-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRadyo_240501_run_preproc.m
executable file
·712 lines (606 loc) · 28.5 KB
/
Radyo_240501_run_preproc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
%% You can start from scratch at this code.
% Things to be checked.
% 1) At which level should be compiled as a function.
% 2) Work with BIDs?
% 3) assert(numel(dcm_funcdirs) == numel(raw_funcdirs), ...
% 'Check desired functional runs and runs from actual scanners');
% 4) Motage code...need further revision. where is "canlab_preproc_show_montage".?
clear;clc
addpath(genpath('~/Programs/essentials'));
% contains SPM, cocoan, canlab
addpath(genpath('~/github/humanfmri_preproc_bids_v2'));
%% Specify required program directories.
add_dirs.fsl_dir = '/home/cocoan/Programs/fsl/bin'; % till /bin
add_dirs.dcm2niix_dir = '';
add_dirs.tedana_dir = '/home/cocoan/Programs/fsl/bin'; %
int_dirs = fieldnames(add_dirs);
for dir_i = 1:numel(int_dirs)
addstr = add_dirs.(int_dirs{dir_i});
if (~isempty(addstr)) && (~contains(getenv('PATH'), addstr))
setenv('PATH', [getenv('PATH'), ':', addstr])
end
end
%% Specify inputs. 1/2
% datdir : char. where your processed outcome will be stored.
% prjname : char. your project name. Every output will be in "$datdir/$prjname"
% subjects : cell (1 x n_subs).
% THIS WILL BE YOUR FUTURE SUBJECT-LEVEL FOLDER NAME.
% e.g.,{"sub-003", "sub-007"}
datdir = '/home/cocoan/nas02/data';
prjname = 'Radyo';
subjects = {'sub-radyo-004'};
%% Specify inputs. 2/2
% dcm_*str : Specifiers that can indicate "func", "fmap", "T1"
% from the scanner. refer to "$dcmscnr_dir"
% e.g., If my resting-state run EPIs are stored as
% "series_36_33_ISO_ME_func_REST01"
% and task run EPIS as
% "series_36_33_ISO_ME_func_TASK01"
% I can specify "$dcm_funcstr" as {'_TASK', '_REST'}
dcm_funcstr = {'HEAT', 'REST'};
dcm_fmapstr = {'_distortion_corr_'};
dcm_T1str = {'_T1_'};
%% Setting Directory
% Should manually move dicom files to "$dcmscnr_dir"
datadir = fullfile(datdir, prjname);
data_imaging_dir = fullfile(datadir, 'Imaging');
preproc_dir = fullfile(data_imaging_dir, 'preprocessed');
dcmscnr_dir = fullfile(data_imaging_dir, 'dicom_from_scanner');
raw_dir = fullfile(data_imaging_dir, 'raw');
if ~exist(dcmscnr_dir, 'dir')
cellfun(@mkdir, fullfile(dcmscnr_dir, subjects))
fprintf("\n\nMove your original dicom files to \n%s\n\n", dcmscnr_dir);
fprintf("It should be look like...\n");
fprintf("~/dicom_from_scanner/%s/%s\n", subjects{1}, 'series_28_33_$SCAN_NAME1')
end
%% Specify Runs & Make Corresponding directories.
clear func_run_num func_tasks
func_run_nums{1} = 1:8; func_tasks{1} = [repmat({'heat'}, 1, 7), {'rest'}];
% func_run_nums{2} = [1:7, 1]; func_tasks{2} = [repmat({'heat'}, 1, 7), {'rest'}];
% one cell per subject.
% e.g.)
% func_run_nums{1} = 1:2 => subjects{1} has 2 runs.
% func_tasks{1} = {'Heat', 'Caps'} => subjects{1} has 'heat' and 'caps' runs.
humanfmri_a1_make_directories(subjects, data_imaging_dir, func_run_nums, func_tasks);
% This results in 'raw' folder under "$data_imaging_dir".
%% Move "dicom_from_scanner" to "~/raw/dicom/"
% This is to preserve dicom files in structured form.
