 0) { + return createElement( + "div", + { class: "search-result-header" }, + `${count} ${language["search-matching-documents-text"]}` + ); + } else { + return createElement( + "div", + { class: "search-result-header-no-results" }, + `` + ); + } + }, + footer({ _items, createElement }) { + if ( + quartoSearchOptions.algolia && + quartoSearchOptions.algolia["show-logo"] + ) { + const libDir = quartoSearchOptions.algolia["libDir"]; + const logo = createElement("img", { + src: offsetURL( + `${libDir}/quarto-search/search-by-algolia.svg` + ), + class: "algolia-search-logo", + }); + return createElement( + "a", + { href: "http://www.algolia.com/" }, + logo + ); + } + }, + + item({ item, createElement }) { + return renderItem( + item, + createElement, + state, + setActiveItemId, + setContext, + refresh, + quartoSearchOptions + ); + }, + }, + }, + ]; + }, + }); + + window.quartoOpenSearch = () => { + setIsOpen(false); + setIsOpen(true); + focusSearchInput(); + }; + + document.addEventListener("keyup", (event) => { + const { key } = event; + const kbds = quartoSearchOptions["keyboard-shortcut"]; + const focusedEl = document.activeElement; + + const isFormElFocused = [ + "input", + "select", + "textarea", + "button", + "option", + ].find((tag) => { + return focusedEl.tagName.toLowerCase() === tag; + }); + + if ( + kbds && + kbds.includes(key) && + !isFormElFocused && + !document.activeElement.isContentEditable + ) { + event.preventDefault(); + window.quartoOpenSearch(); + } + }); + + // Remove the labeleledby attribute since it is pointing + // to a non-existent label + if (quartoSearchOptions.type === "overlay") { + const inputEl = window.document.querySelector( + "#quarto-search .aa-Autocomplete" + ); + if (inputEl) { + inputEl.removeAttribute("aria-labelledby"); + } + } + + function throttle(func, wait) { + let waiting = false; + return function () { + if (!waiting) { + func.apply(this, arguments); + waiting = true; + setTimeout(function () { + waiting = false; + }, wait); + } + }; + } + + // If the main document scrolls dismiss the search results + // (otherwise, since they're floating in the document they can scroll with the document) + window.document.body.onscroll = throttle(() => { + // Only do this if we're not detached + // Bug #7117 + // This will happen when the keyboard is shown on ios (resulting in a scroll) + // which then closed the search UI + if (!window.matchMedia(detachedMediaQuery).matches) { + setIsOpen(false); + } + }, 50); + + if (showSearchResults) { + setIsOpen(true); + focusSearchInput(); + } +}); + +function configurePlugins(quartoSearchOptions) { + const autocompletePlugins = []; + const algoliaOptions = quartoSearchOptions.algolia; + if ( + algoliaOptions && + algoliaOptions["analytics-events"] && + algoliaOptions["search-only-api-key"] && + algoliaOptions["application-id"] + ) { + const apiKey = algoliaOptions["search-only-api-key"]; + const appId = algoliaOptions["application-id"]; + + // Aloglia insights may not be loaded because they require cookie consent + // Use deferred loading so events will start being recorded when/if consent + // is granted. + const algoliaInsightsDeferredPlugin = deferredLoadPlugin(() => { + if ( + window.aa && + window["@algolia/autocomplete-plugin-algolia-insights"] + ) { + window.aa("init", { + appId, + apiKey, + useCookie: true, + }); + + const { createAlgoliaInsightsPlugin } = + window["@algolia/autocomplete-plugin-algolia-insights"]; + // Register the insights client + const algoliaInsightsPlugin = createAlgoliaInsightsPlugin({ + insightsClient: window.aa, + onItemsChange({ insights, insightsEvents }) { + const events = insightsEvents.flatMap((event) => { + // This API limits the number of items per event to 20 + const chunkSize = 20; + const itemChunks = []; + const eventItems = event.items; + for (let i = 0; i < eventItems.length; i += chunkSize) { + itemChunks.push(eventItems.slice(i, i + chunkSize)); + } + // Split