forked from rasmusbergpalm/DeepLearnToolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaenumgradcheck.m
107 lines (95 loc) · 3.53 KB
/
caenumgradcheck.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
function cae = caenumgradcheck(cae, x, y)
epsilon = 1e-4;
er = 1e-6;
disp('performing numerical gradient checking...')
for i = 1 : numel(cae.o)
p_cae = cae; p_cae.c{i} = p_cae.c{i} + epsilon;
m_cae = cae; m_cae.c{i} = m_cae.c{i} - epsilon;
[m_cae, p_cae] = caerun(m_cae, p_cae, x, y);
d = (p_cae.L - m_cae.L) / (2 * epsilon);
e = abs(d - cae.dc{i});
if e > er
disp('OUTPUT BIAS numerical gradient checking failed');
disp(e);
disp(d / cae.dc{i});
keyboard
end
end
for a = 1 : numel(cae.a)
p_cae = cae; p_cae.b{a} = p_cae.b{a} + epsilon;
m_cae = cae; m_cae.b{a} = m_cae.b{a} - epsilon;
[m_cae, p_cae] = caerun(m_cae, p_cae, x, y);
d = (p_cae.L - m_cae.L) / (2 * epsilon);
% cae.dok{i}{a}(u) = d;
e = abs(d - cae.db{a});
if e > er
disp('BIAS numerical gradient checking failed');
disp(e);
disp(d / cae.db{a});
keyboard
end
for i = 1 : numel(cae.o)
for u = 1 : numel(cae.ok{i}{a})
p_cae = cae; p_cae.ok{i}{a}(u) = p_cae.ok{i}{a}(u) + epsilon;
m_cae = cae; m_cae.ok{i}{a}(u) = m_cae.ok{i}{a}(u) - epsilon;
[m_cae, p_cae] = caerun(m_cae, p_cae, x, y);
d = (p_cae.L - m_cae.L) / (2 * epsilon);
% cae.dok{i}{a}(u) = d;
e = abs(d - cae.dok{i}{a}(u));
if e > er
disp('OUTPUT KERNEL numerical gradient checking failed');
disp(e);
disp(d / cae.dok{i}{a}(u));
% keyboard
end
end
end
for i = 1 : numel(cae.i)
for u = 1 : numel(cae.ik{i}{a})
p_cae = cae;
m_cae = cae;
p_cae.ik{i}{a}(u) = p_cae.ik{i}{a}(u) + epsilon;
m_cae.ik{i}{a}(u) = m_cae.ik{i}{a}(u) - epsilon;
[m_cae, p_cae] = caerun(m_cae, p_cae, x, y);
d = (p_cae.L - m_cae.L) / (2 * epsilon);
% cae.dik{i}{a}(u) = d;
e = abs(d - cae.dik{i}{a}(u));
if e > er
disp('INPUT KERNEL numerical gradient checking failed');
disp(e);
disp(d / cae.dik{i}{a}(u));
end
end
end
end
disp('done')
end
function [m_cae, p_cae] = caerun(m_cae, p_cae, x, y)
m_cae = caeup(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y);
p_cae = caeup(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y);
end
%function checknumgrad(cae,what,x,y)
% epsilon = 1e-4;
% er = 1e-9;
%
% for i = 1 : numel(eval(what))
% if iscell(eval(['cae.' what]))
% checknumgrad(cae,[what '{' num2str(i) '}'], x, y)
% else
% p_cae = cae;
% m_cae = cae;
% eval(['p_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) + epsilon;
% eval(['m_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) - epsilon;
%
% m_cae = caeff(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y);
% p_cae = caeff(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y);
%
% d = (p_cae.L - m_cae.L) / (2 * epsilon);
% e = abs(d - eval(['cae.d' what '(' num2str(i) ')']));
% if e > er
% error('numerical gradient checking failed');
% end
% end
% end
%
% end