diff --git a/docs/presentations/sedac-open-science-brinks-01_09_24.html b/docs/presentations/sedac-open-science-brinks-01_09_24.html index 3a91cb5..97d1c10 100644 --- a/docs/presentations/sedac-open-science-brinks-01_09_24.html +++ b/docs/presentations/sedac-open-science-brinks-01_09_24.html @@ -440,7 +440,7 @@ - + @@ -488,9 +488,74 @@ width: 0.8em; margin: 0 0.8em 0.2em -1em; vertical-align: middle; } + +pre > code.sourceCode { white-space: pre; position: relative; } +pre > code.sourceCode > span { display: inline-block; line-height: 1.25; } +pre > code.sourceCode > span:empty { height: 1.2em; } +.sourceCode { overflow: visible; } +code.sourceCode > span { color: inherit; text-decoration: inherit; } +div.sourceCode { margin: 1em 0; } +pre.sourceCode { margin: 0; } +@media screen { +div.sourceCode { overflow: auto; } +} +@media print { +pre > code.sourceCode { white-space: pre-wrap; } +pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } +} +pre.numberSource code +{ counter-reset: source-line 0; } +pre.numberSource code > span +{ position: relative; left: -4em; counter-increment: source-line; } +pre.numberSource code > span > a:first-child::before +{ content: counter(source-line); +position: relative; left: -1em; text-align: right; vertical-align: baseline; +border: none; display: inline-block; +-webkit-touch-callout: none; -webkit-user-select: none; +-khtml-user-select: none; -moz-user-select: none; +-ms-user-select: none; user-select: none; +padding: 0 4px; width: 4em; +} +pre.numberSource { margin-left: 3em; padding-left: 4px; } +div.sourceCode +{ color: #f8f8f2; background-color: #282a36; } +@media screen { +pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } +} +code span { color: #f8f8f2; } +code span.al { color: #ff5555; font-weight: bold; } +code span.an { color: #ff79c6; } +code span.at { color: #ff79c6; } +code span.bn { color: #bd93f9; } +code span.bu { color: #8be9fd; } +code span.cf { color: #ff79c6; } +code span.ch { color: #f1fa8c; } +code span.cn { color: #bd93f9; font-weight: bold; } +code span.co { color: #6272a4; } +code span.cv { color: #8be9fd; } +code span.do { color: #ffb86c; } +code span.dt { color: #8be9fd; font-style: italic; } +code span.dv { color: #bd93f9; } +code span.er { color: #ff5555; text-decoration: underline; } +code span.ex { color: #8be9fd; } +code span.fl { color: #bd93f9; } +code span.fu { color: #50fa7b; } +code span.im { color: #ff79c6; } +code span.in { color: #f1fa8c; } +code span.kw { color: #ff79c6; } +code span.op { color: #f8f8f2; } +code span.ot { color: #50fa7b; } +code span.pp { color: #ff79c6; } +code span.re { color: #8be9fd; } +code span.sc { color: #ff79c6; } +code span.ss { color: #f1fa8c; } +code span.st { color: #f1fa8c; } +code span.va { color: #8be9fd; } +code span.vs { color: #f1fa8c; } +code span.wa { color: #ff5555; } - - + + + +
+

Open Science Components

+

Like all other components of the SCHOOL project, the water resource modules are entirely open source.

+ + +
+
+

Narrative Objectives

+

We are currently in the early development phases and need to adjust the narrative voice between 3 learning/content components.

+
-
-

WSIM-GLDAS

-

WSIM-GLDAS is an open source dataset that characterizes surpluses and deficits of freshwater and the parameters determining these anomalies.

+
+

Water Resource Narrative

+

These include introducing the domain knowledge and human narrative that can be derived from these datasets.

+
+
+

Technical Data Narrative

+ +
+
+

Coding Narrative

+

Are we interested at all in teaching people how to code? Unlikely but then how do you address all the code.

+
# generate a vector of dates for subsetting
+keeps<-seq(lubridate::ymd("2000-01-01"),
+           lubridate::ymd("2014-12-01"), 
+           by = "month")
+           
+# filter using that vector
+wsim_gldas_anoms <- dplyr::filter(wsim_gldas_anoms, time %in% keeps)
+
+# verify the time dimension was properly subsetted
+print(wsim_gldas_anoms)
+
+# do a visual check with the first 6 time-steps
+wsim_gldas_anoms |>
+  dplyr::slice(index = 1:6, along = "time") |>
+  plot(key.pos = 1)
+
+
+

Outputs and Analyses

+

Whatever the chosen narrative voice and content, we hope to bring greater understanding for each module through visualizations and analysis. The WSIM-GLDAS water resource modules will achieve this by creating:

+ +
+
+

Composite Surplus and Deficit Maps

+

Twelve month integration maps illustrate the observed drought or flooding of an area relative to a long term baseline period.

+ +
+
+

Location of Interest

+

Point location time series figures illustrate long term trends for a single location on a month to month basis.

+ +
+
+

Population Exposure

+

Population exposure plots and tables help illustrate the sociological impacts of droughts and floods.

+