-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcomplex_inputs.py
61 lines (47 loc) · 1.86 KB
/
complex_inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from hypothesis import given
from hypothesis.strategies import builds, integers, lists
from itertools import zip_longest
# we can use hypothesis to sample from types other than
# the ones provided by the library. Consider:
class MyComplex():
def __init__(self, a: int, b: int):
self._a = a
self._b = b
def coord_sum(self):
return self._a + self._b
def size(self):
return (self._a**2 + self._b**2)**0.5
def complex_add(n1: MyComplex, n2: MyComplex):
return MyComplex(
n1._a + n2._a,
n1._b + n2._b
)
# we can sample random MyComplex arguments and test `complex_add`
# with the following:
@given(builds(MyComplex, integers()), builds(MyComplex, integers()))
def test_complex_add(n1, n2):
n_add = complex_add(n1, n2)
assert n_add.coord_sum() == (n1.coord_sum() + n2.coord_sum())
# Now, consider the following implementation of a polynomial
# and its addition function:
class Polynomial():
def __init__(self, coefficients: list):
assert 1 <= len(coefficients) <= 6
self._coeffs = coefficients
def degree(self):
if all(map(lambda x: x == 0, self._coeffs)):
return 0
else:
return max(i for i, c in enumerate(self._coeffs) if c != 0)
def __repr__(self):
if all(map(lambda x: x == 0, self._coeffs)):
return '0x^0'
else:
mono_strs = [f'{c}x^{i}' for i, c in enumerate(self._coeffs) if c != 0]
return '+'.join(mono_strs)
def polynomial_add(p1: Polynomial, p2: Polynomial):
new_coeffs = [a+b for a, b in zip_longest(p1._coeffs, p2._coeffs, fillvalue=0)]
return Polynomial(new_coeffs)
# write the test function that generates polynomials and tests the
# property that when adding two polynomials, the degree of the new
# polynomial cannot exceed that of the two added polynomials.