-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
271 lines (231 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import os
import math
import sys
import pickle
import time
import numpy as np
import shutil
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from model import *
from torch.autograd import Variable
from torch import nn
import torch
import torch.utils
import torch.utils.data
# 1. Train NAOMI on our data, once for each fold
# 2. We use NAOMI one time at test to output a new dataset
# 3. We re-run baseline stuff (SGNet, VRNN, A-VRNN) on the new dataset, with NAOMI
# 4. potentially try incorporating our stuff too?
from helpers import *
def get_model(fold):
save_path = f'out/saved/NAOMI_{fold}_001/model/policy_step1_state_dict_best_pretrain_entire.pth'
model = torch.load(save_path)
return model, save_path
if __name__ == '__main__':
Tensor = torch.FloatTensor
torch.set_default_tensor_type('torch.FloatTensor')
def printlog(line):
print(line)
with open(save_path+'log.txt', 'a') as file:
file.write(line+'\n')
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--trial', type=int, default=42)
parser.add_argument('--model', type=str, default='NAOMI', help='NAOMI, SingleRes')
parser.add_argument('--task', type=str, default='billiard', help='basketball, billiard, eth')
parser.add_argument('--y_dim', type=int, default=2)
parser.add_argument('--rnn_dim', type=int, default=64)
parser.add_argument('--dec1_dim', type=int, default=64)
parser.add_argument('--dec2_dim', type=int, default=64)
parser.add_argument('--dec4_dim', type=int, default=64)
parser.add_argument('--dec8_dim', type=int, default=64)
parser.add_argument('--dec16_dim', type=int, default=64)
parser.add_argument('--n_layers', type=int, default=2, required=False)
parser.add_argument('--seed', type=int, required=False, default=123)
parser.add_argument('--clip', type=int, default=10, help='gradient clipping')
parser.add_argument('--pre_start_lr', type=float, default=1e-3, help='pretrain starting learning rate')
parser.add_argument('--batch_size', type=int, required=False, default=64)
parser.add_argument('--save_every', type=int, required=False, default=50, help='periodically save model')
parser.add_argument('--pretrain', type=int, required=False, default=50, help='num epochs to use supervised learning to pretrain')
parser.add_argument('--highest', type=int, required=False, default=1, help='highest resolution in terms of step size in NAOMI')
parser.add_argument('--cuda', action='store_true', default=True, help='use GPU')
parser.add_argument('--discrim_rnn_dim', type=int, default=64)
parser.add_argument('--discrim_layers', type=int, default=2)
parser.add_argument('--policy_learning_rate', type=float, default=1e-6, help='policy network learning rate for GAN training')
parser.add_argument('--discrim_learning_rate', type=float, default=1e-3, help='discriminator learning rate for GAN training')
parser.add_argument('--max_iter_num', type=int, default=60000, help='maximal number of main iterations (default: 60000)')
parser.add_argument('--log_interval', type=int, default=1, help='interval between training status logs (default: 1)')
parser.add_argument('--draw_interval', type=int, default=200, help='interval between drawing and more detailed information (default: 50)')
parser.add_argument('--pretrain_disc_iter', type=int, default=2000, help="pretrain discriminator iteration (default: 2000)")
parser.add_argument('--save_model_interval', type=int, default=50, help="interval between saving model (default: 50)")
parser.add_argument('--test_only', action='store_true', help='Whether or not to just get test')
args = parser.parse_args()
if not torch.cuda.is_available():
args.cuda = False
# model parameters
params = {
'task' : args.task,