the items into multiple events that can be sent + const events = itemChunks.map((items) => { + return { + ...event, + items, + }; + }); + return events; + }); + + for (const event of events) { + insights.viewedObjectIDs(event); + } + }, + }); + return algoliaInsightsPlugin; + } + }); + + // Add the plugin + autocompletePlugins.push(algoliaInsightsDeferredPlugin); + return autocompletePlugins; + } +} + +// For plugins that may not load immediately, create a wrapper +// plugin and forward events and plugin data once the plugin +// is initialized. This is useful for cases like cookie consent +// which may prevent the analytics insights event plugin from initializing +// immediately. +function deferredLoadPlugin(createPlugin) { + let plugin = undefined; + let subscribeObj = undefined; + const wrappedPlugin = () => { + if (!plugin && subscribeObj) { + plugin = createPlugin(); + if (plugin && plugin.subscribe) { + plugin.subscribe(subscribeObj); + } + } + return plugin; + }; + + return { + subscribe: (obj) => { + subscribeObj = obj; + }, + onStateChange: (obj) => { + const plugin = wrappedPlugin(); + if (plugin && plugin.onStateChange) { + plugin.onStateChange(obj); + } + }, + onSubmit: (obj) => { + const plugin = wrappedPlugin(); + if (plugin && plugin.onSubmit) { + plugin.onSubmit(obj); + } + }, + onReset: (obj) => { + const plugin = wrappedPlugin(); + if (plugin && plugin.onReset) { + plugin.onReset(obj); + } + }, + getSources: (obj) => { + const plugin = wrappedPlugin(); + if (plugin && plugin.getSources) { + return plugin.getSources(obj); + } else { + return Promise.resolve([]); + } + }, + data: (obj) => { + const plugin = wrappedPlugin(); + if (plugin && plugin.data) { + plugin.data(obj); + } + }, + }; +} + +function validateItems(items) { + // Validate the first item + if (items.length > 0) { + const item = items[0]; + const missingFields = []; + if (item.href == undefined) { + missingFields.push("href"); + } + if (!item.title == undefined) { + missingFields.push("title"); + } + if (!item.text == undefined) { + missingFields.push("text"); + } + + if (missingFields.length === 1) { + throw { + name: `Error: Search index is missing the ${missingFields[0]} field.`, + message: `The items being returned for this search do not include all the required fields. Please ensure that your index items include the ${missingFields[0]} field or use index-fields in your _quarto.yml file to specify the field names.`, + }; + } else if (missingFields.length > 1) { + const missingFieldList = missingFields + .map((field) => { + return `${field}`; + }) + .join(", "); + + throw { + name: `Error: Search index is missing the following fields: ${missingFieldList}.`, + message: `The items being returned for this search do not include all the required fields. Please ensure that your index items includes the following fields: ${missingFieldList}, or use index-fields in your _quarto.yml file to specify the field names.`, + }; + } + } +} + +let lastQuery = null; +function showCopyLink(query, options) { + const language = options.language; + lastQuery = query; + // Insert share icon + const inputSuffixEl = window.document.body.querySelector( + ".aa-Form .aa-InputWrapperSuffix" + ); + + if (inputSuffixEl) { + let copyButtonEl = window.document.body.querySelector( + ".aa-Form .aa-InputWrapperSuffix .aa-CopyButton" + ); + + if (copyButtonEl === null) { + copyButtonEl = window.document.createElement("button"); + copyButtonEl.setAttribute("class", "aa-CopyButton"); + copyButtonEl.setAttribute("type", "button"); + copyButtonEl.setAttribute("title", language["search-copy-link-title"]); + copyButtonEl.onmousedown = (e) => { + e.preventDefault(); + e.stopPropagation(); + }; + + const linkIcon = "bi-clipboard"; + const checkIcon = "bi-check2"; + + const shareIconEl = window.document.createElement("i"); + shareIconEl.setAttribute("class", `bi ${linkIcon}`); + copyButtonEl.appendChild(shareIconEl); + inputSuffixEl.prepend(copyButtonEl); + + const clipboard = new window.ClipboardJS(".aa-CopyButton", { + text: function (_trigger) { + const copyUrl = new URL(window.location); + copyUrl.searchParams.set(kQueryArg, lastQuery); + copyUrl.searchParams.set(kResultsArg, "1"); + return copyUrl.toString(); + }, + }); + clipboard.on("success", function (e) { + // Focus the input + + // button target + const button = e.trigger; + const icon = button.querySelector("i.bi"); + + // flash "checked" + icon.classList.add(checkIcon); + icon.classList.remove(linkIcon); + setTimeout(function () { + icon.classList.remove(checkIcon); + icon.classList.add(linkIcon); + }, 1000); + }); + } + + // If there is a query, show the link icon + if (copyButtonEl) { + if (lastQuery && options["copy-button"]) { + copyButtonEl.style.display = "flex"; + } else { + copyButtonEl.style.display = "none"; + } + } + } +} + +/* Search Index Handling */ +// create the index +var fuseIndex = undefined; +var shownWarning = false; + +// fuse index options +const kFuseIndexOptions = { + keys: [ + { name: "title", weight: 20 }, + { name: "section", weight: 20 }, + { name: "text", weight: 10 }, + ], + ignoreLocation: true, + threshold: 0.1, +}; + +async function readSearchData() { + // Initialize the search index on demand + if (fuseIndex === undefined) { + if (window.location.protocol === "file:" && !shownWarning) { + window.alert( + "Search requires JavaScript features disabled when running in file://... URLs. In order to use search, please run this document in a web server." + ); + shownWarning = true; + return; + } + const fuse = new window.Fuse([], kFuseIndexOptions); + + // fetch the main search.json + const response = await fetch(offsetURL("search.json")); + if (response.status == 200) { + return response.json().then(function (searchDocs) { + searchDocs.forEach(function (searchDoc) { + fuse.add(searchDoc); + }); + fuseIndex = fuse; + return fuseIndex; + }); + } else { + return Promise.reject( + new Error( + "Unexpected status from search index request: " + response.status + ) + ); + } + } + + return fuseIndex; +} + +function inputElement() { + return window.document.body.querySelector(".aa-Form .aa-Input"); +} + +function focusSearchInput() { + setTimeout(() => { + const inputEl = inputElement(); + if (inputEl) { + inputEl.focus(); + } + }, 50); +} + +/* Panels */ +const kItemTypeDoc = "document"; +const kItemTypeMore = "document-more"; +const kItemTypeItem = "document-item"; +const kItemTypeError = "error"; + +function renderItem( + item, + createElement, + state, + setActiveItemId, + setContext, + refresh, + quartoSearchOptions +) { + switch (item.type) { + case kItemTypeDoc: + return createDocumentCard( + createElement, + "file-richtext", + item.title, + item.section, + item.text, + item.href, + item.crumbs, + quartoSearchOptions + ); + case kItemTypeMore: + return createMoreCard( + createElement, + item, + state, + setActiveItemId, + setContext, + refresh + ); + case kItemTypeItem: + return createSectionCard( + createElement, + item.section, + item.text, + item.href + ); + case kItemTypeError: + return createErrorCard(createElement, item.title, item.text); + default: + return undefined; + } +} + +function createDocumentCard( + createElement, + icon, + title, + section, + text, + href, + crumbs, + quartoSearchOptions +) { + const iconEl = createElement("i", { + class: `bi bi-${icon} search-result-icon`, + }); + const titleEl = createElement("p", { class: "search-result-title" }, title); + const titleContents = [iconEl, titleEl]; + const showParent = quartoSearchOptions["show-item-context"]; + if (crumbs && showParent) { + let crumbsOut = undefined; + const crumbClz = ["search-result-crumbs"]; + if (showParent === "root") { + crumbsOut = crumbs.length > 1 ? crumbs[0] : undefined; + } else if (showParent === "parent") { + crumbsOut = crumbs.length > 1 ? crumbs[crumbs.length - 2] : undefined; + } else { + crumbsOut = crumbs.length > 1 ? crumbs.join(" > ") : undefined; + crumbClz.push("search-result-crumbs-wrap"); + } + + const crumbEl = createElement( + "p", + { class: crumbClz.join(" ") }, + crumbsOut + ); + titleContents.push(crumbEl); + } + + const titleContainerEl = createElement( + "div", + { class: "search-result-title-container" }, + titleContents + ); + + const textEls = []; + if (section) { + const sectionEl = createElement( + "p", + { class: "search-result-section" }, + section + ); + textEls.push(sectionEl); + } + const descEl = createElement("p", { + class: "search-result-text", + dangerouslySetInnerHTML: { + __html: text, + }, + }); + textEls.push(descEl); + + const textContainerEl = createElement( + "div", + { class: "search-result-text-container" }, + textEls + ); + + const containerEl = createElement( + "div", + { + class: "search-result-container", + }, + [titleContainerEl, textContainerEl] + ); + + const linkEl = createElement( + "a", + { + href: offsetURL(href), + class: "search-result-link", + }, + containerEl + ); + + const classes = ["search-result-doc", "search-item"]; + if (!section) { + classes.push("document-selectable"); + } + + return createElement( + "div", + { + class: classes.join(" "), + }, + linkEl + ); +} + +function createMoreCard( + createElement, + item, + state, + setActiveItemId, + setContext, + refresh +) { + const moreCardEl = createElement( + "div", + { + class: "search-result-more search-item", + onClick: (e) => { + // Handle expanding the sections by adding the expanded + // section to the list of expanded sections + toggleExpanded(item, state, setContext, setActiveItemId, refresh); + e.stopPropagation(); + }, + }, + item.title + ); + + return moreCardEl; +} + +function toggleExpanded(item, state, setContext, setActiveItemId, refresh) { + const expanded = state.context.expanded || []; + if (expanded.includes(item.target)) { + setContext({ + expanded: expanded.filter((target) => target !== item.target), + }); + } else { + setContext({ expanded: [...expanded, item.target] }); + } + + refresh(); + setActiveItemId(item.__autocomplete_id); +} + +function createSectionCard(createElement, section, text, href) { + const sectionEl = createSection(createElement, section, text, href); + return createElement( + "div", + { + class: "search-result-doc-section search-item", + }, + sectionEl + ); +} + +function createSection(createElement, title, text, href) { + const descEl = createElement("p", { + class: "search-result-text", + dangerouslySetInnerHTML: { + __html: text, + }, + }); + + const titleEl = createElement("p", { class: "search-result-section" }, title); + const linkEl = createElement( + "a", + { + href: offsetURL(href), + class: "search-result-link", + }, + [titleEl, descEl] + ); + return linkEl; +} + +function createErrorCard(createElement, title, text) { + const descEl = createElement("p", { + class: "search-error-text", + dangerouslySetInnerHTML: { + __html: text, + }, + }); + + const titleEl = createElement("p", { + class: "search-error-title", + dangerouslySetInnerHTML: { + __html: ` ${title}`, + }, + }); + const errorEl = createElement("div", { class: "search-error" }, [ + titleEl, + descEl, + ]); + return errorEl; +} + +function positionPanel(pos) { + const panelEl = window.document.querySelector( + "#quarto-search-results .aa-Panel" + ); + const inputEl = window.document.querySelector( + "#quarto-search .aa-Autocomplete" + ); + + if (panelEl && inputEl) { + panelEl.style.top = `${Math.round(panelEl.offsetTop)}px`; + if (pos === "start") { + panelEl.style.left = `${Math.round(inputEl.left)}px`; + } else { + panelEl.style.right = `${Math.round(inputEl.offsetRight)}px`; + } + } +} + +/* Highlighting */ +// highlighting functions +function highlightMatch(query, text) { + if (text) { + const start = text.toLowerCase().indexOf(query.toLowerCase()); + if (start !