-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcat_RLtrain.py
514 lines (433 loc) · 24.2 KB
/
cat_RLtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import numpy as np
import torch
import gym
import argparse
import os
from tqdm import trange
from metadrive.envs.real_data_envs.waymo_env import WaymoEnv
from advgen.adv_generator import AdvGenerator
from advgen.adv_generator_rule import AdvGenerator as AdvGeneratorRule
from advgen.adv_generator_hybrid import AdvGenerator as AdvGeneratorHybrid
from advgen.adv_generator_goose import AdvGenerator as AdvGeneratorGoose
from saferl_algo import TD3,TD3_GRU,utils,reskill_model
from saferl_plotter.logger import SafeLogger
import goose_train
def safe_reset(env, force_seed=None):
try:
if force_seed is None:
state, done = env.reset(), False
else:
state, done = env.reset(force_seed=force_seed), False
except:
state, done = env.reset(force_seed=0), False
print('!!!!!!!!!!!!!Reset Bug!!!!!!!!!!!!!!')
return state, done
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval_policy(policy, eval_env, adv_generator, eval_episodes=100, reskill=False):
_rewards = [0.] * eval_episodes
_costs = [0.] * eval_episodes
for ep_num in range(eval_episodes):
state, done = safe_reset(eval_env)
if reskill:
policy.reset_current_skill()
adv_generator.before_episode(eval_env)
while not done:
adv_generator.log_AV_history()
action = policy.select_action(np.array(state))
state, reward, done, info = eval_env.step(action)
# if eval_env.vehicle.crash_vehicle:
# print('Crash vehicle in main')
_rewards[ep_num] = info['route_completion']
_costs[ep_num] = float(eval_env.vehicle.crash_vehicle)
adv_generator.after_episode(update_AV_traj=True,mode='eval')
avg_reward_normal = sum(_rewards) / eval_episodes
avg_cost_normal = sum(_costs) / eval_episodes
_rewards = [0.] * eval_episodes
_costs = [0.] * eval_episodes
for ep_num in range(eval_episodes):
state, done = safe_reset(eval_env)
if reskill:
policy.reset_current_skill()
adv_generator.before_episode(eval_env)
adv_generator.generate(mode='eval')
episode_timesteps = 0
# This is ok being env instead of eval_env, since env.engine == eval_env.engine always
env.engine.traffic_manager.set_adv_info(adv_generator.adv_agent,adv_generator.adv_traj)
while not done:
episode_timesteps += 1
action = policy.select_action(np.array(state))
if hasattr(adv_generator, 'before_step'):
adv_generator.before_step(eval_env, episode_timesteps - 1)
state, reward, done, info = eval_env.step(action)
# if eval_env.vehicle.crash_vehicle:
# print('Crash vehicle in adv')
_rewards[ep_num] = info['route_completion']
_costs[ep_num] = float(eval_env.vehicle.crash_vehicle)
avg_reward_adv = sum(_rewards) / eval_episodes
avg_cost_adv = sum(_costs) / eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: Reward_normal {avg_reward_normal:.3f} Cost_normal {avg_cost_normal: .3f} Reward_adv {avg_reward_adv:.3f} Cost_adv {avg_cost_adv: .3f}")
print("---------------------------------------")
return avg_reward_normal,avg_cost_normal,avg_reward_adv,avg_cost_adv
def goose_eval_policy(policy, goose_policy, eval_env, adv_generator, eval_episodes=100, reskill=False):
# env = eval_env
# pbar = trange(400, 400+eval_episodes)
# # Do something much more similar to cat_advgen.py here
# for i in pbar:
# breakpoint()
# For now, just return default values since we don't need to know the progress
return 0, 0, 0, 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env", default="MDWaymo")
parser.add_argument("--start_timesteps", default=10000, type=int)# Time steps initial random policy is used
parser.add_argument("--eval_freq", default=25000, type=int) # How often (time steps) we evaluate
