-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetection.py
182 lines (157 loc) · 6.85 KB
/
detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""Stuff for Detection task"""
from __future__ import print_function
from __future__ import division
from builtins import zip
from builtins import range
from past.utils import old_div
import numpy as np
import pandas
import my
def parse_trial_matrix(bfile):
"""
Here's what happens in Detection.ino.
1. Repeatedly loop() until lever is pressed long enough to start a trial.
a. Lever presses are indicated with "lever press start:",
and then a time on the next line, which is kind of useless
because it's an int instead of a long.
b. If it hasn't been held down for a certain threshold, end loop.
2. Start a trial.
a. Set trigTime to now, as beginning of trial.
b. Turn the lamp off for 25ms, then delay 100ms.
c. Print trigTime ("Trial started at: ")
d. Determine whether this will be an opto trial.
If yes, print "laser ON", then trigger opto and delay 100ms
If no, print "dark", then delay 100ms
c. Choose the trial type
3. If a stimulus trial:
a. print "stimulus trial"
b. Move stimulus into position, with some delays
c. Loop until stimDuration ms have elapsed since triggerTime
i. If the lever is lifted for long enough, call reward()
ii. Print "REWARD!!!" and open valve. Various delays here
iii. break, by inflating elapTime
d. Lower optoPin
e. Move stim back to rest position
4. Otherwise, on catch trial:
a. print "catch trial"
b. The rest is the same as in #3, except that lifts trigger punish()
which prints "unrewarded punishment" and delays.
5. Delay by ITI
Sync signals:
Looks like sync is normally high, and goes low for 765 samples (25ms)
Laser turns on 3780 samples (125ms) after onset of sync pulse
"""
# Read all the lines
with file(bfile) as fi:
lines = fi.readlines()
# Ignore everything before "BEGIN DATA"
start_line = np.where(
[line.strip() == 'BEGIN DATA' for line in lines])[0][0] + 1
# Parse out commandas and times
commands = lines[start_line::2]
times = lines[start_line + 1::2]
commands = commands[:len(times)] # in case we missed the last line
times = [int(line.strip()) for line in times]
commands = [line.strip() for line in commands]
commands_df = pandas.DataFrame({'command': commands, 'time': times})
# Drop lever presses
commands_df = commands_df[commands_df.command != 'lever press start:']
commands_df.index = list(range(len(commands_df)))
# Check
if not np.all(np.sort(commands_df.time.values) == commands_df.time.values):
print("warning: commands are not sorted")
# Find when laser started
laser_start = np.where(commands_df.command.values == 'begin OPTOSTIM')[0][0]
# Determine the start line of each trial
trial_start_line_idxs = np.where(
commands_df['command'] == 'Trial started at:')[0]
# Form a trial matrix trial by trial
rec_l = []
for ntrial in range(len(trial_start_line_idxs) - 1):
rec = {}
# Get commands from this trial
this_trial_start_line = trial_start_line_idxs[ntrial]
next_trial_start_line = trial_start_line_idxs[ntrial + 1]
trial_df = commands_df.iloc[this_trial_start_line:next_trial_start_line]
# Determine if we're in the opto period
after_laser_start_trial = (this_trial_start_line >= laser_start)
in_laser_start_trial = ((this_trial_start_line < laser_start) and
(next_trial_start_line >= laser_start))
if after_laser_start_trial or in_laser_start_trial:
rec['warmup'] = False
else:
rec['warmup'] = True
# Parse each command
zobj = list(zip(trial_df['command'].values, trial_df['time'].values))
for command, time in zobj:
if command == 'Trial started at:':
assert 'start' not in rec
rec['start'] = old_div(time, 1000.0)
elif command == 'catch trial':
assert 'typ' not in rec
rec['typ'] = 'nogo'
elif command == 'stimulus trial: bottom rewarded':
assert 'typ' not in rec
rec['typ'] = 'go'
elif command == 'begin OPTOSTIM':
continue
elif command == 'unrewarded punishment':
# This is only for FA
assert 'outcome' not in rec
rec['outcome'] = 'FA'
rec['response_time'] = old_div(time, 1000.0)
elif command == 'REWARD!!!':
# This is only for HIT
assert 'outcome' not in rec
rec['outcome'] = 'hit'
rec['response_time'] = old_div(time, 1000.0)
elif command == 'dark':
assert 'opto' not in rec
rec['opto'] = False
elif command == 'laser ON':
assert 'opto' not in rec
rec['opto'] = True
else:
old_div(1,0)
# Specify opto explicitly if not yet done (warmup?)
if 'opto' not in rec:
rec['opto'] = False
# Specify outcome explicitly on miss and CR
if 'outcome' not in rec:
if rec['typ'] == 'go':
# Was not a HIT, must have been a MISS
rec['outcome'] = 'miss'
if rec['typ'] == 'nogo':
# Was not a FA, must have been a CR
rec['outcome'] = 'CR'
# Specify response_time as np.nan unless already set
if 'response_time' not in rec:
# Must be a miss or a CR
assert rec['outcome'] in ['miss', 'CR']
rec['response_time'] = np.nan
rec_l.append(rec)
# DataFrame
trial_matrix = pandas.DataFrame.from_records(rec_l)
# Assign correct
trial_matrix['correct'] = False
trial_matrix.loc[trial_matrix.outcome.isin(['hit', 'CR']), 'correct'] = True
# Error check: only response time can be null
assert not trial_matrix.drop('response_time', 1).isnull().any().any()
return trial_matrix
def calculate_perf_metrics(trial_matrix, exclude_warmup=True):
if exclude_warmup:
trial_matrix = trial_matrix[~trial_matrix.warmup].copy()
if len(trial_matrix) == 0:
raise ValueError("no data in trial matrix")
# Perf metrics
rec_l = []
for opto in [False, True]:
for typ in ['go', 'nogo']:
subdf = my.pick_rows(trial_matrix, opto=opto, typ=typ)
n_hits = np.sum(subdf.correct)
n_tots = len(subdf)
rec_l.append({'opto': opto, 'typ': typ, 'n_hits': n_hits,
'n_tots': n_tots})
perfdf = pandas.DataFrame.from_records(rec_l)
perfdf['perf'] = old_div(perfdf['n_hits'], perfdf['n_tots'])
return perfdf