-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathkimotor_linalg.py
435 lines (344 loc) · 10.9 KB
/
kimotor_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Copyright 2022-2024 Stefano Cottafavi <[email protected]>.
# SPDX-License-Identifier: GPL-2.0-only
import math
import numpy as np
import wx
# basic
def vec(t):
# track direction
p1 = t.GetStart()
p2 = t.GetEnd()
v = np.array([ p2.x-p1.x, p2.y-p1.y, 0 ])
return v
def line_vec(lv):
# line unit vector
p1 = lv[0] # start point [x,y]
p2 = lv[1] # end point [x, y]
dx = p2[0]-p1[0]
dy = p2[1]-p1[1]
d = math.sqrt(dx**2 + dy**2)
v = np.array([ dx/d, dy/d, 0])
return v
def line(lt):
# find params of line equation ( y = mx + k ), given a track
p1 = lt[0]
p2 = lt[1]
dx = p2[0]-p1[0]
dy = p2[1]-p1[1]
m = dy/dx
k = p1[1] - m * p1[0]
return m, k
def circle_to_polygon(r,n=100):
# r: radius
# n: nr of output segments
p = []
dth = 2 * math.pi / n
for i in range(n):
x = int(r * math.cos(i*dth))
y = int(r * math.sin(i*dth))
p.append( (x,y) )
return p
def line_points(t):
# get track start/end points
ts = t.GetStart()
te = t.GetEnd()
return np.array( [[ts.x, ts.y, 0], [te.x, te.y, 0]] )
def line_offset(l, r):
# offset a line l by distance r (+ shifts L, - shifts R)
p1 = l[0]
p2 = l[1]
vl = np.array([ p2[0]-p1[0], p2[1]-p1[1], 0 ])
vlu = vl/np.linalg.norm(vl)
z = np.array([0,0,1])
# ortho
vln = np.cross( z, vlu )
p1 = p1 + np.dot(r,vln)
p2 = p2 + np.dot(r,vln)
return np.array([p1, p2])
def circle_line_tg(l, c,r):
p1 = l[0]
p2 = l[1]
# vectors (np arrays)
vl = np.array([ p2[0]-p1[0], p2[1]-p1[1], 0 ])
vc = np.array([ c[0]-p1[0], c[1]-p1[1], 0 ] )
# unit vectors
vlu = vl/np.linalg.norm(vl)
vcu = vc/np.linalg.norm(vc)
z = np.array([0,0,1])
# side, cw or ccw
d = np.dot(vcu,vlu)
cc = np.cross(vcu,vlu)
s = np.sign( np.dot(z,cc) )
# ortho
vln = np.cross( z, vlu )
# trim point
t = c + np.dot(s*r,vln)
return t
def circle_line_sec(l, c,r):
# https://mathworld.wolfram.com/Circle-LineIntersection.html
p1 = l[0]
p2 = l[1]
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
dr2 = dx**2 + dy**2
D = p1[0]*p2[1] - p2[0]*p1[1]
dsc = dr2 * r**2 - D**2
#wx.LogError(f'dx {dx}, dy {dy}, c {c}, r {r}, dsc {dsc}, D {D}')
x = ( (D*dy) + np.sign(dy)*dx*math.sqrt(dsc)) / dr2 + c[0]
y = (-(D*dx) + np.abs(dy)*math.sqrt(dsc)) / dr2 + c[1]
return np.array([x,y])
def circle_circle_tg(p1,r1,p2,r2):
if r1<r2:
dx = p1[0]-p2[0]
dy = p1[1]-p2[1]
d = math.sqrt(dx**2 + dy**2)
v = np.array([ dx/d, dy/d ])
else:
dx = p2[0]-p1[0]
dy = p2[1]-p1[1]
d = math.sqrt(dx**2 + dy**2)
v = np.array([ dx/d, dy/d ])
# trim point
t = p2 + np.dot(r2,v)
return t
def track_arc_trim(t, ne):
# takes an arc track and trims it to the given ne (new end) point
s = t.GetStart()
c = t.GetCenter()
r = t.GetRadius()
m = circle_arc_mid( [s.x, s.y], [ne.x, ne.y], [c.x, c.y, 0], r )
return m
def circle_arc_mid(p1,p2, c,r):
# mid point of segment connecting arc end points
m = [ (p1[0]+p2[0])/2, (p1[1]+p2[1])/2 ]
dx = m[0]-c[0]
dy = m[1]-c[1]
d = math.sqrt(dx**2 + dy**2)
v = np.array([ dx/d, dy/d, 0 ])
return c + np.dot(r,v)
def line_line_intersect(l1,l2):
""" Find the intersection of two lines
Args:
l1 (_type_): 2D array of the 1st line start and end points
l2 (_type_): 2D array of the 2nd line start and end points
Returns:
_type_: coordinates of the point of intersect
"""
# https://mathworld.wolfram.com/Line-LineIntersection.html
p1 = l1[0]
p2 = l1[1]
p3 = l2[0]
p4 = l2[1]
a12 = np.linalg.det(np.array([[p1[0], p1[1]], [p2[0], p2[1]]]))
a34 = np.linalg.det(np.array([[p3[0], p3[1]], [p4[0], p4[1]]]))
x12 = p1[0] - p2[0]
x34 = p3[0] - p4[0]
y12 = p1[1] - p2[1]
y34 = p3[1] - p4[1]
nx = np.linalg.det(np.array( [[a12, x12], [a34, x34]] ))
ny = np.linalg.det(np.array( [[a12, y12], [a34, y34]] ))
d = np.linalg.det(np.array( [[x12, y12], [x34, y34]] ))
return np.array([nx/d, ny/d, 0])
def circle_line_intersect(l, c,r, ref=1):
""" Find the intersection of a line and a circle
Args:
l (_type_): 2D array of the line start and end points
c (_type_): coordinates [x,y] of the circle center
r (_type_): radius of the circle
ref (int, optional): line point to use as reference (0=start, 1=end). Defaults to 1.