#parser.add_argument("--eval_freq", default=100, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=128, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument("--policy_noise", default=0.2) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--save_model", action="store_true") # Save model and optimizer parameters
parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name
parser.add_argument("--skill_model", default="") # Load in a skill prior/vae model
parser.add_argument("--no_residual_agent", action='store_true')
parser.add_argument("--no_skill_agent", action='store_true')
parser.add_argument("--resume_timestep", type=int, default=0, help="when to start the experiment")
parser.add_argument('--OV_traj_num', type=int,default=32) # number of opponent vehicle candidates
parser.add_argument('--AV_traj_num', type=int,default=5) # lens of ego traj deque (AV=Autonomous Vehicle is the same as EV(Ego vehcile) in the paper)
parser.add_argument('--min_prob', type=float,default=0.1) # The min probability of using raw data in ADV mode
parser.add_argument('--mode', choices=['replay','cat'],\
help='Choose a mode (replay, cat)', default='cat')
parser.add_argument('--rule_based', action='store_true', help='Change adversarial generation to rule-based instead of learned')
parser.add_argument('--open_loop', action='store_true', help='Change adversarial generation to open-loop instead of learned')
parser.add_argument('--goose_adv', action='store_true', help='Use GOOSE-adv')
parser.add_argument('--goose_adv_path', default='goose_small_act0', help='GOOSE-adv frozen model path')
parser.add_argument('--skill_based_adv_path', default='cat_reskill_initial0', help='Path for skill-based adversarial model')
parser.add_argument('--model_adv_path', default='cat_initial0', help='Path for other model to use for adversary')
parser.add_argument('--collision_offset', default='10', type=str, help='Amount behind calculated trajectory to takeover. -1 = inf, var = random, 10 = 10 steps, etc.')
parser.add_argument('--skill_based_adv', action='store_true', help='Change adversarial generation to skill-based instead of prior-only')
parser.add_argument('--no_prior', action='store_true', help='Skip skill prior, use random sampling from skill space')
parser.add_argument('--model_adv', action='store_true', help='Change adversarial generation to another model instead of prior-only')
parser.add_argument('--idm_adv', action='store_true', help='Change adversarial generation to IDM instead of prior-only')
parser.add_argument('--current_model_adv', action='store_true', help='Actually use the current model being trained too')
parser.add_argument('--current_model_prior', choices=['normal', 'adv'], default='normal', help='For current model skill, which prior to set')
parser.add_argument('--learned_objective', default='', type=str, help='Use decision32 learned model instead of objective.')
parser.add_argument('--learned_objective_mode', default='both', choices=['sc', 'diff', 'both'], type=str, help='Which learned_objective to use')
parser.add_argument('--guided', action='store_true', help='Use performance-guided generation instead of pure-random')
parser.add_argument('--extra_tag', type=str, default='', help='Extra tag for experiment name and model')
tmp_args = parser.parse_known_args()
if tmp_args[0].goose_adv:
assert tmp_args[0].AV_traj_num == 5, 'AV_traj_num must be 5 for GOOSE (# of GOOSE policy steps)'
adv_generator = AdvGeneratorGoose(parser)
elif tmp_args[0].skill_based_adv or tmp_args[0].idm_adv or tmp_args[0].model_adv or tmp_args[0].current_model_adv:
assert np.sum([tmp_args[0].skill_based_adv, tmp_args[0].idm_adv, tmp_args[0].model_adv, tmp_args[0].current_model_adv]) == 1, 'Conflicting adv generation policy'
adv_generator = AdvGeneratorHybrid(parser)
