-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.py
310 lines (272 loc) · 13.2 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import re
import sys
import random
import pickle
import argparse
from collections import Counter
import torch
import unicodedata
"""
By Youngmin Kim and Kalvin Chang
"""
class DataHandler:
"""
Data format:
ex: { 'pi:num':
{'protoform':
{
'Latin': ['p', 'i', 'n', 'ʊ', 'm']
},
'daughters':
{'Romanian': ['p', 'i', 'n'],
'French': ['p', 'ɛ', '̃'],
'Italian': ['p', 'i', 'n', 'o'],
'Spanish': ['p', 'i', 'n', 'o'],
'Portuguese': ['p', 'i', 'ɲ', 'ʊ']
}
},
...
}
"""
def __init__(self, dataset_name):
self._dataset_name = dataset_name
def _read_tsv(self, fpath):
"""
Assumes the first row contains the languages (daughter and proto-lang)
Assumes the first column is the protoform (or characters in the case of Chinese)
Returns a list of (protoform, daughter forms) tuples
"""
with open(fpath) as fin:
langs = fin.readline().strip().split('\t')
if "chinese" in self._dataset_name:
langs = langs[1:] # first column is character
d = []
for line in fin:
tkns = line.strip().split('\t')
d.append((tkns[0], tkns[1:]))
return langs, d
def _clean_middle_chinese_string(self, clean_string):
# assumes the string looks like kʰwen² - segments + tone in superscript
# if there are pronunciation variants, take the first one
if '/' in clean_string:
clean_string = clean_string.split('/')[0]
tone = {
'¹': '平',
'²': '上',
'³': '去',
'⁴': '入'
}[clean_string[-1]]
return clean_string[:-1], tone
def _clean_sinitic_daughter_string(self, raw_string):
# only keep first entry for multiple variants (polysemy, pronunciation variation, etc.)
# selection is arbitrary -> can also be removed altogether
clean_string = raw_string
if '|' in raw_string:
clean_string = raw_string.split('|')[0]
if '/' in raw_string:
clean_string = raw_string.split('/')[0]
# remove chinese characters
subtokens = re.findall('([^˩˨˧˦˥]+)([˩˨˧˦˥]+)', clean_string)
tone = None
if subtokens:
subtokens = subtokens[0]
clean_string = subtokens[0]
tone = subtokens[1]
return clean_string, tone
def sinitic_tokenize(self, clean_string, merge_diacritics=False):
# for some reason, epitran is outputting in unicode composed form
clean_string = unicodedata.normalize('NFD', clean_string)
# swap order of nasalization and vowel length marker - i̯ːu
# the diphthong merger code assumes that the vowel length is marked before the semivowel
clean_string = clean_string.replace('̯̃', '̯̃')
tkns = list(clean_string)
# affricate - should always be merged
while '͡' in tkns:
i = tkns.index('͡')
tkns = tkns[:i-1] + [''.join(tkns[i-1: i+2])] + tkns[i+2:]
tkns = [tkn for tkn in tkns if tkn != '͡']
# diacritics - optionally merge
if merge_diacritics:
vowel_diacritics = {'ː', '̃', '̞', '̠', '̱'}
diacritics = vowel_diacritics | {'̍', '̩', 'ʰ', 'ʷ'}
# source: https://en.wikipedia.org/wiki/IPA_vowel_chart_with_audio
vowels = { 'i', 'y', 'ɨ', 'ʉ', 'ɯ', 'u', 'ɪ', 'ʏ', 'ʊ', 'e', 'ø', 'ɘ', 'ɵ', 'ɤ', 'o', 'ə', 'ɛ', 'œ', 'ɜ', 'ɞ', 'ʌ', 'ɔ', 'æ', 'ɐ', 'a', 'ɶ', 'ä', 'ɑ', 'ɒ' }
suprasegmentals = set()
for v in vowels:
for d in vowel_diacritics:
suprasegmentals.add(v + d)
vowels |= suprasegmentals
mid_vowels = {'e̞', 'ø̞', 'ə', 'ɤ̞', 'o̞'}
vowels |= mid_vowels
# ensures there's no overlap between the two
# ensure there's no diacritic that's a standalone, unmerged token
while (set(diacritics) | set('̯')) & set(tkns):
