-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlr.py
186 lines (162 loc) · 5.67 KB
/
lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
# @时间 : 2018年3月2日 16:36
# @创建人 : Kchen
# @作用 :
"""
import pandas as pd
import numpy as np
import statsmodels.api as sm
from pandas import Series, DataFrame
from datetime import datetime
desired_width = 320
pd.set_option('display.width', desired_width)
class Logistic:
def __init__(self, X, y):
self.X = X
self.y = y
self.results = None
self.model = None
def model_fit(self, constant=True, stepwise=None, sls=0.05, alpha=None, verbose=True):
"""
模型拟合
"""
X = self.X
y = self.y
# 变量筛选-前向选择 VS 后向选择
if stepwise == "FS" and X.shape[1] > 1:
varlist = self._forward_selected_logit(X, y)
X = X.ix[:, varlist]
elif stepwise == "BS" and X.shape[1] > 1:
varlist = self._backward_selected_logit(X, y, sls=sls)
X = X.ix[:, varlist]
# 截距项-只包含截距项拟合 VS 只带有截距项的拟合
if constant:
X = sm.add_constant(X)
model = sm.Logit(y, X, missing='drop')
# 拟合带有正则项的逻辑回归方程,alpha=0.0001
if alpha != None:
results = model.fit_regularized(alpha=alpha)
else:
results = model.fit()
# 展示模型拟合结果
if verbose:
result_summary = results.summary()
print(result_summary)
for idx, table in enumerate(result_summary.tables):
print('保存第{}个结果'.format(idx))
with open("%s_result.csv" % idx, "w") as fcsv:
fcsv.write(table.as_csv())
self.results = results
self.model = model
return model, results
def model_desc(self):
"""
模型拟合信息
"""
rlt = {
# 1.入参
"模型": "二元logistic模型",
"使用的观测个数": self.results.nobs,
"含缺失值观测个数": self.X.shape[0] - self.results.nobs,
"总观测个数": self.X.shape[0],
"自变量": list(self.X.columns),
# 2.似然比
"似然比": self.results.llr,
"自由度": self.results.df_model,
"似然比p值": self.results.llr_pvalue,
# 3.模型残差
"残差": self.results.resid_generalized,
"标准化残差": self.results.resid_pearson,
"resid_response": self.results.resid_response,
# 4.AIC,BIC,似然函数值
'aic': self.results.aic,
'bic': self.results.bic,
'-2*logL': -2 * self.results.llf,
"伪R方": self.results.prsquared,
# 5.其他信息
"方法": "最大似然估计",
"日期时间": datetime.now()
}
return rlt
def confusion_matrix(self):
"""
混淆矩阵
"""
cm = DataFrame(self.results.pred_table())
cm.index.name = '实际结果'
cm.columns.name = '预测结果'
return cm
def cov_matrix(self, normalized=False):
"""
cov_matrix
"""
if normalized:
rlt = self.results.normalized_cov_params
else:
rlt = self.results.cov_params()
return rlt
def model_predict(self, X=None):
"""
模型预测
"""
pred = self.results.predict(X)
pred = Series(pred)
return pred
def _forward_selected_logit(self, X, y):
"""
evaluated by adjusted R-squared
"""
import statsmodels.formula.api as smf
data = pd.concat([X, y], axis=1)
response = y.columns[0]
remaining = set(X.columns)
selected = []
current_score, best_new_score = 0.0, 0.0
while remaining and current_score == best_new_score:
scores_with_candidates = []
for candidate in remaining:
formula = "{} ~ {} + 1".format(response, ' + '.join(selected + [candidate]))
print(formula)
mod = smf.logit(formula, data).fit()
score = mod.prsquared
scores_with_candidates.append((score, candidate))
scores_with_candidates.sort(reverse=False)
best_new_score, best_candidate = scores_with_candidates.pop()
if current_score < best_new_score:
remaining.remove(best_candidate)
selected.append(best_candidate)
current_score = best_new_score
return selected
def _backward_selected_logit(self, X, y, sls=0.05):
"""
backward selection.
sls: 根据p值的大小筛选
"""
import statsmodels.formula.api as smf # 导入相应模块
data = pd.concat([X, y], axis=1) # 合并数据
# 提取X,y变量名
var_list = X.columns
response = y.columns[0]
# 首先对所有变量进行模型拟合
while True:
formula = "{} ~ {} + 1".format(response, ' + '.join(var_list))
mod = smf.logit(formula, data).fit()
p_list = mod.pvalues.sort_values()
if p_list[-1] > sls:
# 提取p_list中最后一个index
var = p_list.index[-1]
# var_list中删除
var_list = var_list.drop(var)
else:
break
return var_list
if __name__ == '__main__':
import pandas as pd
import numpy as np
X = pd.read_csv("X.csv",index_col=0)
y = pd.read_csv("y.csv",index_col=0)
lr = Logistic(X,y)
# lr.model_fit(stepwise='BS')
lr.model_fit(alpha=0.00001)