elif tmp_args[0].rule_based:
adv_generator = AdvGeneratorRule(parser)
else:
adv_generator = AdvGenerator(parser)
args = parser.parse_args()
file_name = args.mode
reskill = False
if args.skill_model != '':
file_name = file_name + '_reskill'
reskill = True
if args.no_skill_agent:
file_name = file_name + '_no_sk_agent'
if args.no_residual_agent:
file_name = file_name + '_no_res_agent'
if args.rule_based:
file_name = file_name + '_heuristic'
if args.goose_adv:
file_name = file_name + '_goose'
if args.open_loop:
file_name = file_name + '_open'
if args.guided:
file_name = file_name + '_guided'
if isinstance(adv_generator, AdvGeneratorHybrid):
file_name = file_name + adv_generator.hybrid_name
if len(args.learned_objective):
if args.learned_objective_mode == 'both':
file_name = file_name + '_learned_obj'
else:
file_name = file_name + f'_learned_obj_{args.learned_objective_mode}'
if args.extra_tag != '':
file_name = file_name + f'_{args.extra_tag}'
logger = SafeLogger(exp_name=file_name, env_name=args.env, seed=args.seed,
fieldnames=['route_completion_normal','crash_rate_normal','route_completion_adv','crash_rate_adv'],
debug=args.debug)
# TODO: log config? To be able to restore. Also, log to disk as well or no
if args.save_model and not os.path.exists("./models") and not args.debug:
os.makedirs("./models")
config_train = dict(
data_directory=os.path.join(os.path.dirname(__file__), "./raw_scenes_500"),
start_scenario_index = 0,
num_scenarios=400,
sequential_seed = False,
force_reuse_object_name = True,
horizon = 50,
no_light = True,
no_static_vehicles = True,
reactive_traffic = False,
traffic_need_navigation = True,
vehicle_config=dict(
lidar = dict(num_lasers=30,distance=50, num_others=3),
side_detector = dict(num_lasers=30),
lane_line_detector = dict(num_lasers=12)),
)
config_test = dict(
data_directory=os.path.join(os.path.dirname(__file__), "./raw_scenes_500"),
start_scenario_index = 400,
num_scenarios=100,
crash_vehicle_done=True,
sequential_seed = True,
force_reuse_object_name = True,
horizon = 50,
no_light = True,
no_static_vehicles = True,
traffic_need_navigation = True,
reactive_traffic = False,
vehicle_config=dict(
lidar = dict(num_lasers=30,distance=50, num_others=3),
side_detector = dict(num_lasers=30),
lane_line_detector = dict(num_lasers=12)),
)
# Set seeds
env = WaymoEnv(config=config_train)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
}
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
if reskill:
assert args.start_timesteps == 0, 'For reskill, no random exploration off policy'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
kwargs["device"] = device
prior_path = f'{args.skill_model}/skill_prior_best.pth'
vae_path = f'{args.skill_model}/skill_vae_best.pth'
kwargs["vae_path"] = vae_path
kwargs["prior_path"] = prior_path
kwargs["no_residual_agent"] = args.no_residual_agent
kwargs["no_skill_agent"] = args.no_skill_agent
policy = reskill_model.ReSkillModel(**kwargs)
else:
policy = TD3.TD3(**kwargs)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
policy.load(f"./models/{policy_file}")
# TODO: add this to cat_advgen too
# TODO: warm start to enable or not? In first half (i.e. 500k out of 1e6 steps)
# Warm start options: [no warm start, regular adv gen warm start, adv gen + IDM warm start]
if args.skill_based_adv:
adv_generator.load_skill_model(env, args)
elif args.model_adv:
adv_generator.load_other_model(env, args)
elif args.current_model_adv:
adv_generator.load_current_model(env, args, policy)
elif args.goose_adv:
kwargs = {
"state_dim": goose_train.state_dim,
"action_dim": goose_train.action_dim,
"goal_dim": goose_train.goal_dim,
"max_action": goose_train.max_action,
"discount": args.discount,
"tau": args.tau
}
