-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathutils.py
196 lines (154 loc) · 5.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import sys
from math import sin, cos, sqrt, pi
import cv
import urllib2
import time
import math
from numpy import *
from scipy.spatial.distance import euclidean
import heapq as hq
CANNY = 1
def get_elements(filename,treshold=50,minheight=15,minarea=200,elements=6):
src = cv.LoadImage(filename, cv.CV_LOAD_IMAGE_GRAYSCALE)
test = cv.CreateImage(cv.GetSize(src),32,3)
dst = cv.CreateImage(cv.GetSize(src), 8, 1)
storage = cv.CreateMemStorage(0)
cv.Canny(src, dst, treshold, treshold*3, 3)
storage = cv.CreateMemStorage(0)
seqs = cv.FindContours(dst, storage,cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_NONE, (0,0))
res = []
c = seqs.h_next()
while True:
if not c:
break
box = cv.BoundingRect(c)
area = box[2]*box[3]
#and (area > minarea)
if (box[3] > minheight):
res.append(box)
c = c.h_next()
if len(res) < elements:
while len(res) < elements:
m = 0
c = 0
for i,e in enumerate(res):
if e[3] > m:
m = e[3]
c = i
big = res.pop(c)
res.append((big[0],big[1],int(big[2]*1.0/2),big[3]))
res.append((big[0]+int(big[2]*1.0/2),big[1],int(big[2]*1.0/2),big[3]))
#for box in res:
# cv.Rectangle(dst, (box[0],box[1]), (box[0]+box[2],box[1]+box[3]), cv.RGB(255,255,255))
#cv.ShowImage('Preview2',dst)
#cv.WaitKey()
imgs = []
print len(res)
for box in res:
cv.SetImageROI(src, box);
tmp = cv.CreateImage((box[2],box[3]),8,1)
cv.Copy(src, tmp);
hq.heappush(imgs,(box[0],tmp))
cv.ResetImageROI(src);
res = [hq.heappop(imgs)[1] for i in xrange(len(res))]
return res
def euclid_distance(p1,p2):
return math.sqrt( ( p2[0] - p1[0] ) ** 2 + ( p2[1] - p1[1] ) ** 2 )
def get_points_from_img(src,treshold=50,simpleto=100,t=CANNY):
ts = time.time()
if isinstance(src,str):
src = cv.LoadImage(src, cv.CV_LOAD_IMAGE_GRAYSCALE)
test = cv.CreateImage(cv.GetSize(src),8,1)
if t == CANNY:
dst = cv.CreateImage(cv.GetSize(src), 8, 1)
storage = cv.CreateMemStorage(0)
cv.Canny(src, dst, treshold, treshold*3, 3)
A = zeros((cv.GetSize(src)[1],cv.GetSize(src)[0]))
for y in xrange(cv.GetSize(src)[1]):
for x in xrange(cv.GetSize(src)[0]):
A[y,x] = src[y,x]
px,py = gradient(A)
points = []
w,h = cv.GetSize(src)
for y in xrange(h):
for x in xrange(w):
try:
c = dst[y,x]
except:
print x,y
if c == 255:
points.append((x,y))
r = 2
while len(points) > simpleto:
newpoints = points
xr = range(0,w,r)
yr = range(0,h,r)
for p in points:
if p[0] not in xr and p[1] not in yr:
newpoints.remove(p)
if len(points) <= simpleto:
T = zeros((simpleto,1))
for i,(x,y) in enumerate(points):
T[i] = math.atan2(py[y,x],px[y,x])+pi/2;
return points,asmatrix(T)
r += 1
T = zeros((simpleto,1))
for i,(x,y) in enumerate(points):
T[i] = math.atan2(py[y,x],px[y,x])+pi/2;
return points,asmatrix(T)
def dist2(x,c):
"""
Euclidian distance matrix
"""
ncentres = c.shape[0]
ndata = x.shape[0]
return (ones((ncentres, 1)) * (((power(x,2)).H)).sum(axis=0)).H + ones((ndata, 1)) * ((power(c,2)).H).sum(axis=0) - multiply(2,(x*(c.H)));
def bookenstain(X,Y,beta):
"""
Bookstein PAMI89
Article: Principal Warps: Thin-Plate Splines and the Decomposition of Deformations
"""
X = asmatrix(X)
Y = asmatrix(Y)
N = X.shape[0]
r2 = dist2(X,X)
K = multiply(r2,log(r2+eye(N,N)))
P = concatenate((ones((N,1)),X),1)
L = bmat([[K, P], [P.H, zeros((3,3))]])
V = concatenate((Y.H,zeros((2,3))),1)
L[0:N,0:N] = L[0:N,0:N] + beta * eye(N,N)
invL = linalg.inv(L)
# L^-1 * v^T = (W | a_1 a_x a_y)^T
c = invL*(V.H)
cx = c[:,0]
cy = c[:,1]
Q = (c[0:N,:].H) * K * c[0:N,:]
E = mean(diag(Q))
n_good = 10
A=concatenate((cx[n_good+2:n_good+3,:],cy[n_good+2:n_good+3,:]),1);
s=linalg.svd(A);
aff_cost=log(s[0]/s[1])
return cx,cy,E,aff_cost,L
def gauss_kernel(N):
"""
Gaussian kernel
"""
g=2**(1-N)*diag(fliplr(pascal(N)));
W=g*g.H;
def pascal(n, k = 0):
"""
Pascal matrix
"""
p = diag( (-1)**arange(n) )
p[:, 0] = ones(n)
# Generate the Pascal Cholesky factor (up to signs).
for j in range(1, n - 1):
for i in range(j+1, n):
p[i, j] = p[i-1, j] - p[i-1, j-1]
if k == 0:
p = matrix(p) * matrix(p.T)
elif k == 2:
p = rot90(p, 3)
if n/2 == round(n/2):
p = -p
return p