-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
146 lines (124 loc) · 4.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
AutoTokenizer,
TrainingArguments,
Trainer,
GenerationConfig,
DataCollatorForLanguageModeling,
set_seed
)
from tqdm import tqdm
from trl import SFTTrainer
import torch
import time
import pandas as pd
import numpy as np
from huggingface_hub import interpreter_login
import os
from dotenv import load_dotenv
from functools import partial
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import wandb
#interpreter_login()
seed = 42
set_seed(seed)
load_dotenv()
wandb.login(key=os.getenv('wandb-key'))
CUTOFF_LEN = 256
dataset = load_dataset("gbharti/wealth-alpaca_lora")
dataset = dataset['train'].train_test_split(test_size = 0.2)
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=compute_dtype,
)
model_name="meta-llama/Llama-3.2-3B-Instruct"
device_map = {"": 0}
original_model = AutoModelForCausalLM.from_pretrained(model_name,
device_map = device_map,
quantization_config=bnb_config,
use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, add_eos_token=True)
tokenizer.pad_token = 0
def generate_and_tokenize_prompt(data_point):
"""This function masks out the labels for the input, so that our loss is computed only on the
response."""
if data_point['input']:
user_prompt = 'Below is an instruction that describes a task, paired with an input that ' \
'provides further context. Write a response that appropriately completes ' \
'the request.\n\n'
user_prompt += f'### Instruction:\n{data_point["instruction"]}\n\n'
user_prompt += f'### Input:\n{data_point["input"]}\n\n'
user_prompt += f'### Response:\n'
else:
user_prompt = 'Below is an instruction that describes a task. Write a response that ' \
'appropriately completes the request.'
user_prompt += f'### Instruction:\n{data_point["instruction"]}\n\n'
user_prompt += f'### Response:\n'
# Count the length of prompt tokens
len_user_prompt_tokens = len(tokenizer(user_prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding='max_length')['input_ids'])
len_user_prompt_tokens -= 1 # Minus 1 (one) for eos token
# Tokenise the input, both prompt and output
full_tokens = tokenizer(
user_prompt + data_point['output'],
truncation=True,
max_length=CUTOFF_LEN + 1,
padding='max_length',
)['input_ids'][:-1]
return {
'input_ids': full_tokens,
'labels': [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
'attention_mask': [1] * (len(full_tokens)),
}
train_dataset = dataset['train'].map(generate_and_tokenize_prompt)
test_dataset = dataset['test'].map(generate_and_tokenize_prompt)
original_model = prepare_model_for_kbit_training(original_model)
config = LoraConfig( #fiddle around with these
r=8, #Rank
lora_alpha=8,
target_modules="all-linear",
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
peft_model = get_peft_model(original_model, config)
#print(peft_model.print_trainable_parameters())
output_dir = f'./peft-dialogue-summary-training-{str(int(time.time()))}'
peft_training_args = TrainingArguments( #fiddle around with these
seed=seed,
data_seed=seed,
output_dir = output_dir,
warmup_steps=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=1,
learning_rate=2e-4,
logging_steps=20,
logging_dir="./logs",
save_strategy="steps",
save_steps=50,
evaluation_strategy="steps",
eval_steps=50,
do_eval=True,
gradient_checkpointing=True,
report_to="none",
overwrite_output_dir = 'True',
group_by_length=True,
)
peft_model.config.use_cache = False
peft_trainer = Trainer(
model=peft_model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
args=peft_training_args,
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
peft_trainer.train()
wandb.finish()