% moving dicom files from "dicom_from_scanner" to "~/raw/dicom/".
for sub_i = 1:numel(subjects)
int_sub = subjects{sub_i};
% set dirs in "dicom_from_scanner"
dcm_dirs = sort_ycgosu(fullfile(dcmscnr_dir, int_sub));
dcm_funcdirs = dcm_dirs(contains(dcm_dirs, dcm_funcstr));
dcm_anatdirs = dcm_dirs(contains(dcm_dirs, dcm_T1str));
dcm_fmapdirs = dcm_dirs(contains(dcm_dirs, dcm_fmapstr));
% set dirs in "~/raw/dicom"
raw_funcdirs = sort_ycgosu(fullfile(raw_dir, int_sub, 'dicom', '*task*'));
raw_anatdir = sort_ycgosu(fullfile(raw_dir, int_sub, 'dicom', '*anat*'), 'char'); %
raw_fmapdir = sort_ycgosu(fullfile(raw_dir, int_sub, 'dicom', '*fmap*'), 'char'); %
assert(numel(dcm_funcdirs) == numel(raw_funcdirs), ...
'Check desired functional runs and runs from actual scanners');
fprintf('====== COPYING functional images of %s to ~/raw/dicom ======\n\n', int_sub)
for func_i = 1:numel(dcm_funcdirs)
[~, scan_runname] = fileparts(dcm_funcdirs{func_i});
copyfile(dcm_funcdirs{func_i}, fullfile(raw_funcdirs{func_i}, scan_runname));
end
fprintf('====== COPYING anatomical images of %s to ~/raw/dicom ======\n\n', int_sub)
for anat_i = 1:numel(dcm_anatdirs)
[~, scan_runname] = fileparts(dcm_anatdirs{anat_i});
copyfile(dcm_anatdirs{anat_i}, fullfile(raw_anatdir, scan_runname));
end
fprintf('====== COPYING fieldmap images of %s to ~/raw/dicom ======\n\n', int_sub)
for fmap_i = 1:numel(dcm_fmapdirs)
[~, scan_runname] = fileparts(dcm_fmapdirs{fmap_i});
copyfile(dcm_fmapdirs{fmap_i}, fullfile(raw_fmapdir, scan_runname));
end
end
%% DICOM 2 Nifti using dcm2niix
% see the examples: https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage#General_Usage
% ".nii"
int_modalities = {'func', 'anat', 'fmap'}; % 'dwi';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
preproc_subdir = fullfile(preproc_dir, subj_is);
for mod_i = 1:numel(int_modalities)
int_modstr = int_modalities{mod_i};
inputdirs = sort_ycgosu(fullfile(data_imaging_dir, 'raw' , subj_is, ...
'dicom', ['*', int_modstr, '*']));
modoutdir = fullfile(preproc_subdir, int_modstr);
for dcm_i = 1:numel(inputdirs)
inputdir = inputdirs{dcm_i};
[~, taskmod_indicator] = fileparts(inputdir);
if contains(modoutdir, taskmod_indicator)
outputdir = modoutdir;
else
outputdir = fullfile(modoutdir, taskmod_indicator);
end
if ~exist(outputdir, 'dir'), mkdir(outputdir); end
system(sprintf('dcm2niix -w 0 -o %s %s', outputdir, inputdir))
end
end
end
fprintf('DONE dcm2niix\n')
%% START MAIN PREPROCESSING...
t_disdaq = 7; % in sec
TR = 0.83; % in sec
echos = [13 29.3 45.58]; %
dirnames2make = {'mean_func', 'qc_images', 'covariates'};
for sub_i = 1:numel(subjects)
for dir_i = 1:numel(dirnames2make)
dir2make = fullfile(preproc_dir, subjects{sub_i}, dirnames2make{dir_i});
if ~exist(dir2make, 'dir'), mkdir(dir2make); end
end
end
%% 1. Disdaq. (prefix: c_)
int_process = 'disdaq';
setenv('FSLOUTPUTTYPE', 'NIFTI');
n_disdaq = ceil(t_disdaq / TR);
output_prefix = 'c_';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, 'func*nii'));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
for e_i = 1:numel(run_niis)
input_nii = run_niis{e_i};
[folder_is, file_is, ext] = fileparts(input_nii);
n_vol = numel(spm_vol(input_nii));
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
system(sprintf('fslroi %s %s %d %d', ...
input_nii, output_nii, n_disdaq, n_vol - n_disdaq));
end
end
end
end
%% 1 - 1. Write mean image and save mean image (QC)
setenv('FSLOUTPUTTYPE', 'NIFTI');
input_prefix = 'c_';
output_prefix = 'mean_beforepreproc_';
ref_echonum = 2; % middle echo as ref.