Returns:
_type_: coordinates of the point of intersect
"""
# TODO: this fails for dx=0 (m=inf)
m,k = line(l)
xc = c[0]
yc = c[1]
a = 1+m**2
b = 2 * (m*k - m*yc - xc)
c = k**2 + xc**2 + yc**2 - r**2 - 2*k*yc
dsc = b**2 - 4*a*c
#wx.LogError(f'dsc {dsc}')
#dsc = np.abs(dsc)
# pick the intersect point closest to the selected reference
# point (start or end) of the line
pref = np.array(l[ref])
x1 = (-b - math.sqrt(dsc)) / (2*a)
p1 = np.array([x1, m*x1 + k, 0])
x2 = (-b + math.sqrt(dsc)) / (2*a)
p2 = np.array([x2, m*x2 + k, 0])
d1 = np.linalg.norm(p1-pref)
d2 = np.linalg.norm(p2-pref)
# TODO: what if equal? we should add a check beforehand
return p1 if d1<d2 else p2
def circle_circle_intersect(c1,r1,c2,r2):
""" Find the intersection of two circles
Args:
c1 (_type_): coordinates [x,y] of the 1st circle center
r1 (_type_): radius of the 1st circle
c2 (_type_): coordinates [x,y] of the 2nd circle center
r2 (_type_): radius of the 2nd circle
Returns:
_type_: _description_
"""
# https://math.stackexchange.com/questions/256100/how-can-i-find-the-points-at-which-two-circles-intersect
# https://gist.github.com/jupdike/bfe5eb23d1c395d8a0a1a4ddd94882ac
# https://gist.github.com/jupdike/bfe5eb23d1c395d8a0a1a4ddd94882ac?permalink_comment_id=3590178#gistcomment-3590178
x1 = c1[0]
y1 = c1[1]
x2 = c2[0]
y2 = c2[1]
R = math.sqrt( (x1-x2)**2 + (y1-y2)**2 );
#if not ( abs(r1 - r2) <= R and R <= r1 + r2):
# return [] # empty list of results
#intersection(s) should exist
R2 = R*R;
R4 = R2*R2;
a = (r1*r1 - r2*r2) / (2 * R2);
r2r2 = (r1*r1 - r2*r2);
c = math.sqrt(2 * (r1*r1 + r2*r2) / R2 - (r2r2 * r2r2) / R4 - 1);
fx = (x1+x2) / 2 + a * (x2 - x1);
gx = c * (y2 - y1) / 2;
wx.LogError(f'gx: {gx}')
#note if gy == 0 and gx == 0 then the circles are tangent and there is only one solution
#but that one solution will just be duplicated as the code is currently written
ix1 = fx + gx;
ix2 = fx - gx;
fy = (y1+y2) / 2 + a * (y2 - y1);
gy = c * (x1 - x2) / 2;
iy1 = fy + gy;
iy2 = fy - gy;
return [ix1, iy1], [ix2, iy2];
def line_line_center(t1,t2, f):
""" Center of the arc fillet, given two straight tracks. The point is the intersection
of the track lines both offset by the fillet radius
Args:
t1 (_type_): track 1
t2 (_type_): track 2
f (_type_): fillet radius
Returns:
_type_: _description_
"""
# solve unit vectors
v1 = vec(t1)
v2 = vec(t2)
v1u = v1/np.linalg.norm(v1)
v2u = v2/np.linalg.norm(v2)
z = np.array([0,0,1])
# side, cw or ccw
d = np.dot(v1u,v2u)
c = np.cross(v1u,v2u)
s = np.sign( np.dot(z,c) )
v1n = np.cross( z, v1u )
v2n = np.cross( z, v2u )
# offset lines
p1 = line_points(t1)
p2 = line_points(t2)
p1 = p1 + np.dot(s*f, v1n)
p2 = p2 + np.dot(s*f, v2n)
# line intersection (i.e. fillet center)
c = line_line_intersect(p1,p2)
return c
def line_arc_center(t1, t2, f, side=1):