'batch' : args.batch_size,
'y_dim' : args.y_dim,
'rnn_dim' : args.rnn_dim,
'dec1_dim' : args.dec1_dim,
'dec2_dim' : args.dec2_dim,
'dec4_dim' : args.dec4_dim,
'dec8_dim' : args.dec8_dim,
'dec16_dim' : args.dec16_dim,
'n_layers' : args.n_layers,
'discrim_rnn_dim' : args.discrim_rnn_dim,
'discrim_num_layers' : args.discrim_layers,
'cuda' : args.cuda,
'highest' : args.highest,
}
# hyperparameters
pretrain_epochs = args.pretrain
clip = args.clip
start_lr = args.pre_start_lr
batch_size = args.batch_size
save_every = args.save_every
# manual seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if use_gpu:
torch.cuda.manual_seed_all(args.seed)
# build model
policy_net = eval(args.model)(params)
discrim_net = Discriminator(params).double()
if args.cuda:
policy_net, discrim_net = policy_net.cuda(), discrim_net.cuda()
params['total_params'] = num_trainable_params(policy_net)
print(params)
# create save path and saving parameters
save_path = 'out/saved/' + args.model + '_' + args.task + '_%03d/' % args.trial
if not os.path.exists(save_path):
os.makedirs(save_path)
os.makedirs(save_path+'model/')
if args.test_only:
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_best_pretrain.pth'
model = torch.load(filename, map_location=torch.device('cpu'))
policy_net.load_state_dict(model)
out_name = filename.replace('.pth', '_entire.pth')
torch.save(policy_net, out_name)
exit()
# Data
if args.task == 'basketball':
assert False, 'Not supported rn'
test_data = torch.Tensor(pickle.load(open('data/basketball_eval.p', 'rb'))).transpose(0, 1)[:, :-1, :]
train_data = torch.Tensor(pickle.load(open('data/basketball_train.p', 'rb'))).transpose(0, 1)[:, :-1, :]
elif args.task == 'billiard':
assert False, 'Not supported rn'
test_data = torch.Tensor(pickle.load(open('data/billiard_eval.p', 'rb'), encoding='latin1'))[:, :, :]
train_data = torch.Tensor(pickle.load(open('data/billiard_train.p', 'rb'), encoding='latin1'))[:, :, :]
else:
pretrained_path = "./config/fpv_det_train/sgnet_cvae.json"
from run import get_exp_config
fold = args.task
assert fold in ['eth', 'hotel', 'univ', 'zara1', 'zara2'], 'Incorrect fold'
pre_config = get_exp_config(pretrained_path, run_type='test', ckpt=None, fold=fold, gpu_id=0, use_cpu=False,
max_test_epoch=10000, corr=False, epochs=100, no_tqdm=False)
pre_config['load_ckpt'] = True
pre_config['ckpt_name'] = False
from vrnntools.trajpred_trainers.module import ModuleTrainer
from vrnntools.trajpred_trainers.sgnet_cvae import SGNetCVAETrainer
from vrnntools.trajpred_trainers.ego_avrnn import EgoAVRNNTrainer
from vrnntools.trajpred_trainers.ego_vrnn import EgoVRNNTrainer
#assert pre_config['trainer'] == 'module', 'Pretrained type must be module trainer'
if pre_config['trainer'] == 'module':
trainer = ModuleTrainer(config=pre_config)
elif pre_config['trainer'] == 'ego_vrnn':
trainer = EgoVRNNTrainer(config=pre_config)
elif pre_config['trainer'] == 'ego_avrnn':
trainer = EgoAVRNNTrainer(config=pre_config)
elif pre_config['trainer'] == 'sgnet':
trainer = SGNetCVAETrainer(config=pre_config)
_ = trainer.eval(do_eval=False, load_only=True)
test_data = trainer.test_data
val_data = trainer.val_data
train_data = trainer.train_data
#print(test_data.shape, train_data.shape)
# figures and statistics
if os.path.exists('imgs'):
shutil.rmtree('imgs')
if not os.path.exists('imgs'):
os.makedirs('imgs')
# vis = visdom.Visdom(env = args.model + args.task + str(args.trial))
# win_pre_policy = None
# win_pre_path_length = None
# win_pre_out_of_bound = None
# win_pre_step_change = None
############################################################################
################## START SUPERVISED PRETRAIN ##################
############################################################################