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
mean_funcdir = fullfile(preproc_dir, subj_is, 'mean_func');
qc_dir = fullfile(preproc_dir, subj_is, 'qc_images');
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
end
input_nii = run_niis{contains(run_niis, sprintf('_e%d', ref_echonum))};
[~, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(mean_funcdir, [output_prefix, file_is ext]);
saveto = fullfile(qc_dir, [output_prefix, file_is, '.png']);
cmd = sprintf('fslmaths %s -Tmean %s', input_nii, output_nii);
if ~exist(output_nii,'file') && ~exist(saveto, 'file')
system(cmd)
draw_montage(output_nii, saveto)
end
end
end
%% 1 - 2. save implicit mask.
setenv('FSLOUTPUTTYPE', 'NIFTI');
input_prefix = '';
output_postfix = '_bet';
ref_echonum = 1; % Using Echo 1 for BET.
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
input_nii = run_niis{contains(run_niis, sprintf('_e%d', ref_echonum))};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [file_is, output_postfix, ext]);
if ~exist(output_nii, 'file')
system(sprintf('bet %s %s -f 0.3 -n -R', input_nii, output_nii));
end
mask_nii = fullfile(folder_is, [file_is, output_postfix, 'mask', ext]);
if ~exist(mask_nii, 'file')
system(sprintf('fslmaths %s -bin %s', output_nii, mask_nii));
end
end
end
%% 1 - 3. SpikeDetect Before Preproc.
input_prefix = 'c_'; input_postfix = '';
mask_prefix = ''; mask_postfix = '_betmask';
ref_echonum = 2; % Using Echo 2 for SpikeDetection...
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
input_nii = run_niis{contains(run_niis, sprintf('_e%d.nii', ref_echonum))};
spk_mat = fullfile(preproc_dir, subj_is,'covariates', sprintf('spike_covariates_%s.mat', taskstr));
if ~exist(spk_mat, 'file')
[folder_is, file_is, ext] = fileparts(input_nii);
mask_nii = sort_ycgosu(fullfile(folder_is, ['*', mask_postfix, ext]), 'char');
dat = fmri_data(input_nii, mask_nii);
dat = spk_calc_save(dat);
spike_covariates.dat = dat.covariates;
spike_covariates.files = input_nii;
save(spk_mat,'spike_covariates');
end
end
end
%% 2. Slice time correction
% The length of TR in our current ME seuqnce is 1 secs. According to
% tedana community, they recommend to use the parameters of one of echos.
% So We acquire the realgnment parameters of Second echo images
input_prefix = 'c_';
output_prefix = 'a';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
run_jsons = sort_ycgosu(fullfile(func_runs{run_i}, '*json'));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
for e_i = 1:numel(run_niis)
input_nii = run_niis{e_i};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if exist(output_nii, 'file'), continue; end
input_json = fullfile(run_jsons{e_i});
fid = fopen(input_json);raw = fread(fid, inf);str = char(raw');
fclose(fid);json_read = jsondecode(str);
slice_time = json_read.SliceTiming .* 1000; % sec -> msec
mbf = json_read.MultibandAccelerationFactor;
slice_timing_job = [];
slice_timing_job{1}.spm.temporal.st.scans{1} = spm_select('expand', {input_nii});
% 1. nslices
Vfist_vol = spm_vol([input_nii, ',1']);
numSlices = Vfist_vol(1).dim(3);
slice_timing_job{1}.spm.temporal.st.nslices = numSlices;
% 2.TR
slice_timing_job{1}.spm.temporal.st.tr = TR;
% 3. Acqui time
slice_timing_job{1}.spm.temporal.st.ta = TR - TR*mbf / numSlices;
% 4. slice order
slice_timing_job{1}.spm.temporal.st.so = slice_time;
slice_timing_job{1}.spm.temporal.st.refslice = min(slice_time);
slice_timing_job{1}.spm.temporal.st.prefix = output_prefix;
% saving slice time correction job
% RUN
spm('defaults', 'fmri'); spm_jobman('initcfg');
spm_jobman('run', slice_timing_job)
end
end
end
fprintf('======RUNNING ST CORRECTION-DONE=====\n');
%% 3-1. Motion correction (realignment)
% The consensus is to do 1) estimate realigment parameter using
% before-slice timing correction images and 2) alignment using after-slice
% timing correction images.
