forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathshared_load_iterator.h
223 lines (175 loc) · 7.31 KB
/
shared_load_iterator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Epilogue for threadblock scoped GEMMs using Tensor Ops.
The epilogue rearranges the result of a matrix product through shared memory to match canonical
tensor layouts in global memory. Epilogues support conversion and reduction operations.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/array.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/threadblock/output_tile_thread_map.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace threadblock {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Tile iterator used to load output tile from shared memory in epilogue.
///
/// Satisfies: ReadableTileIterator
///
template <
typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap)
typename Element_, ///< Element data type
int MaxAlignment = ThreadMap_::kElementsPerAccess * sizeof_bits<Element_>::value / 8
>
class SharedLoadIterator {
public:
using ThreadMap = ThreadMap_;
using Shape = typename ThreadMap::TileShape;
using Element = Element_;
using Layout = layout::RowMajor;
using TensorRef = TensorRef<Element, Layout>;
using ConstTensorRef = typename TensorRef::ConstTensorRef;
using Index = typename Layout::Index;
using LongIndex = typename Layout::LongIndex;
using TensorCoord = MatrixCoord;
static int const kElementsPerAccess = ThreadMap::kElementsPerAccess;
static int const kMinAlignment = ThreadMap_::kElementsPerAccess * sizeof_bits<Element_>::value / 8;
static int const kAlignment = (MaxAlignment < kMinAlignment ? MaxAlignment : kMinAlignment);
static int const kThreads = ThreadMap::kThreads;
/// Fragment object
using Fragment = Array<
Element,
ThreadMap::Iterations::kColumn *
ThreadMap::Iterations::kRow *
ThreadMap::Iterations::kGroup *
ThreadMap::Iterations::kCluster *
ThreadMap::kElementsPerAccess>;
/// Memory access size
using AccessType = AlignedArray<
Element,
ThreadMap::kElementsPerAccess,
kAlignment>;
/// Vector type used for SMEM loads
using LoadType = AlignedArray<
Element,
const_min(128 / sizeof_bits<Element>::value, ThreadMap::kElementsPerAccess),
const_min(16, kAlignment)
>;
static int const kLoadsPerAccess = AccessType::kElements / LoadType::kElements;
private:
//
// Data members
//
/// Byte-level pointer
uint8_t *byte_pointer_;
/// Stride along adjacent rows
int stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_DEVICE
SharedLoadIterator(
TensorRef ref,
int thread_idx
):
byte_pointer_(reinterpret_cast<uint8_t *>(ref.data())),
stride_((ref.stride(0) * sizeof_bits<Element>::value) / 8) {
TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx);
// Initialize pointer
byte_pointer_ +=
thread_offset.row() * stride_ +
thread_offset.column() * sizeof(AccessType) / kElementsPerAccess;
}
/// Adds a pointer offset in units of Element
CUTLASS_HOST_DEVICE
void add_pointer_offset(LongIndex pointer_offset) {
byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
}
CUTLASS_DEVICE
void add_tile_offset(TensorCoord const &offset) {
byte_pointer_ +=
offset.row() * Shape::kRow * stride_ +
offset.column() * Shape::kColumn * sizeof_bits<Element>::value / 8;
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) const {
CUTLASS_PRAGMA_UNROLL
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
CUTLASS_PRAGMA_UNROLL
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
CUTLASS_PRAGMA_UNROLL
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
uint8_t const *byte_pointer = byte_pointer_ +
row * ThreadMap::Delta::kRow * stride_ +
group * ThreadMap::Delta::kGroup* stride_ +
cluster * ThreadMap::Delta::kCluster * stride_ +
pointer_offset * sizeof_bits<Element>::value / 8;
int frag_row_idx =
(row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster));
LoadType *frag_ptr = reinterpret_cast<LoadType *>(&frag);
LoadType const *memory_pointer = reinterpret_cast<LoadType const *>(byte_pointer);
CUTLASS_PRAGMA_UNROLL
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
int frag_idx = frag_row_idx * ThreadMap::Iterations::kColumn + column;
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < kLoadsPerAccess; ++v) {
frag_ptr[frag_idx * kLoadsPerAccess + v] =
memory_pointer[(column * ThreadMap::Delta::kColumn / kElementsPerAccess) * kLoadsPerAccess + v];
}
}
}
}
}
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void set_smem_base_address(Index address) {
}
/// Loads a fragment
CUTLASS_DEVICE
void load(Fragment &frag) const {
load_with_pointer_offset(frag, 0);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////