-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
148 lines (135 loc) · 5.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
from tensorflow.keras import layers as l
from tensorflow.keras import models as m
from tensorflow_probability import distributions as tfd
import numpy as np
import matplotlib.pyplot as plt
import os
import argparse
import matplotlib.animation as anim
if __name__ == "__main__":
save_dir = os.path.join(os.getcwd(), "Figures")
parser = argparse.ArgumentParser()
parser.add_argument("--save", action="store_true")
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--name", type=str, default="1")
parser.add_argument("--mean", type=str, default="linear")
parser.add_argument("--reduction", type=int, default=10)
parser.add_argument("--epistemic", action="store_true")
parser.add_argument("--droprate", type=float, default=0.5)
args = parser.parse_args()
save = args.save
epochs = args.epochs
name = args.name
mean_type = args.mean
red = args.reduction
epistemic = args.epistemic
drop_rate = args.droprate
col_pred = "darkviolet"
col_true = "dodgerblue"
samples = 10000
batches = 2
x = np.linspace(0, 2 * np.pi, samples)
sigma = np.cos(x) * 5 + 6
if mean_type == "linear":
mu = x * 5
elif mean_type == "cosine":
mu = np.cos(x * 3) * 5
target_data = np.empty(shape=(batches, samples))
input_data = np.empty(shape=(batches, samples))
for i in range(batches):
normal_samples = np.random.normal(loc=mu, scale=sigma, size=samples)
target_data[i] = normal_samples
input_data[i] = x
input_model_data = input_data.flatten().reshape(-1, 1)
target_model_data = target_data.flatten().reshape(-1, 1)
plt.figure(figsize=(10,7))
plt.scatter(input_model_data.flatten()[::red], target_model_data.flatten()[::red], color=col_true, label="True Samples", s=3)
# Create Neural Network model for mean and variance
i = l.Input(shape=(1,))
f = l.Dense(100, "relu")(i)
if epistemic:
f = l.Dropout(drop_rate)(f)
f = l.Dense(100, "relu")(f)
if epistemic:
f = l.Dropout(drop_rate)(f)
f = l.Dense(100, "relu")(f)
if epistemic:
f = l.Dropout(drop_rate)(f)
mean_var = l.Dense(2, None)(f)
model = m.Model(i, mean_var)
# Create Normal distribution for log-likelihood loss
def variance(v):
return 1e-3 + tf.math.softplus(0.05 * v)
def distr(x):
return tfd.Normal(loc=x[..., :1], scale=variance(x[..., -1:]))
# Compile model for optimization
model.compile(optimizer="adam", loss=lambda y, y_hat: -distr(y_hat).log_prob(y))
# Optimize the model with negative log-likelihood loss
history = model.fit(x=input_model_data, y=target_model_data, epochs=epochs, shuffle=True, validation_split=.3)
loss = history.history
# Predict mean and variance logits
preds = model.predict(input_model_data)
# Samples from the model distribution
model_samples = distr(preds).sample(1)
# Plot
plt.suptitle("Aleatoric Uncertainty")
plt.scatter(input_model_data.flatten()[::red], model_samples.numpy().flatten()[::red], color=col_pred,
label="Model Samples", s=2)
plt.title("Samples")
plt.legend()
if save:
plt.savefig(os.path.join(save_dir, f"samples_{name}.png"))
# Plot preds
preds2 = model.predict(x[:, None])
mu_pred = preds2[:, 0]
sigma_pred = variance(preds2[..., -1:])
sigma_pred = sigma_pred[:]
fig, ax = plt.subplots(2, figsize=(10,7))
fig.suptitle("Parameters Prediction")
ax[0].plot(x, mu_pred, label="Pred Mean", color=col_pred)
ax[0].plot(x, mu, label="True Mean", color=col_true)
ax[0].set_title("mu")
ax[0].legend()
ax[1].plot(x, sigma_pred, label="Pred Variance", color=col_pred)
ax[1].plot(x, sigma, label="True Variance", color=col_true)
ax[1].set_title("Sigma")
ax[1].legend()
plt.tight_layout()
if save:
plt.savefig(fname=os.path.join(save_dir, f"params_{name}.png"))
if epistemic:
# Plot Epistemic Uncertainty
parameters_samples = []
for i in range(10):
params = model(x[::red, None], training=True)
parameters_samples.append(params)
fig3, ax3 = plt.subplots(2, figsize=(10,7))
fig3.suptitle("Data and Model Samples: Epistemic Uncertainty")
for i in range(len(parameters_samples)):
params = parameters_samples[i]
mu_pred = params[:, 0]
mu_pred = mu_pred.numpy().flatten()
var_pred = variance(params[:, 1:])
var_pred = var_pred.numpy().flatten()
if i == len(parameters_samples)-1:
ax3[0].scatter(x[::red], mu_pred, color=col_pred, s=1, label="Pred Mean samples")
ax3[1].scatter(x[::red], var_pred, color=col_pred, s=1, label="Pred Variance samples")
else:
ax3[0].scatter(x[::red], mu_pred, color=col_pred, s=1)
ax3[1].scatter(x[::red], var_pred, color=col_pred, s=1)
ax3[0].plot(x, mu, label="True Mean", color=col_true, linewidth=3)
ax3[1].plot(x, sigma, label="True Variance", color=col_true, linewidth=3)
ax3[1].set_title("Sigma")
ax3[0].set_title("mu")
plt.legend()
if save:
plt.savefig(fname=os.path.join(save_dir, f"uncertainty_{name}.png"))
plt.figure(figsize=(10,7))
labels = ["Train Log-Likelihood", "Test Log-Likelihood"]
for i, k in enumerate(loss.keys()):
plt.plot(loss[k], label=f"{labels[i]}")
plt.legend()
if save:
plt.savefig(fname=os.path.join(save_dir, f"loss_{name}.png"))
plt.show()