%
% Bit confusing... using 1) param for 2) or using param seperately in 2) ?
% For this code, "using 1) param for 2)"
% 1) Estimate Params
setenv('FSLOUTPUTTYPE', 'NIFTI');
input_prefix = 'c_'; % before slice timing correction.
output_prefix = 'r';
ref_imgnum = 1; % not be used if use_sbref is true.
use_sbref = true;
ref_echonum = 2;
ref_prefix = 'ref_';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
input_nii = run_niis{contains(run_niis, sprintf('_e%d.nii', ref_echonum))};
[folder_is, file_is, ext] = fileparts(input_nii);
ref_nii = fullfile(folder_is, [ref_prefix file_is ext]);
if ~exist(ref_nii, 'file')
if use_sbref
sbref_nii = sort_ycgosu(fullfile(strrep(folder_is, '_bold', '_sbref'), ...
sprintf('*_e%d.nii', ref_echonum)), 'char');
copyfile(sbref_nii, ref_nii);
else
system(sprintf('fslroi %s %s %d %d', input_nii, ref_nii, ref_imgnum-1, 1))
end
end
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
system(sprintf('mcflirt -in %s -reffile %s -o %s -plots -mats', ...
input_nii, ref_nii, output_nii));
mvmts = importdata([output_nii, '.par']);
saveto = fullfile(preproc_dir, subj_is,'qc_images', ['qc_mvmt_' taskstr '.png']);
mvmt_calc_save(mvmts, saveto, 'software', 'FSL');
end
end
end
%% 3-2. Actual Realign
input_prefix = 'ac_';
output_prefix = 'r';
ref_echonum = 2; %
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
end
for e_i = 1:numel(run_niis)
input_nii = run_niis{e_i};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
[~, tempdir] = system('mktemp -d');
tempdir = strtrim(tempdir);
system(sprintf('fslsplit %s %s -t', input_nii, fullfile(tempdir, 'images')));
temp_inlist = filenames(fullfile(tempdir, 'images*.nii'));
temp_outlist = strrep(temp_inlist, fullfile(tempdir, 'images'), fullfile(tempdir, 'rimages'));
mc_mats = sort_ycgosu(fullfile(folder_is, '*mat', 'MAT*'));
for vol_i = 1:numel(temp_inlist)
system(sprintf('flirt -in %s -ref %s -applyxfm -init %s -out %s', ...
temp_inlist{vol_i}, ref_nii, mc_mats{vol_i}, temp_outlist{vol_i}));
end
temp_outlist_cat = strcat(temp_outlist, {' '});
temp_outlist_cat = cat(2, temp_outlist_cat{:});
system(sprintf('fslmerge -t %s %s', output_nii, temp_outlist_cat));
pause(1);
system(sprintf('rm -r %s', tempdir));
end
end
end
end
%% 4. RUN TEDANA
% 1) Writing optimally combined images using three echos by estimating t2*
% 2) Denoising ME-ICA using optimally combined images
input_prefix = 'rac_';
mask_postfix = '_betmask';
output_prefix = 't';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
[folder_is, file_is] = fileparts(run_niis);
folder_is = unique(folder_is);
file_is = unique(cellfun(@(x) x(1:end-3), file_is, 'UniformOutput', false));
folder_is = folder_is{:}; file_is = file_is{:}; %
mask_nii = sort_ycgosu(fullfile(folder_is, ['*' mask_postfix '.nii']), 'char');
assert(numel(run_niis) == numel(echos), 'Check your inputs and number of echos')
n_echos = numel(run_niis);
tedana_outdir = fullfile(folder_is, 'tedana_output');
cmdstr1 = repmat('%s ', 1, n_echos);
cmdstr2 = repmat('%.2f ', 1, n_echos);
cmdstr = sprintf(['tedana -d ', cmdstr1, '-e ' cmdstr2, '--out-dir %s --mask %s' ...