""" Center of the arc fillet, given one straight and one arc track. The point is the intersection
of the track lines offset by the fillet radius
Args:
t1 (_type_): track 1
t2 (_type_): track 2
f (_type_): fillet radius
Returns:
_type_: _description_
"""
t1_arc = t1.GetClass() == 'PCB_ARC'
t2_arc = t2.GetClass() == 'PCB_ARC'
if t1_arc:
# solve unit vectors
v1 = tangent(t1, end=True) # use the tg to the arc at its END point
v2 = vec(t2)
v1u = v1/np.linalg.norm(v1)
v2u = v2/np.linalg.norm(v2)
z = np.array([0,0,1])
# side, cw or ccw
x = np.cross(v2u,v1u) # !!!IMPORTANT!!!: order inverted wrt t2_arc
s = np.sign( np.dot(z,x) )
v2n = np.cross( [0,0,s], v2u )
# offset circle
o = t1.GetCenter()
o = np.array([o.x, o.y])
r = t1.GetRadius() - side*f
# offset line
p2 = line_points(t2)
p2 = p2 + np.dot( f, v2n )
c = circle_line_intersect(p2, o, r, 0)
elif t2_arc:
# solve unit vectors
v1 = vec(t1)
v2 = tangent(t2, end=False) # use the tg to the arc at its START point
v1u = v1/np.linalg.norm(v1)
v2u = v2/np.linalg.norm(v2)
z = np.array([0,0,1])
# side, cw or ccw
x = np.cross(v1u,v2u)
s = np.sign( np.dot(z,x) )
v1n = np.cross( [0,0,s], v1u )
# offset line
p1 = line_points(t1)
p1 = p1 + np.dot( f, v1n )
# offset circle
o = t2.GetCenter()
o = np.array([o.x, o.y])
r = t2.GetRadius() - side*f
c = circle_line_intersect(p1, o, r, 1)
return c
# TODO: implement
def arc_arc_center(t1, t2, f):
return
def normalize(t):
# returns (unit vector) direction of the track
n = np.array([ t.GetEndX()-t.GetX(), t.GetEndY()-t.GetY() ])
return n / t.GetLength()
def tangent(t, end = False):
# find direction of tangent at start (or end) of arc track
to = t.GetCenter()
s = t.GetStart()
e = t.GetEnd()
tp1 = e if end else s
tp2 = s if end else e
# radius direction
rv = np.array([ tp1.x-to.x, tp1.y-to.y, 0]) / t.GetRadius()
# p1 to p2 direction
dx = tp2.x-tp1.x
dy = tp2.y-tp1.y
n = math.sqrt(dx**2+dy**2)
pv = np.array([ dx/n, dy/n, 0])
x = np.cross(rv,pv)
z = np.array([0,0,1])
s = np.sign( np.dot(z,x) )
return np.cross([0,0,s], rv)
# TODO: remove? TBC
def angle_and_bisect(t1, t2):
# find angle and bisect vector between tracks, using tangent if track is arc
# (assumes track1_end == track2_start)
if t1.GetClass() == 'PCB_ARC':
v1 = tangent(t1, True)
else:
t1s = t1.GetStart()
t1e = t1.GetEnd()
v1 = np.array([ t1e.x-t1s.x, t1e.y-t1s.y, 0 ])
v1 = v1 / t1.GetLength()
if t2.GetClass() == 'PCB_ARC':
v2 = tangent(t2)
else:
v2 = np.array([ t2.GetEndX()-t2.GetX(), t2.GetEndY()-t2.GetY(), 0 ])
v2 = v2 / t2.GetLength()
z = np.array([0,0,1])
d = np.dot(v1,v2)
c = np.cross(v1,v2)
# +/- rotation?
s = np.sign( np.dot(z,c) )
# angle
a = s * math.acos(d)
# normalized bisect
b = (v1+v2) / np.linalg.norm(v1+v2)
b = np.cross(b,-z)
b = b / np.linalg.norm(b)
return a, b