== -1) { + const startMark = ""; + const endMark = ""; + + const end = start + query.length; + text = + text.slice(0, start) + + startMark + + text.slice(start, end) + + endMark + + text.slice(end); + const startInfo = clipStart(text, start); + const endInfo = clipEnd( + text, + startInfo.position + startMark.length + endMark.length + ); + text = + startInfo.prefix + + text.slice(startInfo.position, endInfo.position) + + endInfo.suffix; + + return text; + } else { + return text; + } + } else { + return text; + } +} + +function clipStart(text, pos) { + const clipStart = pos - 50; + if (clipStart < 0) { + // This will just return the start of the string + return { + position: 0, + prefix: "", + }; + } else { + // We're clipping before the start of the string, walk backwards to the first space. + const spacePos = findSpace(text, pos, -1); + return { + position: spacePos.position, + prefix: "", + }; + } +} + +function clipEnd(text, pos) { + const clipEnd = pos + 200; + if (clipEnd > text.length) { + return { + position: text.length, + suffix: "", + }; + } else { + const spacePos = findSpace(text, clipEnd, 1); + return { + position: spacePos.position, + suffix: spacePos.clipped ? "…" : "", + }; + } +} + +function findSpace(text, start, step) { + let stepPos = start; + while (stepPos > -1 && stepPos < text.length) { + const char = text[stepPos]; + if (char === " " || char === "," || char === ":") { + return { + position: step === 1 ? stepPos : stepPos - step, + clipped: stepPos > 1 && stepPos < text.length, + }; + } + stepPos = stepPos + step; + } + + return { + position: stepPos - step, + clipped: false, + }; +} + +// removes highlighting as implemented by the mark tag +function clearHighlight(searchterm, el) { + const childNodes = el.childNodes; + for (let i = childNodes.length - 1; i >= 0; i--) { + const node = childNodes[i]; + if (node.nodeType === Node.ELEMENT_NODE) { + if ( + node.tagName === "MARK" && + node.innerText.toLowerCase() === searchterm.toLowerCase() + ) { + el.replaceChild(document.createTextNode(node.innerText), node); + } else { + clearHighlight(searchterm, node); + } + } + } +} + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string +} + +// highlight matches +function highlight(term, el) { + const termRegex = new RegExp(term, "ig"); + const childNodes = el.childNodes; + + // walk back to front avoid mutating elements in front of us + for (let i = childNodes.length - 1; i >= 0; i--) { + const node = childNodes[i]; + + if (node.nodeType === Node.TEXT_NODE) { + // Search text nodes for text to highlight + const text = node.nodeValue; + + let startIndex = 0; + let matchIndex = text.search(termRegex); + if (matchIndex > -1) { + const markFragment = document.createDocumentFragment(); + while (matchIndex > -1) { + const prefix = text.slice(startIndex, matchIndex); + markFragment.appendChild(document.createTextNode(prefix)); + + const mark = document.createElement("mark"); + mark.appendChild( + document.createTextNode( + text.slice(matchIndex, matchIndex + term.length) + ) + ); + markFragment.appendChild(mark); + + startIndex = matchIndex + term.length; + matchIndex = text.slice(startIndex).search(new RegExp(term, "ig")); + if (matchIndex > -1) { + matchIndex = startIndex + matchIndex; + } + } + if (startIndex < text.length) { + markFragment.appendChild( + document.createTextNode(text.slice(startIndex, text.length)) + ); + } + + el.replaceChild(markFragment, node); + } + } else if (node.nodeType === Node.ELEMENT_NODE) { + // recurse through elements + highlight(term, node); + } + } +} + +/* Link Handling */ +// get the offset from this page for a given site root relative url +function offsetURL(url) { + var offset = getMeta("quarto:offset"); + return offset ? offset + url : url; +} + +// read a meta tag value +function getMeta(metaName) { + var metas = window.document.getElementsByTagName("meta"); + for (let i = 0; i < metas.length; i++) { + if (metas[i].getAttribute("name") === metaName) { + return