' --fittype curvefit --maxrestart 10 --maxit 500 --tedpca kic'], ...
run_niis{:}, echos, tedana_outdir, mask_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
print_header('Running tedana ', [subj_is, ' ', taskstr]);
system(cmdstr)
gzoutput_nii = fullfile(tedana_outdir, 'desc-denoised_bold.nii.gz');
% refer to "desc-tedana_registry.json" for the file you want.
gunzip(gzoutput_nii)
copyfile(fullfile(tedana_outdir, 'desc-denoised_bold.nii'), output_nii);
end
end
end
%% 5. Distotion correction
setenv('FSLOUTPUTTYPE', 'NIFTI');
epi_enc_dir = 'ap';
input_prefix = 'trac_';
output_prefix = 'dc';
ap_indicator = '*to_ap*';
pa_indicator = '*_64ch_pa_*';
current_paths = split(getenv('PATH'), ':');
fsl_dir = current_paths{contains(current_paths, 'fsl')};
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
fmap_dir = fullfile(preproc_dir, subj_is, 'fmap');
qc_dir = fullfile(preproc_dir, subj_is, 'qc_images');
fmap_combdir = fullfile(fmap_dir, 'distortion_combined');
if ~exist(fmap_combdir, 'dir'), mkdir(fmap_combdir); end
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
ap_nii = sort_ycgosu(fullfile(fmap_dir, [ap_indicator 'nii']), 'char');
pa_nii = sort_ycgosu(fullfile(fmap_dir, [pa_indicator 'nii']), 'char');
ap_json = sort_ycgosu(fullfile(fmap_dir, [ap_indicator 'json']), 'char');
pa_json = sort_ycgosu(fullfile(fmap_dir, [pa_indicator 'json']), 'char');
dc_param = fullfile(fmap_dir, ['dc_param_', epi_enc_dir, '.txt']);
topup_out = fullfile(fmap_combdir, 'topup_out');
topup_fieldout = fullfile(fmap_combdir, 'topup_fieldout');
topup_unwarped = fullfile(fmap_combdir, 'topup_unwarped');
if ~exist([topup_unwarped, '.nii'], 'file')
% calculating field map START...
dc_comb_nii = fullfile(fmap_combdir, 'dc_combined.nii');
system(['fslmerge -t ', dc_comb_nii, ' ', ap_nii, ' ', pa_nii]);
n_ap = numel(spm_vol(ap_nii)); n_pa = numel(spm_vol(pa_nii));
distort_json = {ap_json, pa_json};
rdtime = NaN(1,2);
for i = 1:2
fid = fopen(distort_json{i}); raw = fread(fid, inf); str = char(raw');
fclose(fid); json_read = jsondecode(str);
rdtime(1,i) = json_read.TotalReadoutTime;
end
ap_rdtime = rdtime(1); pa_rdtime = rdtime(2);
fileID = fopen(dc_param, 'w');
dc_param_dat = [repmat([0 -1 0 ap_rdtime], n_ap, 1); repmat([0 1 0 pa_rdtime], n_pa, 1)]; % in case of 'AP'
fprintf(fileID, repmat([repmat('%.4f\t', 1, size(dc_param_dat, 2)), '\n'], 1, size(dc_param_dat, 1)), dc_param_dat');
fclose(fileID);
topup_config = fullfile(fileparts(fsl_dir), 'src/fsl-topup/flirtsch/b02b0.cnf');
system(['topup --imain=', dc_comb_nii, ' --datain=', dc_param, ' --config=', topup_config, ' --out=', topup_out, ...
' --fout=', topup_fieldout, ' --iout=', topup_unwarped]);
% calculating field map DONE...
% Save images of field map - NOT YET... where is "canlab_preproc_show_montage"
% tu_unwarped_png{1} = fullfile(preproc_dir, subj_is,'qc_images', 'topup_unwarped_dir-ap_epi.png');
% tu_unwarped_png{2} = fullfile(preproc_dir, subj_is,'qc_images', 'topup_unwarped_dir-pa_epi.png');
%
% for top_i = 1:numel(tu_unwarped_png)
% tu_before_list = cellstr(strcat(dc_comb_nii, ',', num2str([2*top_i-1;2*top_i])));
% tu_after_list = cellstr(strcat([topup_unwarped '.nii'], ',', num2str([2*top_i-1;2*top_i])));
% draw_montage([tu_before_list; tu_after_list], tu_unwarped_png{top_i});
% drawnow;
% end
% close all;
end
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
for ii = 1:numel(run_niis)
input_nii = run_niis{ii};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
meanoutput_nii = fullfile(folder_is, ['mean_', output_prefix, file_is, ext]);
meanoutput_png = fullfile(qc_dir, ['mean_', output_prefix, file_is, '.png']);
cmd = sprintf(['applytopup --imain="%s" --inindex=1 --topup="%s" --datain="%s"' ...