# pretrain
best_test_loss = 0
lr = start_lr
teacher_forcing = True
best_epoch = 0
for e in range(pretrain_epochs):
epoch = e+1
print("Epoch: {}".format(epoch))
# draw and stats
# _, _, _, _, _, _, mod_stats, exp_stats = \
# collect_samples_interpolate(policy_net, test_data, use_gpu, e, args.task, name='pretrain_inter', draw=True, stats=True)
update = 'append' if epoch > 1 else None
# win_pre_path_length = vis.line(X = np.array([epoch]), \
# Y = np.column_stack((np.array([exp_stats['ave_length']]), np.array([mod_stats['ave_length']]))), \
# win = win_pre_path_length, update = update, opts=dict(legend=['expert', 'model'], title="average path length"))
# win_pre_out_of_bound = vis.line(X = np.array([epoch]), \
# Y = np.column_stack((np.array([exp_stats['ave_out_of_bound']]), np.array([mod_stats['ave_out_of_bound']]))), \
# win = win_pre_out_of_bound, update = update, opts=dict(legend=['expert', 'model'], title="average out of bound rate"))
# win_pre_step_change = vis.line(X = np.array([epoch]), \
# Y = np.column_stack((np.array([exp_stats['ave_change_step_size']]), np.array([mod_stats['ave_change_step_size']]))), \
# win = win_pre_step_change, update = update, opts=dict(legend=['expert', 'model'], title="average step size change"))
# control learning rate
if epoch == pretrain_epochs // 2:
lr = lr / 10
print(lr)
if args.task != 'basketball' and epoch == pretrain_epochs * 2 // 3:
teacher_forcing = False
# train
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, policy_net.parameters()),
lr=lr)
start_time = time.time()
train_loss = run_epoch(True, policy_net, train_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog('Train:\t' + str(train_loss))
#val_loss = run_epoch(False, policy_net, val_data, clip, optimizer, teacher_forcing=teacher_forcing)
val_loss = run_epoch(False, policy_net, val_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog('Val:\t' + str(val_loss))
# test_loss = run_epoch(False, policy_net, test_data, clip, optimizer, teacher_forcing=teacher_forcing)
# printlog(f'Test:\t' + str(test_loss))
# test_loss = run_epoch(False, None, test_data, clip, optimizer, teacher_forcing=teacher_forcing)
# printlog(f'Base test:\t' + str(test_loss))
epoch_time = time.time() - start_time
printlog('Time:\t {:.3f}'.format(epoch_time))
total_test_loss = val_loss
update = 'append' if epoch > 1 else None
# win_pre_policy = vis.line(X = np.array([epoch]), Y = np.column_stack((np.array([test_loss]), np.array([train_loss]))), \
# win = win_pre_policy, update = update, opts=dict(legend=['out-of-sample loss', 'in-sample loss'], \
# title="pretrain policy training curve"))
# best model on test set
if (best_test_loss == 0 or total_test_loss < best_test_loss) and not teacher_forcing:
best_test_loss = total_test_loss
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_best_pretrain.pth'
torch.save(policy_net.state_dict(), filename)
best_epoch = epoch
printlog('Best model at epoch '+str(epoch))
# periodically save model
if epoch % save_every == 0:
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_'+str(epoch)+'.pth'
torch.save(policy_net.state_dict(), filename)
printlog('Saved model')
printlog('End of Pretrain, Best Val Loss: {:.4f}'.format(best_test_loss))
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_best_pretrain.pth'
model = torch.load(filename, map_location=torch.device('cpu'))
policy_net.load_state_dict(model)
test_loss = run_epoch(False, policy_net, test_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog(f'Test at epoch {best_epoch}:\t' + str(test_loss))
test_loss = run_epoch(False, None, test_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog(f'Base Test at epoch {best_epoch}:\t' + str(test_loss))
# billiard does not need adversarial training
if args.task != 'basketball':
exit()