metas[i].getAttribute("content"); + } + } + return ""; +} + +function algoliaSearch(query, limit, algoliaOptions) { + const { getAlgoliaResults } = window["@algolia/autocomplete-preset-algolia"]; + + const applicationId = algoliaOptions["application-id"]; + const searchOnlyApiKey = algoliaOptions["search-only-api-key"]; + const indexName = algoliaOptions["index-name"]; + const indexFields = algoliaOptions["index-fields"]; + const searchClient = window.algoliasearch(applicationId, searchOnlyApiKey); + const searchParams = algoliaOptions["params"]; + const searchAnalytics = !!algoliaOptions["analytics-events"]; + + return getAlgoliaResults({ + searchClient, + queries: [ + { + indexName: indexName, + query, + params: { + hitsPerPage: limit, + clickAnalytics: searchAnalytics, + ...searchParams, + }, + }, + ], + transformResponse: (response) => { + if (!indexFields) { + return response.hits.map((hit) => { + return hit.map((item) => { + return { + ...item, + text: highlightMatch(query, item.text), + }; + }); + }); + } else { + const remappedHits = response.hits.map((hit) => { + return hit.map((item) => { + const newItem = { ...item }; + ["href", "section", "title", "text", "crumbs"].forEach( + (keyName) => { + const mappedName = indexFields[keyName]; + if ( + mappedName && + item[mappedName] !== undefined && + mappedName !== keyName + ) { + newItem[keyName] = item[mappedName]; + delete newItem[mappedName]; + } + } + ); + newItem.text = highlightMatch(query, newItem.text); + return newItem; + }); + }); + return remappedHits; + } + }, + }); +} + +let subSearchTerm = undefined; +let subSearchFuse = undefined; +const kFuseMaxWait = 125; + +async function fuseSearch(query, fuse, fuseOptions) { + let index = fuse; + // Fuse.js using the Bitap algorithm for text matching which runs in + // O(nm) time (no matter the structure of the text). In our case this + // means that long search terms mixed with large index gets very slow + // + // This injects a subIndex that will be used once the terms get long enough + // Usually making this subindex is cheap since there will typically be + // a subset of results matching the existing query + if (subSearchFuse !== undefined && query.startsWith(subSearchTerm)) { + // Use the existing subSearchFuse + index = subSearchFuse; + } else if (subSearchFuse !== undefined) { + // The term changed, discard the existing fuse + subSearchFuse = undefined; + subSearchTerm = undefined; + } + + // Search using the active fuse + const then = performance.now(); + const resultsRaw = await index.search(query, fuseOptions); + const now = performance.now(); + + const results = resultsRaw.map((result) => { + const addParam = (url, name, value) => { + const anchorParts = url.split("#"); + const baseUrl = anchorParts[0]; + const sep = baseUrl.search("\\?") > 0 ? "&" : "?"; + anchorParts[0] = baseUrl + sep + name + "=" + value; + return anchorParts.join("#"); + }; + + return { + title: result.item.title, + section: result.item.section, + href: addParam(result.item.href, kQueryArg, query), + text: highlightMatch(query, result.item.text), + crumbs: result.item.crumbs, + }; + }); + + // If we don't have a subfuse and the query is long enough, go ahead + // and create a subfuse to use for subsequent queries + if ( + now - then > kFuseMaxWait && + subSearchFuse === undefined && + resultsRaw.length < fuseOptions.limit + ) { + subSearchTerm = query; + subSearchFuse = new window.Fuse([], kFuseIndexOptions); + resultsRaw.forEach((rr) => { + subSearchFuse.add(rr.item); + }); + } + return results; +} diff --git a/sitemap.xml b/sitemap.xml new file mode 100644 index 0000000..c0b6c3e --- /dev/null +++ b/sitemap.xml @@ -0,0 +1,135 @@ + + + + https://opimwue.github.io/ddopai/10_dataloaders/tabular_dataloaders.html + 2024-10-17T15:24:49.949Z + + + https://opimwue.github.io/ddopai/10_dataloaders/distribution_loaders.html + 2024-10-17T15:24:49.661Z + + + https://opimwue.github.io/ddopai/90_datasets/default_datasets.html + 2024-10-17T15:24:49.665Z + + + https://opimwue.github.io/ddopai/40_experiments/experiment_functions.html + 2024-10-17T15:24:49.645Z + + + https://opimwue.github.io/ddopai/40_experiments/tracking.html + 2024-10-17T15:24:49.433Z + + + https://opimwue.github.io/ddopai/30_agents/60_approximators/critic_networks.html + 2024-10-17T15:24:49.565Z + + + https://opimwue.github.io/ddopai/30_agents/40_base_agents/agent_classes.html + 2024-10-17T15:24:49.341Z + + + https://opimwue.github.io/ddopai/30_agents/40_base_agents/basic_agents.html + 2024-10-17T15:24:49.329Z + + + https://opimwue.github.io/ddopai/30_agents/51_RL_agents/mushroom_base_agent.html + 2024-10-17T15:24:49.181Z + + + https://opimwue.github.io/ddopai/30_agents/51_RL_agents/td3_agents.html + 2024-10-17T15:24:49.105Z + + + https://opimwue.github.io/ddopai/30_agents/41_NV_agents/nv_saa_agents.html + 2024-10-17T15:24:49.277Z + + + https://opimwue.github.io/ddopai/index.html + 2024-10-17T15:24:44.693Z + + + https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/inventory_utils.html + 2024-10-17T15:24:47.193Z + + + https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/base_inventory_env.html + 2024-10-17T15:24:47.017Z + + + https://opimwue.github.io/ddopai/20_environments/actionprocessors.html + 2024-10-17T15:24:46.849Z + + + https://opimwue.github.io/ddopai/00_utils/torch_loss_functions.html + 2024-10-17T15:24:46.853Z + + + https://opimwue.github.io/ddopai/00_utils/utils.html + 2024-10-17T15:24:46.985Z + + + https://opimwue.github.io/ddopai/00_utils/loss_functions.html + 2024-10-17T15:24:46.925Z + + + https://opimwue.github.io/ddopai/20_environments/20_base_env/base_env.html + 2024-10-17T15:24:47.009Z + + + https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/multi_period_envs.html + 2024-10-17T15:24:46.993Z + + + https://opimwue.github.io/ddopai/20_environments/21_envs_inventory/single_period_envs.html + 2024-10-17T15:24:48.361Z + + + https://opimwue.github.io/ddopai/core.html + 2024-10-17T15:24:44.653Z + + + https://opimwue.github.io/ddopai/30_agents/41_NV_agents/nv_erm_agents.html + 2024-10-17T15:24:49.469Z + + + https://opimwue.github.io/ddopai/30_agents/ml_utils.html + 2024-10-17T15:24:47.053Z + + + https://opimwue.github.io/ddopai/30_agents/51_RL_agents/sac_agents.html + 2024-10-17T15:24:49.301Z + + + https://opimwue.github.io/ddopai/30_agents/51_RL_agents/ppo_agents.html + 2024-10-17T15:24:49.285Z + + + https://opimwue.github.io/ddopai/30_agents/40_base_agents/base_agents.html + 2024-10-17T15:24:49.373Z + + + https://opimwue.github.io/ddopai/30_agents/obsprocessors.html + 2024-10-17T15:24:47.129Z + + + https://opimwue.github.io/ddopai/30_agents/60_approximators/approximators.html + 2024-10-17T15:24:49.489Z + + + https://opimwue.github.io/ddopai/40_experiments/meta_experiment_functions.html + 2024-10-17T15:24:49.597Z + + + https://opimwue.github.io/ddopai/90_datasets/meta_kaggle_m5.html + 2024-10-17T15:24:49.561Z + + + https://opimwue.github.io/ddopai/90_datasets/meta_bakery.html + 2024-10-17T15:24:49.629Z + + + https://opimwue.github.io/ddopai/10_dataloaders/base_dataloader.html + 2024-10-17T15:24:49.705Z + + diff --git a/styles.css b/styles.css new file mode 100644 index 0000000..66ccc49 --- /dev/null +++ b/styles.css @@ -0,0 +1,37 @@ +.cell { + margin-bottom: 1rem; +} + +.cell > .sourceCode { + margin-bottom: 0; +} + +.cell-output > pre { + margin-bottom: 0; +} + +.cell-output > pre, .cell-output > .sourceCode > pre, .cell-output-stdout > pre { + margin-left: 0.8rem; + margin-top: 0; + background: none; + border-left: 2px solid lightsalmon; + border-top-left-radius: 0; + border-top-right-radius: 0; +} + +.cell-output > .sourceCode { + border: none; +} + +.cell-output > .sourceCode { + background: none; + margin-top: 0; +} + +div.description { + padding-left: 2px; + padding-top: 5px; + font-style: italic; + font-size: 135%; + opacity: 70%; +}