' --method=jac --interp=spline --out="%s"'], ...
input_nii, topup_out, dc_param, output_nii);
if ~exist(output_nii, 'file') || ~exist(meanoutput_nii, 'file')
system(cmd);
system(sprintf('fslmaths %s -abs %s', output_nii, output_nii)); % removing negative values...?
system(sprintf('fslmaths %s -Tmean %s', output_nii, meanoutput_nii));
draw_montage(meanoutput_nii, meanoutput_png);
end
end
end
end
%% 8. co-registration and normalization
% co-reg: T1 to EPI
t1_indicator = 'anat*T1*';
ref_prefix = 'mean_dctrac_'; %
input_prefix = 'dctrac_'; %
output_prefix = 'w';
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
anat_dir = fullfile(preproc_dir, subj_is, 'anat');
anat_nii = sort_ycgosu(fullfile(anat_dir, [t1_indicator 'nii']), 'char');
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
ref_nii = sort_ycgosu(fullfile(func_runs{run_i}, [ref_prefix, 'func*nii']), 'char');
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
input_nii = run_niis{:};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
% coreg
matlabbatch = [];
print_header('co-registeration', [subj_is, ' ', taskstr]);
matlabbatch{1}.spm.spatial.coreg.estwrite.ref = {[ref_nii ',1']};
matlabbatch{1}.spm.spatial.coreg.estwrite.source = {anat_nii};
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 7;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = 'coreg-';
spm('defaults','fmri');
spm_jobman('initcfg');
spm_jobman('run', matlabbatch);
% segmentation & normalization
matlabbatch = [];
coreg_anat_nii = sort_ycgosu(fullfile(anat_dir, 'coreg-*nii'), 'char');
print_header('normalization', [subj_is, ' ', taskstr]);
for j = 1:6
matlabbatch{1}.spm.spatial.preproc.tissue(j).tpm{1} = [which('TPM.nii') ',' num2str(j)];
end
matlabbatch{1}.spm.spatial.preproc.channel.vols{1} = coreg_anat_nii;
matlabbatch{1}.spm.spatial.preproc.warp.write = [0 1];
matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'subj';
matlabbatch{1}.spm.spatial.preproc.warp.samp = 2;
[~, anat_filename] = fileparts(matlabbatch{1}.spm.spatial.preproc.channel.vols{1});
deformation_nii = fullfile(anat_dir, ['y_' anat_filename '.nii']);
matlabbatch{2}.spm.spatial.normalise.write.subj.def = {deformation_nii};
matlabbatch{2}.spm.spatial.normalise.write.subj.resample = {input_nii};
matlabbatch{2}.spm.spatial.normalise.write.woptions.interp = 7;
matlabbatch{2}.spm.spatial.normalise.write.woptions.prefix = output_prefix;
spm('defaults','fmri');
spm_jobman('initcfg');
spm_jobman('run', matlabbatch);
close all;
end
end
end
%% 9. Smoothing
input_prefix = 'wdctrac_'; %
output_prefix = 's'; %
fwhm = 6;
for sub_i = 1:numel(subjects)
subj_is = subjects{sub_i};
func_runs = sort_ycgosu(fullfile(preproc_dir, subj_is, ...
'func', '*bold*'));
for run_i = 1:numel(func_runs)
[~, taskstr] = fileparts(func_runs{run_i});
try
run_niis = sort_ycgosu(fullfile(func_runs{run_i}, [input_prefix, 'func*nii']));
catch
fprintf('-----%s----%s MISSING------- CONTINUE\n', subj_is, taskstr);
continue
end
input_nii = run_niis{:};
[folder_is, file_is, ext] = fileparts(input_nii);
output_nii = fullfile(folder_is, [output_prefix, file_is, ext]);
if ~exist(output_nii, 'file')
matlabbatch = {};
matlabbatch{1}.spm.spatial.smooth.prefix = output_prefix;
matlabbatch{1}.spm.spatial.smooth.dtype = 0; % data type; 0 = same as before
matlabbatch{1}.spm.spatial.smooth.im = 0; % implicit mask; 0 = no
matlabbatch{1}.spm.spatial.smooth.fwhm = repmat(fwhm, 1, 3); % override whatever the defaults were with this
matlabbatch{1}.spm.spatial.smooth.data = {input_nii};
spm('defaults','fmri');
spm_jobman('initcfg');
spm_jobman('run', matlabbatch);
end
end
end