From 9c3761c47a8828a48b7112073171148bd3f78ea4 Mon Sep 17 00:00:00 2001 From: ZHANG XU <2542174727@qq.com> Date: Thu, 4 Jan 2024 17:57:19 +0800 Subject: [PATCH] formulation symbol revision Replace the wrong symbol '+' with '=' in formulation related to chain rule. --- chapter_recurrent-neural-networks/bptt.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/chapter_recurrent-neural-networks/bptt.md b/chapter_recurrent-neural-networks/bptt.md index e5c34494a..1c78a316d 100644 --- a/chapter_recurrent-neural-networks/bptt.md +++ b/chapter_recurrent-neural-networks/bptt.md @@ -76,7 +76,7 @@ $h_t$既依赖于$h_{t-1}$又依赖于$w_h$, 其中$h_{t-1}$的计算也依赖于$w_h$。 因此,使用链式法则产生: -$$\frac{\partial h_t}{\partial w_h}= \frac{\partial f(x_{t},h_{t-1},w_h)}{\partial w_h} +\frac{\partial f(x_{t},h_{t-1},w_h)}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial w_h}.$$ +$$\frac{\partial h_t}{\partial w_h}= \frac{\partial f(x_{t},h_{t-1},w_h)}{\partial w_h} =\frac{\partial f(x_{t},h_{t-1},w_h)}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial w_h}.$$ :eqlabel:`eq_bptt_partial_ht_wh_recur` 为了导出上述梯度,假设我们有三个序列$\{a_{t}\},\{b_{t}\},\{c_{t}\}$,