goose_policy = TD3_GRU.TD3GRU(**kwargs)
goose_policy.load(f"./goose_models/{args.goose_adv_path}")
goose_policy.shared_gru.eval()
goose_policy.actor.eval()
goose_policy.critic.eval()
# TODO: add two of these for both agents
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
if reskill:
replay_buffer = utils.ReplayBuffer(state_dim, policy.n_features)
residual_buffer = utils.ReplayBuffer(policy.residual_agent.actor.l1.in_features, action_dim)
# For guided generation, keep track of recent performances per episode
# Seen keeps track of the episode nums when it is
train_recent_performance = [{'seen': -1, 'cost': []} for _ in range(config_train['num_scenarios'])]
guided_random = np.random.RandomState(args.seed)
def select_scenario(next_episode_num):
choices = np.arange(len(train_recent_performance))
seen_cost = np.array([next_episode_num - x['seen'] for x in train_recent_performance])
perf_cost = np.array([0 if not len(x['cost']) else np.mean(x['cost'][-10:]) for x in train_recent_performance])
base_prob = np.array([1] * len(choices))
weights = [0.0, 0.1, 1.0]
prob_dist = weights[0] * seen_cost + weights[1] * perf_cost + weights[2] * base_prob
prob_dist = prob_dist / np.sum(prob_dist)
selected_seed = int(guided_random.choice(choices, p=prob_dist))
return selected_seed
def update_recent_perf(episode_num, selected_seed, cost):
train_recent_performance[selected_seed]['seen'] = episode_num
train_recent_performance[selected_seed]['cost'].append(cost)
if args.guided:
current_scenario = select_scenario(0)
state, done = safe_reset(env, force_seed=current_scenario)
else:
state, done = safe_reset(env)
if reskill:
policy.reset_current_skill()
adv_generator.before_episode(env)
is_adv_episode = False
reward = 0
episode_reward = 0
episode_cost = 0
episode_timesteps = 0
episode_num = 0
last_eval_step = 0
for t in range(args.resume_timestep, int(args.max_timesteps)):
episode_timesteps += 1
if args.goose_adv and is_adv_episode:
adv_generator.frozen_episode_step(env)
adv_generator.log_AV_history()
if reskill:
# obs_res = torch.cat((obs, self.current_skill, a_dec), 1).cpu().detach().numpy()
last_residual_state = policy.last_obs_res
last_residual_action = policy.last_a_res
last_residual_done = done
last_residual_reward = reward
last_skill_index = policy.last_skill_index
# If *last* timestep was the start of a new skill
if ((episode_timesteps - 2) % policy.seq_len) == 0:
last_skill_state = policy.last_state
last_skill_action = policy.last_noise_vec
last_skill_done = done
# Store the start of episode_reward before the skill started
last_skill_episode_reward = episode_reward - reward
# Select action randomly or according to policy
if t < args.start_timesteps:
action = env.action_space.sample()
else:
action = (
policy.select_action(np.array(state))
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Calling select_action updates policy.last*
if reskill and episode_timesteps > 1:
# obs_res = torch.cat((obs, self.current_skill, a_dec), 1).cpu().detach().numpy()
next_residual_state = np.concatenate([state[np.newaxis, :], policy.last_skill, policy.last_a_dec], 1)
# Done must be False, otherwise if condition wouldn't hold
residual_buffer.add(last_residual_state, last_residual_action, next_residual_state, last_residual_reward, last_residual_done)
# When a skill ends
if last_skill_index > policy.last_skill_index:
last_skill_reward = episode_reward - last_skill_episode_reward
next_skill_state = state[np.newaxis, :]
replay_buffer.add(last_skill_state, last_skill_action, next_skill_state, last_skill_reward, last_skill_done)
# Perform action
if is_adv_episode and hasattr(adv_generator, 'before_step'):
adv_generator.before_step(env, episode_timesteps - 1)
next_state, reward, done, info = env.step(action)