for i in range(len(tkns)):
if tkns[i] in diacritics:
# merge the previous, (i - 1)th, character with the diacritic
tkns = tkns[:i-1] + [''.join(tkns[i-1: i+1])] + tkns[i+1:]
break
# breve indicates diphthong / triphthongs. merge the entire diphthong
elif tkns[i] == '̯':
# rule: if final vowel and has the breve, it's a diphthong. ex: ei̯
if i >= 2 and tkns[i - 2] in vowels:
assert tkns[i - 1] in vowels
tkns = tkns[:i - 2] + [''.join(tkns[i - 2: i + 1])] + tkns[i + 1:]
break
# rule: if first vowel (no previous vowels) and has the breve, it's a diphthong. ex: i̯a
# at this point, lengthened vowels should have been merged already
elif tkns[i - 1] in vowels:
assert tkns[i + 1] in vowels
# rule: if 2 breves exist, then it's a triphthong. ex: i̯oʊ̯
if i + 1 < len(tkns) and '̯' in tkns[i + 1:]:
end = (i + 1) + tkns[i + 1:].index('̯')
# merge the whole thing
tkns = tkns[:i - 1] + [''.join(tkns[i - 1: end + 1])] + tkns[end + 1:]
else:
# diphthong
tkns = tkns[:i - 1] + [''.join(tkns[i - 1: i + 2])] + tkns[i + 2:]
break
return tkns
def tokenize(self, string):
return list(string)
def generate_split_datasets(self):
split_ratio = (70, 10, 20) # train, dev, test
langs, data = self._read_tsv(f'./data/{self._dataset_name}.tsv')
protolang = langs[0]
cognate_set = {}
cognate_counter = Counter()
for cognate, tkn_list in data:
entry = {}
daughter_sequences = {}
if "chinese" in self._dataset_name:
mc_string, mc_tone = self._clean_middle_chinese_string(tkn_list[0])
# we assume there is always a tone for the MC string
mc_tkns = self.sinitic_tokenize(mc_string, merge_diacritics=True) + [mc_tone]
for dialect, tkn in zip(langs[1:], tkn_list[1:]):
if not tkn or tkn == '-':
continue
daughter_string, daughter_tone = self._clean_sinitic_daughter_string(tkn)
daughter_tkns = self.sinitic_tokenize(daughter_string, merge_diacritics=True)
if daughter_tone:
daughter_tkns += [daughter_tone]
daughter_sequences[dialect] = daughter_tkns
entry['protoform'] = {
protolang: mc_tkns
}
entry['daughters'] = daughter_sequences
# the same character could have cognate sets of pronunciation variants
cognate_counter[cognate] += 1
cognate = cognate + str(cognate_counter[cognate])
cognate_set[cognate] = entry
else:
protolang_tkns = self.tokenize(cognate)
for lang, tkn in zip(langs[1:], tkn_list):
if not tkn or tkn == '-':
continue
daughter_tkns = self.tokenize(tkn)
daughter_sequences[lang] = daughter_tkns
entry['protoform'] = {
protolang: protolang_tkns
}
entry['daughters'] = daughter_sequences
cognate_set[cognate] = entry
dataset = {}
proto_words = list(cognate_set.keys())
random.shuffle(proto_words)
dataset['train'] = proto_words[0: int(len(proto_words) * split_ratio[0]/sum(split_ratio))]
dataset['dev'] = proto_words[len(dataset['train']): int(len(proto_words) * (split_ratio[0] + split_ratio[1])/sum(split_ratio))]
dataset['test'] = proto_words[len(dataset['train']) + len(dataset['dev']): ]
dataset_path = f'data/{self._dataset_name}'
if not os.path.isdir(dataset_path):
os.mkdir(dataset_path)
for data_type in dataset:
subdata = {protoword: cognate_set[protoword] for protoword in dataset[data_type]}
with open(f'data/{self._dataset_name}/{data_type}.pickle', 'wb') as fout:
pickle.dump((langs, subdata), fout)
@classmethod
def load_dataset(cls, fpath):
vocab = set() # set of possible phonemes in the daughters and the protoform
