-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvarious.v
261 lines (233 loc) · 9.55 KB
/
various.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
(** Small examples *)
From iris.algebra Require Import csum agree excl.
From iris.base_logic Require Import invariants.
From iris_ni.logrel Require Import types.
From iris_ni.program_logic Require Import dwp heap_lang_lifting.
From iris.proofmode Require Import proofmode.
From iris.heap_lang Require Import lang proofmode.
From iris_ni.proofmode Require Import dwp_tactics.
From iris_ni.logrel Require Import interp.
From iris_ni.examples Require Import par.
Definition f : val := λ: "x", "x" * #0.
Section f_proof.
Context `{!heapDG Σ}.
Lemma f_proof ξ :
⊢ DWP f & f : ⟦ tarrow (tint High) (tint Low) Low ⟧ ξ.
Proof.
iApply dwp_value.
iModIntro. rewrite interp_eq /=. iModIntro.
iIntros (v1 v2). iDestruct 1 as (x1 x2 -> ->) "%".
dwp_rec. dwp_pures. rewrite !Z.mul_0_r. iApply dwp_value.
rewrite left_id. iModIntro. iExists 0,0. eauto with iFrame.
Qed.
End f_proof.
(** Examples from Huisman-Worah-Sunesen CSFW-06 *)
Definition loop : val := rec: "loop" <> := "loop" #().
Definition t4 : val := λ: "l", ("l" <- #7) ||| (loop #()).
Section t4_proof.
Context `{!heapDG Σ, !spawnG Σ}.
(** According to Huisman's definition of observational determinism
this program is *not* secure. Because there is a trace that assigns
7 to the low location `l`, and there is another trace in which the
right side of the parallel composition starves the lhs, and the
assignment is not executed. Those traces are *not* equivalent up to
stuttering. *)
Lemma t4_safe (l1 l2 : val) ξ :
⟦ tref (tint Low) ⟧ ξ l1 l2 -∗
DWP (t4 l1) & (t4 l2) : ⟦ tprod tunit tunit ⟧ ξ.
Proof.
iIntros "#Hl". dwp_rec. dwp_pures.
iApply (dwp_par (⟦tunit⟧ ξ) (⟦tunit⟧ ξ)).
- iApply (logrel_store with "[Hl]"); first solve_ndisj.
+ by iApply dwp_value.
+ iApply dwp_value. iModIntro. iExists _,_. eauto with iFrame.
- iLöb as "IH". dwp_rec.
iApply "IH".
- iIntros (????) "??". rewrite (interp_eq (tprod _ _)).
iNext. iExists _,_,_,_. eauto with iFrame.
Qed.
End t4_proof.
(** Awkward examples *)
(* awk : tint^h → (tunit → τ) → tint^Low *)
Definition awk : val :=
λ: "v", let: "x" := ref "v" in
λ: "f", "x" <- #1;; "f" #();; !"x".
Definition oneshotR := csumR (exclR unitR) (agreeR unitR).
Class oneshotG Σ := { oneshot_inG :> inG Σ oneshotR }.
Definition oneshotΣ : gFunctors := #[GFunctor oneshotR].
Instance subG_oneshotΣ {Σ} : subG oneshotΣ Σ → oneshotG Σ.
Proof. solve_inG. Qed.
Section awk_proof.
Context `{!heapDG Σ}.
Definition f_ty τ l : type := tarrow tunit τ l.
Lemma awk_typing1 τ l2 ξ :
⊢ DWP awk & awk : ⟦ tarrow (tint Low)
(tarrow (f_ty τ l2) (tint Low) Low) Low ⟧ ξ.
Proof.
iApply logrel_lam. iModIntro. iIntros (i1 i2) "#Hi". iSimpl.
dwp_bind (ref _)%E (ref _)%E. iApply dwp_wand.
{ iApply logrel_alloc. iApply (dwp_value with "Hi"). }
iIntros (r1 r2) "#Hr". dwp_pures.
iApply logrel_lam. iModIntro.
rewrite /f_ty (interp_eq (tarrow _ _ _)). iIntros (f1 f2) "#Hf". iSimpl.
dwp_bind (_ <- _)%E (_ <- _)%E. iApply dwp_wand.
{ iApply logrel_store; first solve_ndisj.
+ by iApply dwp_value.
+ iApply logrel_int. }
iIntros (? ?) "H". iApply (logrel_seq with "[H]").
{ by iApply dwp_value. }
iApply logrel_seq.
