-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_log_data.py
114 lines (99 loc) · 2.57 KB
/
plot_log_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#%%
import json
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
#%%
files = os.listdir('./logs/vgg16_cifar10/')
#%%
with open('./logs/refactor_log.json', 'r') as f:
log = json.load(f)
#%%
sns.lineplot(x=[layer['layer'] for layer in log['layer']],
y=[layer['train_time'] for layer in log['layer']])
#%%
data_frame_list = []
for file in files:
with open('./logs/vgg16_cifar10/' + file) as f:
log = json.load(f)
for layer in log['layer']:
data_frame_list.append((
layer['layer'],
layer['loss'],
log['model_epocss'],
log['layer_epochs'],
layer['acc'],
layer['model_loss'],
layer['train_time'],
log['original_acc'],
log['original_loss'],
log['train_time'],
'layer'
))
for layer in log['layer']:
data_frame_list.append((
layer['layer'],
layer['loss'],
log['model_epocss'],
log['layer_epochs'],
layer['fine_tune_acc'],
layer['fine_tune_model_loss'],
layer['train_time'],
log['original_acc'],
log['original_loss'],
log['train_time'],
'fine_tune'
))
#%%
columns = ['layer',
'layer_loss',
'fine_tune_epochs',
'layer_epochs',
'acc',
'model_loss',
'layer_train_time',
'original_acc',
'original_loss',
'model_train_time',
'stage']
#%%
df = pd.DataFrame(data_frame_list, columns=columns)
#%%
top_df = df[df['layer_epochs'] == 4]
top_df = top_df[top_df['fine_tune_epochs'] == 8]
#%%
plt.plot()
sns.lineplot(x='layer', y='acc', hue='stage', data=top_df)
plt.hlines(y=log['original_acc'],
xmin=1,
xmax=12,
colors=['red'],
linestyles='dashed')
plt.show()
#%%
plt.plot()
sns.lineplot(x='layer', y='model_loss', hue='stage', data=top_df)
plt.hlines(y=log['original_acc'],
xmin=1,
xmax=12,
colors=['red'],
linestyles='dashed')
plt.show()
#%%
plt.plot()
sns.lineplot(x='layer', y='layer_train_time', data=df)
plt.show()
#%%
new_df = df[df['layer'] == 12]
new_df = new_df[new_df['stage'] == 'fine_tune']
#%%
plt.plot()
sns.lineplot(x='fine_tune_epochs', y='acc', hue='layer_epochs', data=new_df )
plt.hlines(y=log['original_acc'],
xmin=1,
xmax=16,
colors=['red'],
linestyles='dashed')
plt.show()