-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg16_cifar10_train.py
111 lines (95 loc) · 4.62 KB
/
vgg16_cifar10_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import tensorflow.keras as keras
import tensorflow as tf
import tensorflow.keras.layers as layers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
batch_size = 32
AUTOTUNE = tf.data.experimental.AUTOTUNE
from tensorflow.keras.applications import VGG16
learning_rates = [ .0001]
for lr in learning_rates:
model = VGG16(weights=None, classes=10, input_shape=(32,32, 3), include_top=False)
last = model.output
x = keras.layers.Flatten(name='flatten')(last)
x = keras.layers.Dense(512, name='fc1', activation='relu')(x)
x = keras.layers.Dropout(.5)(x)
x = keras.layers.Dense(10, name='predictions', activation='softmax')(x)
model = keras.models.Model(inputs=model.input, outputs=x)
model.summary()
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
batch_size = 32
num_classes = 10
epochs = 200
data_augmentation = True
num_predictions = 20
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
opt = keras.optimizers.RMSprop(lr=lr, decay=1.0e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0.1, # set range for random shear
zoom_range=0.1, # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
check = tf.keras.callbacks.ModelCheckpoint(f'./vgg16_cifar100_lf_{lr}.h5', verbose=1, save_best_only=True)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
#use_multiprocessing=True,
callbacks=[check],
validation_data=(x_test, y_test),
verbose=1)
model.load_weights(f'./vgg16_cifar100_lf_{lr}.h5')
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])