{ iApply "Hf". rewrite (interp_eq tunit). eauto with iFrame. }
iApply logrel_deref. rewrite !left_id.
iApply (dwp_value with "Hr").
Qed.
Definition pending γ `{oneshotG Σ} := own γ (Cinl (Excl ())).
Definition shot γ `{oneshotG Σ} := own γ (Cinr (to_agree ())).
Lemma new_pending `{oneshotG Σ} : ⊢ |==> ∃ γ, pending γ.
Proof. by apply own_alloc. Qed.
Lemma shoot γ `{oneshotG Σ} : pending γ ==∗ shot γ.
Proof.
apply own_update.
intros n [f |]; simpl; eauto.
destruct f; simpl; try by inversion 1.
Qed.
Definition shootN := nroot .@ "shootN".
Lemma shot_not_pending γ `{oneshotG Σ} :
shot γ -∗ pending γ -∗ False.
Proof.
iIntros "Hs Hp".
iPoseProof (own_valid_2 with "Hs Hp") as "H".
iDestruct "H" as %[].
Qed.
Lemma awk_typing2 l τ l2 ξ `{oneshotG Σ} :
⊢ DWP awk & awk : ⟦ tarrow (tint l)
(tarrow (f_ty τ l2) (tint Low) Low) Low ⟧ ξ.
Proof.
iApply logrel_lam. iModIntro. iIntros (i1 i2) "#Hi". iSimpl.
dwp_bind (ref _)%E (ref _)%E. iApply dwp_alloc.
iIntros (r1 r2) "Hr1 Hr2". iNext. dwp_pures.
iMod new_pending as (γ) "Hγ".
pose (N := nroot.@"hewwo").
iMod (inv_alloc N _ ((∃ v1 v2, pending γ ∗ r1 ↦ₗ v1 ∗ r2 ↦ᵣ v2)
∨ (shot γ ∗ r1 ↦ₗ #1 ∗ r2 ↦ᵣ #1))%I
with "[Hr1 Hr2 Hγ]") as "#Hinv".
{ iNext. iLeft. iExists _,_. by iFrame. }
iApply logrel_lam. iModIntro.
rewrite /f_ty (interp_eq (tarrow _ _ _)). iIntros (f1 f2) "#Hf". iSimpl.
dwp_bind (_ <- _)%E (_ <- _)%E.
iApply (dwp_wand _ _ _ (λ v1 v2, ⟦ tunit ⟧ ξ v1 v2 ∗ shot γ)%I).
{ iApply dwp_atomic. iInv N as "HN" "Hcl". iModIntro.
iDestruct "HN" as "[HN|[#Hγ [>Hr1 >Hr2]]]";
first iDestruct "HN" as (v1 v2) "[>Hγ [>Hr1 >Hr2]]".
- iApply (dwp_store with "Hr1 Hr2"). iIntros "Hr1 Hr2".
iNext. iMod (shoot with "Hγ") as "#Hγ".
iMod ("Hcl" with "[-]") as "_".
+ iNext. iRight. by iFrame.
+ iModIntro. rewrite (interp_eq tunit). eauto with iFrame.
- iApply (dwp_store with "Hr1 Hr2"). iIntros "Hr1 Hr2".
iNext. iMod ("Hcl" with "[-]") as "_".
+ iNext. iRight. by iFrame.
+ iModIntro. rewrite (interp_eq tunit). eauto with iFrame. }
iIntros (? ?) "[H #Hγ]". iApply (logrel_seq with "[H]").
{ by iApply dwp_value. }
iApply logrel_seq.
{ iApply "Hf". rewrite (interp_eq tunit). eauto with iFrame. }
iApply dwp_atomic. iInv N as "HN" "Hcl". iModIntro.
iDestruct "HN" as "[HN|[_ [>Hr1 >Hr2]]]";
first iDestruct "HN" as (? ?) "[>Hγ' _]".
{ iExFalso. iApply (shot_not_pending with "Hγ Hγ'"). }
iApply (dwp_load with "Hr1 Hr2").
iIntros "Hr1 Hr2". iNext. iMod ("Hcl" with "[-]") as "_".
{ iNext. iRight. by iFrame. }
iModIntro. rewrite !left_id (interp_eq (tint Low)).
iExists 1,1. by eauto.
Qed.
End awk_proof.
(* awk : tint^h → (tunit → τ) → (tref tint^Low) *)
Definition awk2 : val :=
λ: "v", let: "x" := ref "v" in
λ: "f", "x" <- #1;; "f" #();; "x".
