-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_cifar10.py
241 lines (207 loc) · 8.92 KB
/
eval_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# from __future__ import print_function
import argparse
import datetime
import os
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
from config import cifar10 as cf
from models.wide_resnet import Wide_ResNet
from util.metrics import get_metrics
from methods import mcp, odin, mcdp, deepensemble, mahalanobis, mahalanobis_ensemble, odin_t, odin_adv
parser = argparse.ArgumentParser(description='PyTorch CIFAR-10 Training')
parser.add_argument('--debug', '-d', action='store_true',
help='Debug Mode with 1 epoch')
parser.add_argument('--method', '-m', type=str,
help='Method for OOD Detection, one of [MCP (default), ODIN, MCDP, Mahalanobis, DeepEnsemble, MahalanobisEnsemble, all]')
args = parser.parse_args()
# Hyper Parameter settings
use_cuda = torch.cuda.is_available()
print('Using GPU: {}'.format(torch.cuda.device_count()))
best_acc = 0
start_epoch, num_epochs, batch_size, optim_type = cf.start_epoch, cf.num_epochs, cf.batch_size, cf.optim_type
depth = cf.depth
widen_factor = cf.widen_factor
dropout = cf.dropout
lr = cf.lr
# this selects the best model
model_id = str(cf.best)
# this should come from args in the future
ood_set = 'svhn'
dataset_name = 'cifar10'
save_dir = os.path.join('outputs', f'cifar10')
batch_size = 128
print('\n[Phase 1] : Data Preparation')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cf.mean[dataset_name], cf.std[dataset_name]),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(cf.mean[dataset_name], cf.std[dataset_name]),
])
transform_ood = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(cf.mean[ood_set], cf.std[ood_set]),
])
print("| Preparing CIFAR-10 dataset...")
sys.stdout.write("| ")
testset = torchvision.datasets.CIFAR10(
root='./datasets', train=False, download=True, transform=transform_test)
dataset = torchvision.datasets.CIFAR10(
root='./datasets', train=True, download=True, transform=transform_train)
num_classes = 10
# prep ood dataset
if ood_set == 'svhn':
print("| Preparing SVHN dataset for OOD detection...")
sys.stdout.write("| ")
oodset = torchvision.datasets.SVHN(
root='./data', split='test', download=True, transform=transform_ood)
oodloader = torch.utils.data.DataLoader(
oodset, batch_size=batch_size, shuffle=False, num_workers=4)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False, num_workers=4)
trainloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=4)
# Return network & file name
net = Wide_ResNet(depth, widen_factor, dropout, num_classes)
file_name = f'wide-resnet-{depth}x{widen_factor}-{model_id}'
print('| Loading model: {}'.format(file_name))
# Test only option
print('\n[Test Phase] : Model setup')
assert os.path.isdir('checkpoint'), 'Error: No checkpoint directory found!'
checkpoint = torch.load('./checkpoint/'+dataset_name+os.sep+file_name+'.pth')
# adapt net to state
params = {}
for k_old in checkpoint.keys():
k_new = k_old.replace('module.', '')
params[k_new] = checkpoint[k_old]
net.load_state_dict(params)
if use_cuda:
net.cuda()
cudnn.benchmark = True
def load_nets():
# for deep ensembles
extensions = cf.ensemble
print(f'| Loading the following nets from config: {extensions}')
nets = []
for e in extensions:
net = Wide_ResNet(depth, widen_factor,
dropout, num_classes)
file_name = f'wide-resnet-{depth}x{widen_factor}-{e}'
checkpoint = torch.load(
'./checkpoint/'+dataset_name+os.sep+file_name+'.pth')
# adapt net to state
params = {}
for k_old in checkpoint.keys():
k_new = k_old.replace('module.', '')
params[k_new] = checkpoint[k_old]
net.load_state_dict(params)
if use_cuda:
net.cuda()
cudnn.benchmark = True
nets.append(net)
return nets
def ood_loop(eval_func, ood_set, method, save_dir, net, testloader, oodloader):
print('\n| [OOD] : Testing OOD detection with {} using {}'.format(
ood_set, method))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