# try:
# next_state, reward, done, info = env.step(action)
# except:
# done = True
# print('!!!!!!!!!!!!!Step Bug!!!!!!!!!!!!!!')
done_bool = float(done)
# Store data in replay buffer
if not reskill:
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
episode_cost += info['cost']
if not reskill:
# Train agent after collecting sufficient data
if t >= (args.start_timesteps if args.batch_size < args.start_timesteps else args.batch_size):
policy.train(replay_buffer, args.batch_size)
else:
target_timesteps = int(args.batch_size * policy.seq_len)
if t - args.resume_timestep >= (args.start_timesteps if target_timesteps < args.start_timesteps else target_timesteps):
policy.train(replay_buffer, residual_buffer, args.batch_size)
if done:
adv_generator.after_episode(update_AV_traj= args.mode=='cat')
# Do one additional action, to store new constants for reskill
if reskill:
# obs_res = torch.cat((obs, self.current_skill, a_dec), 1).cpu().detach().numpy()
last_residual_state = policy.last_obs_res
last_residual_action = policy.last_a_res
last_residual_done = done
last_residual_reward = reward
last_skill_index = policy.last_skill_index
# If *last* timestep was the start of a new skill; given we want to add an additional timestep
if ((episode_timesteps + 1 - 2) % policy.seq_len) == 0:
last_skill_state = policy.last_state
last_skill_action = policy.last_noise_vec
last_skill_done = done
# Store the start of episode_reward before the skill started
last_skill_episode_reward = episode_reward - reward
action = (
policy.select_action(np.array(state))
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
next_residual_state = np.concatenate([state[np.newaxis, :], policy.last_skill, policy.last_a_dec], 1)
# Done must be False, otherwise if condition wouldn't hold
residual_buffer.add(last_residual_state, last_residual_action, next_residual_state, last_residual_reward, True)
last_skill_reward = episode_reward - last_skill_episode_reward
next_skill_state = state[np.newaxis, :]
replay_buffer.add(last_skill_state, last_skill_action, next_skill_state, last_skill_reward, True)
# replay_buffer.next_state[-4:] - replay_buffer.state[-5:-1]
print('#'*20)
print(f"Total T: {t + 1} Episode Num: {episode_num + 1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f} Cost: {episode_cost:.3f}")
print(f"arrive destination: {info['arrive_dest']} , route_completion: {info['route_completion']}, out of road:{info['out_of_road']} ")
# Reset environment
if args.goose_adv and is_adv_episode:
ego_crash = env.vehicle.crash_vehicle
adv_generator.frozen_after_episode(goose_policy, env, ego_crash)
adv_gen_done = adv_generator.frozen_should_end(env)
if adv_gen_done:
# If adv_gen_done, we should call frozen_new_episode, otherwise no need...
adv_generator.frozen_new_episode(env)
# Evaluate episode
if t - last_eval_step > args.eval_freq:
last_eval_step = t
env.close()
eval_env = WaymoEnv(config=config_test)
if args.goose_adv:
evalRC_normal, evalCrash_normal, evalRC_adv, evalCrash_adv = goose_eval_policy(policy, goose_policy, eval_env, adv_generator, reskill=reskill)
else:
evalRC_normal, evalCrash_normal, evalRC_adv, evalCrash_adv = eval_policy(policy, eval_env, adv_generator, reskill=reskill)
eval_env.close()
logger.update([evalRC_normal, evalCrash_normal, evalRC_adv, evalCrash_adv], total_steps=t + 1)
env = WaymoEnv(config=config_train)
if args.save_model and not args.debug: policy.save(f"./models/{file_name}")
if args.guided:
# Introduce guided stuff, based on past performance
update_recent_perf(episode_num, current_scenario, episode_cost)
current_scenario = select_scenario(episode_num + 1)
state, done = safe_reset(env, current_scenario)
else:
state, done = safe_reset(env)
if reskill:
policy.reset_current_skill()
adv_generator.before_episode(env)
if args.mode == 'cat' and np.random.random() > max(1-(2*t/args.max_timesteps)*(1-args.min_prob),args.min_prob):
print('ADVGEN')
adv_generator.generate()
is_adv_episode = True
else:
print('NORMAL')
is_adv_episode = False
if args.goose_adv and is_adv_episode:
adv_generator.frozen_resume_episode(env)
adv_generator.frozen_set_info(env)
adv_generator.frozen_before_episode()
else:
env.engine.traffic_manager.set_adv_info(adv_generator.adv_agent,adv_generator.adv_traj)
episode_reward = 0
episode_cost = 0
episode_timesteps = 0
episode_num += 1