(* What would be a good way of verifying this?
If we make an invariant
((∃ v1 v2, pending γ ∗ r1 ↦ₗ v1 ∗ r2 ↦ᵣ v2)
∨ (shot γ ∗ ⟦tref (tint Low)⟧ ξ #r1 #r2))
Then we wouldn't be able to use the `shot` case: after
opening the invariant we will get `▷ ⟦tref (tint Low)⟧ ξ #r1 #r2`.
*)
(* The examples discussed in the appendix *)
Definition p1 (r r' : loc) (h : bool) : expr :=
#r <- #true;; (* r : (ref bool^low)^low *)
#r' <- #true;; (* r' : (ref bool^low)^low *)
let: "x" := if: #h then #r else #r' in (* x : (ref bool^low)^high *)
"x" <- #false;;
!#r'.
Definition p2 (r r' : loc) (h : bool) : expr :=
#r <- #true;;
#r' <- #true;;
let: "x" := if: #h then #r else #r' in
!#r'.
Section p12_proof.
Context `{!heapDG Σ, !spawnG Σ}.
Lemma bad_example (r1 r2 r1' r2' : loc) (h1 h2 : bool) :
⟦ tref (tbool Low) ⟧ Low #r1 #r2 -∗
⟦ tref (tbool Low) ⟧ Low #r1' #r2' -∗
⟦ tbool High ⟧ Low #h1 #h2 -∗
DWP (p1 r1 r1' h1) & (p1 r2 r2' h2) : ⟦ tbool Low ⟧ Low.
Proof.
iIntros "#Hr #Hr' #Hh".
iApply logrel_seq.
{ iApply (logrel_store Low _ _ _ _ (tbool Low)); auto.
- iApply dwp_value. iModIntro. iApply "Hr".
- by iApply logrel_bool. }
iApply logrel_seq.
{ iApply (logrel_store Low _ _ _ _ (tbool Low)); auto.
- iApply dwp_value. iModIntro. iApply "Hr'".
- by iApply logrel_bool. }
(* Attempt by structural reasoning (will fail at `let x = ..`) *)
dwp_bind (if: _ then _ else _)%E (if: _ then _ else _)%E.
iApply (dwp_wand with "[]").
{ iApply logrel_if; repeat iSplit.
- iApply dwp_value. iApply "Hh".
- iApply dwp_value. simpl.
iApply "Hr".
- iApply dwp_value. simpl.
iApply "Hr'".
- iIntros (?).
(* Attempt by symbolic execution (will fail at the store) *)
(* destruct h1, h2. *)
(* { logrel_pures. simpl. admit. } *)
Abort.
Lemma good_example (r1 r2 r1' r2' : loc) (h1 h2 : bool) :
⟦ tref (tbool Low) ⟧ Low #r1 #r2 -∗
⟦ tref (tbool Low) ⟧ Low #r1' #r2' -∗
⟦ tbool High ⟧ Low #h1 #h2 -∗
DWP (p2 r1 r1' h1) & (p2 r2 r2' h2) : ⟦ tbool Low ⟧ Low.
Proof.
iIntros "#Hr #Hr' #Hh".
iApply logrel_seq.
{ iApply (logrel_store Low _ _ _ _ (tbool Low)); auto.
- iApply dwp_value. iModIntro. iApply "Hr".
- by iApply logrel_bool. }
iApply logrel_seq.
{ iApply (logrel_store Low _ _ _ _ (tbool Low)); auto.
- iApply dwp_value. iModIntro. iApply "Hr'".
- by iApply logrel_bool. }
destruct h1, h2.
{ dwp_pures. simpl. iApply (dwp_mono with "[]"); last first.
{ iApply logrel_deref; eauto. iApply dwp_value.
iApply "Hr'". }
simpl. eauto. }
{ dwp_pures. simpl. iApply (dwp_mono with "[]"); last first.
{ iApply logrel_deref; eauto. iApply dwp_value.
iApply "Hr'". }
simpl. eauto. }
{ dwp_pures. simpl. iApply (dwp_mono with "[]"); last first.
{ iApply logrel_deref; eauto. iApply dwp_value.
iApply "Hr'". }
simpl. eauto. }
{ dwp_pures. simpl. iApply (dwp_mono with "[]"); last first.
{ iApply logrel_deref; eauto. iApply dwp_value.
iApply "Hr'". }
simpl. eauto. }
Qed.
End p12_proof.