with open(fpath, 'rb') as fin:
(langs, data) = pickle.load(fin)
# list format enables shuffling
dataset = []
for cognate, entry in data.items():
for lang, target in entry['protoform'].items():
vocab.update(target)
for lang, source in entry['daughters'].items():
vocab.update(source)
dataset.append((cognate, entry))
return dataset, vocab, langs
@classmethod
def get_cognateset_batch(cls, dataset, langs, C2I, L2I, device):
"""
Convert both the daughter and protoform character lists to indices in the vocab
"""
C2I = C2I._v2i
cognatesets = {}
protolang = langs[0]
for cognate, entry in dataset:
# L is the length of the cognate set - number of tokens in the set, including separators
# lang_tensor specifies the language for each token in the input - (L,)
# input_tensor specifies the input tensor - (L,)
# target_tensor specifies the target tensor - (T,)
# 1. convert the chars to indices
# 2. then zip with the lang - List of (lang, index tensor)
# 3. in the Embedding layer, add the BOS/EOS and the separator embeddings and do the language and char embeddings
# the languages are supplied so the model knows what language embedding to apply
target_tokens = []
target_langs = []
for lang, char in [('sep', "<")] + \
[(protolang, char) for char in entry["protoform"][protolang]] + \
[('sep', ">")]:
target_tokens.append(C2I[char if char in C2I else "<unk>"])
target_langs.append(L2I[lang])
# improvement: don't do the to(device) here - move out to main.py
target_tokens = torch.tensor(target_tokens).to(device)
target_langs = torch.tensor(target_langs).to(device)
# example cognate set (as a string)
# input: <*French:croître*Italian:crescere*Spanish:crecer*Portuguese:crecer*Romanian:crește*>
# protoform: <crescere>
# note that the languages will be treated as one token
# start of sequence
source_tokens = [C2I["<"]]
source_langs = [L2I['sep']]
for lang in langs[1:]:
source_token_sequence = [C2I['*'], C2I[lang], C2I[':']]
# C2I treats the language tag as one token
source_lang_sequence = [L2I['sep']] * 3
# incomplete cognate set
if lang not in entry['daughters']:
source_token_sequence.append(C2I['-'])
source_lang_sequence.append(L2I[lang])
else:
raw_source_sequence = entry['daughters'][lang]
# note: C2I will recognize each language's name as a token, so it will not go to UNK
for char in raw_source_sequence:
source_token_sequence.append(C2I[char if char in C2I else "<unk>"])
source_lang_sequence.append(L2I[lang])
source_tokens += source_token_sequence
source_langs += source_lang_sequence
# end of sequence
source_tokens += [C2I["*"], C2I[">"]]
source_langs += [L2I['sep'], L2I['sep']]
# print(''.join([I2C[idx] for idx in source_tokens]))
# print([(langs + ['sep'])[idx] for idx in source_langs])
source_tokens = torch.tensor(source_tokens).to(device)
source_langs = torch.tensor(source_langs).to(device)
# source_tokens: (L,)
# source_langs: (L,)
# target_tokens: (T,)
# target_langs: (T,)
# used when calculating the loss
cognatesets[cognate] = (source_tokens, source_langs, target_tokens, target_langs)
return cognatesets
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True, help='chinese_hou2004/chinese_wikihan2022')
parser.add_argument('--seed', type=int, help='seed value')
args = parser.parse_args()
random.seed(args.seed)
d = DataHandler(args.dataset)
d.generate_split_datasets()