f1_path = os.path.join(save_dir, "confidence_IN_{}.txt".format(method))
f2_path = os.path.join(save_dir, "confidence_OUT_{}.txt".format(method))
print('\n| Testing with {}'.format(method))
elapsed_time = 0
start_time = time.time()
# testing OOD dataset
eval_func(f1_path, f2_path, net, testloader, oodloader, save_dir=save_dir)
epoch_time = time.time() - start_time
elapsed_time += epoch_time
print('| Elapsed time : %d:%02d:%02d' % (cf.get_hms(elapsed_time)))
auroc, aucpr, fpr, tpr = get_metrics(f1_path, f2_path)
print('AUROC for {}: {}\nAUCPR: {}'.format(method, auroc, aucpr))
return auroc
def ood_loop_mahalanobis(eval_func, ood_set, method, save_dir, net, testloader, oodloader, trainloader):
print('\n| [OOD] : Testing OOD detection with {} using {}'.format(
ood_set, method))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
f1_path = os.path.join(save_dir, "confidence_IN_{}.txt".format(method))
f2_path = os.path.join(save_dir, "confidence_OUT_{}.txt".format(method))
print('\n| Testing with {}'.format(method))
elapsed_time = 0
start_time = time.time()
# testing OOD dataset
eval_func(f1_path, f2_path, net, trainloader=trainloader,
testloader=testloader, oodloader=oodloader, magnitude=0.0)
epoch_time = time.time() - start_time
elapsed_time += epoch_time
print('| Elapsed time : %d:%02d:%02d' % (cf.get_hms(elapsed_time)))
auroc, aucpr, fpr, tpr = get_metrics(f1_path, f2_path)
print('AUROC for {}: {}\nAUCPR: {}'.format(method, auroc, aucpr))
return auroc
if args.method.lower() == 'odin':
eval_func = odin.eval_cifar10
method = 'ODIN'
ood_loop(eval_func, ood_set, method, save_dir, net, testloader, oodloader)
# tempering only evaluation
method = 'ODIN_TEMPERING_ONLY'
eval_func = odin_t.eval_cifar10
ood_loop(eval_func, ood_set, method, save_dir, net, testloader, oodloader)
# adversarial only evaluation
method = 'ODIN_ADVERSARIAL_ONLY'
eval_func = odin_adv.eval_cifar10
ood_loop(eval_func, ood_set, method, save_dir, net, testloader, oodloader)
sys.exit(0)
elif args.method.lower() == 'mcdp':
eval_func = mcdp.eval_cifar10
method = 'MCDP'
elif args.method.lower() == 'deepensemble' or args.method.lower() == 'de':
eval_func = deepensemble.eval_cifar10
method = 'Ensemble'
net = load_nets() # watch out, this actually loads multiple nets
elif args.method.lower() == 'mahalanobis' or args.method.lower() == 'ma':
method = 'Mahalanobis'
ood_loop_mahalanobis(mahalanobis.eval_cifar10, ood_set, method,
save_dir, net, testloader, oodloader, trainloader)
sys.exit(0)
elif args.method.lower() == 'mahalanobis-ensemble' or args.method.lower() == 'me':
eval_func = mahalanobis_ensemble.eval
method = 'MahalanobisEnsemble'
nets = load_nets() # watch out, this actually loads multiple nets
ood_loop_mahalanobis(mahalanobis_ensemble.eval_cifar10, ood_set, method,
save_dir, nets, testloader, oodloader, trainloader)
sys.exit(0)
else:
eval_func = mcp.eval_cifar10
method = 'MCP'
if args.method.lower() == 'all':
t0 = time.time()
mcp_auroc = ood_loop(mcp.eval_cifar10, ood_set, 'MCP',
save_dir, net, testloader, oodloader)
odin_auroc = ood_loop(odin.eval_cifar10, ood_set, 'ODIN',
save_dir, net, testloader, oodloader)
mcdp_auroc = ood_loop(mcdp.eval_cifar10, ood_set, 'MCDP',
save_dir, net, testloader, oodloader)
mahal_auroc = ood_loop_mahalanobis(mahalanobis.eval_cifar10, ood_set, 'Mahalanobis',
save_dir, net, testloader, oodloader, trainloader)
# load deep ensemble nets
nets = load_nets()
ensemble_auroc = ood_loop(
deepensemble.eval_cifar10, ood_set, 'DeepEnsemble', save_dir, nets, testloader, oodloader)
mahal_ensemble_auroc = ood_loop_mahalanobis(mahalanobis_ensemble.eval_cifar10, ood_set, 'MahalanobisEnsemble',
save_dir, nets, testloader, oodloader, trainloader)
print(
f'AUROC\nMCP: {mcp_auroc}\nODIN: {odin_auroc}\nMCDP: {mcdp_auroc}\nMahalanobis: {mahal_auroc}\nMahalanobis Ensemble: {mahal_ensemble_auroc}\nDeep Ensemble: {ensemble_auroc}')
print(f'Elapsed time: {t0 - time.time()}')
else:
ood_loop(eval_func, ood_set, method, save_dir, net, testloader, oodloader)