forked from mukeshtiwari/Idris
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFact.idr
89 lines (59 loc) · 1.68 KB
/
Fact.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
module Fact
main : IO ()
main = putStrLn "Hello World"
vApp : { a , b : Type } -> { n : Nat } -> Vect n ( a -> b ) -> Vect n a -> Vect n b
vApp [] [] = []
vApp ( f :: fs ) ( a :: as ) = f a :: vApp fs as
plus_nO : ( n : Nat ) -> n + Z = n
plus_nO Z = refl
plus_nO ( S k ) = let ih = plus_nO k in ?plus_Scase
data Parity : Nat -> Type where
even : { n : Nat } -> Parity ( n + n )
odd : { n : Nat } -> Parity ( S ( n + n ) )
parity : ( n : Nat ) -> Parity n
parity Z = even { n = Z }
parity ( S Z ) = odd { n = Z }
parity ( S ( S k ) ) with ( parity k )
parity ( S ( S ( j + j ) ) ) | even ?= even { n = S j }
parity ( S ( S ( S ( j + j ) ) ) ) | odd ?= odd { n = S j }
data Expr = Val Int
| Var String
| Add Expr Expr
data Ty = TyInt
| TyBool
| TyFun Ty Ty
interpTy : Ty -> Type
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy ( TyFun s t ) = interpTy s -> interpTy t
using ( n : Nat, G : Vect n Ty )
data Env : Vect n Ty -> Type where
Nil : Env Nil
( :: ) : interpTy a -> Env G -> Env ( a :: G )
data HasType : ( i : Fin n ) -> Vect n Ty -> Ty -> Type where
stop : HasType fO ( t :: G ) t
pop : HasType k G t -> HasType ( fS k ) ( u :: G ) t
ctxt : Vect ( S ( S Z ) ) Ty
ctxt = [ TyInt , TyBool ]
env : Env ctxt
env = [ 42 , True ]
isBool : HasType ( fS fO ) ctxt TyBool
isBool = pop stop
---------- Proofs ----------
Fact.plus_Scase = proof
compute
intros
rewrite ih
trivial
Fact.parity_lemma_1 = proof {
compute;
intros;
rewrite sym ( plusSuccRightSucc j j );
trivial;
}
Fact.parity_lemma_2 = proof {
compute;
intros;
rewrite sym ( plusSuccRightSucc j j );
trivial;
}