-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathapp.py
378 lines (306 loc) · 15.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import streamlit as st
import cv2
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
Bidirectional, Permute, multiply)
import numpy as np
import mediapipe as mp
import math
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
import av
## Build and Load Model
def attention_block(inputs, time_steps):
"""
Attention layer for deep neural network
"""
# Attention weights
a = Permute((2, 1))(inputs)
a = Dense(time_steps, activation='softmax')(a)
# Attention vector
a_probs = Permute((2, 1), name='attention_vec')(a)
# Luong's multiplicative score
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
return output_attention_mul
@st.cache(allow_output_mutation=True)
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
"""
Function used to build the deep neural network model on startup
Args:
HIDDEN_UNITS (int, optional): Number of hidden units for each neural network hidden layer. Defaults to 256.
sequence_length (int, optional): Input sequence length (i.e., number of frames). Defaults to 30.
num_input_values (_type_, optional): Input size of the neural network model. Defaults to 33*4 (i.e., number of keypoints x number of metrics).
num_classes (int, optional): Number of classification categories (i.e., model output size). Defaults to 3.
Returns:
keras model: neural network with pre-trained weights
"""
# Input
inputs = Input(shape=(sequence_length, num_input_values))
# Bi-LSTM
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
# Attention
attention_mul = attention_block(lstm_out, sequence_length)
attention_mul = Flatten()(attention_mul)
# Fully Connected Layer
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
x = Dropout(0.5)(x)
# Output
x = Dense(num_classes, activation='softmax')(x)
# Bring it all together
model = Model(inputs=[inputs], outputs=x)
## Load Model Weights
load_dir = "./models/LSTM_Attention.h5"
model.load_weights(load_dir)
return model
HIDDEN_UNITS = 256
model = build_model(HIDDEN_UNITS)
## App
st.write("# AI Personal Fitness Trainer Web App")
st.markdown("❗❗ **Development Note** ❗❗")
st.markdown("Currently, the exercise recognition model uses the the x, y, and z coordinates of each anatomical landmark from the MediaPipe Pose model. These coordinates are normalized with respect to the image frame (e.g., the top left corner represents (x=0,y=0) and the bottom right corner represents(x=1,y=1)).")
st.markdown("I'm currently developing and testing two new feature engineering strategies:")
st.markdown("- Normalizing coordinates by the detected bounding box of the user")
st.markdown("- Using joint angles rather than keypoint coordaintes as features")
st.write("Stay Tuned!")
st.write("## Settings")
threshold1 = st.slider("Minimum Keypoint Detection Confidence", 0.00, 1.00, 0.50)
threshold2 = st.slider("Minimum Tracking Confidence", 0.00, 1.00, 0.50)
threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
st.write("## Activate the AI 🤖🏋️♂️")
## Mediapipe
mp_pose = mp.solutions.pose # Pre-trained pose estimation model from Google Mediapipe
mp_drawing = mp.solutions.drawing_utils # Supported Mediapipe visualization tools
pose = mp_pose.Pose(min_detection_confidence=threshold1, min_tracking_confidence=threshold2) # mediapipe pose model
## Real Time Machine Learning and Computer Vision Processes
class VideoProcessor:
def __init__(self):
# Parameters
self.actions = np.array(['curl', 'press', 'squat'])
self.sequence_length = 30
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
self.threshold = threshold3
# Detection variables
self.sequence = []
self.current_action = ''
# Rep counter logic variables
self.curl_counter = 0
self.press_counter = 0
self.squat_counter = 0
self.curl_stage = None
self.press_stage = None
self.squat_stage = None
@st.cache()
def draw_landmarks(self, image, results):
"""
This function draws keypoints and landmarks detected by the human pose estimation model
"""
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
)
return
@st.cache()
def extract_keypoints(self, results):
"""
Processes and organizes the keypoints detected from the pose estimation model
to be used as inputs for the exercise decoder models
"""
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
return pose
@st.cache()
def calculate_angle(self, a,b,c):
"""
Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another
"""
a = np.array(a) # First
b = np.array(b) # Mid
c = np.array(c) # End
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians*180.0/np.pi)
if angle > 180.0:
angle = 360-angle
return angle
@st.cache()
def get_coordinates(self, landmarks, mp_pose, side, joint):
"""
Retrieves x and y coordinates of a particular keypoint from the pose estimation model
Args:
landmarks: processed keypoints from the pose estimation model
mp_pose: Mediapipe pose estimation model
side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.
joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.
"""
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+joint.upper())
x_coord_val = landmarks[coord.value].x
y_coord_val = landmarks[coord.value].y
return [x_coord_val, y_coord_val]
@st.cache()
def viz_joint_angle(self, image, angle, joint):
"""
Displays the joint angle value near the joint within the image frame
"""
cv2.putText(image, str(int(angle)),
tuple(np.multiply(joint, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
return
@st.cache()
def count_reps(self, image, landmarks, mp_pose):
"""
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
"""
if self.current_action == 'curl':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
# calculate elbow angle
angle = self.calculate_angle(shoulder, elbow, wrist)
# curl counter logic
if angle < 30:
self.curl_stage = "up"
if angle > 140 and self.curl_stage =='up':
self.curl_stage="down"
self.curl_counter +=1
self.press_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, angle, elbow)
elif self.current_action == 'press':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
# Calculate elbow angle
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
# Compute distances between joints
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
# Press counter logic
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
self.press_stage = "up"
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
self.press_stage='down'
self.press_counter += 1
self.curl_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, elbow_angle, elbow)
elif self.current_action == 'squat':
# Get coords
# left side
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
left_hip = self.get_coordinates(landmarks, mp_pose, 'left', 'hip')
left_knee = self.get_coordinates(landmarks, mp_pose, 'left', 'knee')
left_ankle = self.get_coordinates(landmarks, mp_pose, 'left', 'ankle')
# right side
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'right', 'shoulder')
right_hip = self.get_coordinates(landmarks, mp_pose, 'right', 'hip')
right_knee = self.get_coordinates(landmarks, mp_pose, 'right', 'knee')
right_ankle = self.get_coordinates(landmarks, mp_pose, 'right', 'ankle')
# Calculate knee angles
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
# Calculate hip angles
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
# Squat counter logic
thr = 165
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (right_hip_angle < thr):
self.squat_stage = "down"
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (right_hip_angle > thr) and (self.squat_stage =='down'):
self.squat_stage='up'
self.squat_counter += 1
self.curl_stage = None
self.press_stage = None
# Viz joint angles
self.viz_joint_angle(image, left_knee_angle, left_knee)
self.viz_joint_angle(image, left_hip_angle, left_hip)
else:
pass
return
@st.cache()
def prob_viz(self, res, input_frame):
"""
This function displays the model prediction probability distribution over the set of exercise classes
as a horizontal bar graph
"""
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
return output_frame
@st.cache()
def process(self, image):
"""
Function to process the video frame from the user's webcam and run the fitness trainer AI
Args:
image (numpy array): input image from the webcam
Returns:
numpy array: processed image with keypoint detection and fitness activity classification visualized
"""
# Pose detection model
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
self.draw_landmarks(image, results)
# Prediction logic
keypoints = self.extract_keypoints(results)
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
self.sequence = self.sequence[-self.sequence_length:]
if len(self.sequence) == self.sequence_length:
res = model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
# interpreter.set_tensor(self.input_details[0]['index'], np.expand_dims(self.sequence, axis=0))
# interpreter.invoke()
# res = interpreter.get_tensor(self.output_details[0]['index'])
self.current_action = self.actions[np.argmax(res)]
confidence = np.max(res)
# Erase current action variable if no probability is above threshold
if confidence < self.threshold:
self.current_action = ''
# Viz probabilities
image = self.prob_viz(res, image)
# Count reps
try:
landmarks = results.pose_landmarks.landmark
self.count_reps(
image, landmarks, mp_pose)
except:
pass
# Display graphical information
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
# return cv2.flip(image, 1)
return image
def recv(self, frame):
"""
Receive and process video stream from webcam
Args:
frame: current video frame
Returns:
av.VideoFrame: processed video frame
"""
img = frame.to_ndarray(format="bgr24")
img = self.process(img)
return av.VideoFrame.from_ndarray(img, format="bgr24")
## Stream Webcam Video and Run Model
# Options
RTC_CONFIGURATION = RTCConfiguration(
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
)
# Streamer
webrtc_ctx = webrtc_streamer(
key="AI trainer",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={"video": True, "audio": False},
video_processor_factory=VideoProcessor,
async_processing=True,
)