You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I try to train Mask-RCNN via COCO-2017 key-point dataset. However, I got an error that I could not understand/overcome it. I work on Colab, so I uploaded coco2017 dataset to google drive, and every time I mount it to the colab. Anyway, This is dataset directory: "/content/drive/My Drive/cocodataset/"
There r 2 files in cocodataset: annotations, train2017, val2017 (I have not uploaded test yet.)
Here is an error message:
Train heads
Starting at epoch 0. LR=0.002
Checkpoint Path: /content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/logs/coco20200503T1902/mask_rcnn_coco_{epoch:04d}.h5
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_keypoint_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn2 (TimeDistributed)
mrcnn_keypoint_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn3 (TimeDistributed)
mrcnn_keypoint_mask_conv4 (TimeDistributed)
mrcnn_keypoint_mask_bn4 (TimeDistributed)
mrcnn_keypoint_mask_conv5 (TimeDistributed)
mrcnn_keypoint_mask_bn5 (TimeDistributed)
mrcnn_keypoint_mask_conv6 (TimeDistributed)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn6 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv7 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn7 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv8 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn8 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_keypoint_mask_deconv (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:200: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:203: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
Hello all,
I try to train Mask-RCNN via COCO-2017 key-point dataset. However, I got an error that I could not understand/overcome it. I work on Colab, so I uploaded coco2017 dataset to google drive, and every time I mount it to the colab. Anyway, This is dataset directory:
"/content/drive/My Drive/cocodataset/"
There r 2 files in cocodataset: annotations, train2017, val2017 (I have not uploaded test yet.)
Here is an error message:
Train heads
Starting at epoch 0. LR=0.002
Checkpoint Path: /content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/logs/coco20200503T1902/mask_rcnn_coco_{epoch:04d}.h5
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_keypoint_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn2 (TimeDistributed)
mrcnn_keypoint_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn3 (TimeDistributed)
mrcnn_keypoint_mask_conv4 (TimeDistributed)
mrcnn_keypoint_mask_bn4 (TimeDistributed)
mrcnn_keypoint_mask_conv5 (TimeDistributed)
mrcnn_keypoint_mask_bn5 (TimeDistributed)
mrcnn_keypoint_mask_conv6 (TimeDistributed)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn6 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv7 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn7 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv8 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn8 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_keypoint_mask_deconv (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:200: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:203: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
/usr/local/lib/python3.6/dist-packages/keras/engine/training_generator.py:49: UserWarning: Using a generator with
use_multiprocessing=True
and multiple workers may duplicate your data. Please consider using thekeras.utils.Sequence class. UserWarning('Using a generator with
use_multiprocessing=True`'Epoch 1/15
/usr/local/lib/python3.6/dist-packages/keras/utils/data_utils.py:718: UserWarning: An input could not be retrieved. It could be because a worker has died.We do not have any information on the lost sample.
UserWarning)
ERROR:root:Error processing image {'id': 267417, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000267417.jpg', 'width': 640, 'height': 360, 'annotations': [{'segmentation': [[273.63, 163.05, 280.09, 129.15, 304.3, 117.04, 322.87, 134.8, 343.05, 155.78, 358.39, 213.09, 393.9, 221.97, 387.44, 250.22, 374.53, 232.47, 343.86, 240.54, 330.13, 255.07, 309.96, 259.91, 240.54, 253.45, 238.92, 234.89, 274.44, 223.59]], 'num_keypoints': 16, 'area': 10970.8016, 'iscrowd': 0, 'keypoints': [289, 164, 2, 297, 159, 2, 284, 157, 2, 314, 155, 2, 0, 0, 0, 326, 166, 2, 281, 175, 2, 350, 210, 2, 279, 216, 2, 315, 226, 2, 284, 229, 2, 330, 227, 2, 295, 229, 2, 383, 230, 2, 248, 240, 2, 314, 250, 2, 316, 255, 2], 'image_id': 267417, 'bbox': [238.92, 117.04, 154.98, 142.87], 'category_id': 1, 'id': 481757}, {'segmentation': [[366.51, 124.45, 370.47, 124.68, 372.33, 127.25, 373.26, 133.76, 373.26, 137.02, 373.26, 140.52, 372.57, 148.2, 368.14, 150.76, 363.25, 151.69, 360.92, 151, 359.06, 149.37, 358.59, 149.37, 357.66, 151.46, 351.84, 160.54, 347.42, 165.2, 345.79, 162.4, 346.02, 155.19, 349.05, 150.06, 352.31, 142.85, 353.24, 140.05, 356.73, 139.35, 359.76, 139.35, 361.39, 139.12, 364.42, 134.23, 364.65, 133.53, 363.02, 130.27, 364.18, 126.08]], 'num_keypoints': 0, 'area': 474.04425, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [345.79, 124.45, 27.47, 40.75], 'category_id': 1, 'id': 492854}, {'segmentation': [[199.17, 268.36, 174.86, 260.88, 158.96, 253.4, 146.81, 257.14, 135.58, 257.14, 140.26, 246.86, 133.71, 221.61, 163.64, 174.86, 165.51, 155.22, 167.38, 144, 184.21, 132.78, 206.65, 137.45, 212.26, 157.09, 213.19, 172.05, 216.94, 177.66, 234.7, 189.82, 239.38, 196.36, 228.16, 216.94, 234.7, 233.77, 225.35, 237.51, 227.22, 251.53, 227.22, 256.21, 220.68, 260.88, 215.06, 270.23, 198.23, 270.23]], 'num_keypoints': 17, 'area': 9249.96205, 'iscrowd': 0, 'keypoints': [188, 177, 2, 195, 172, 2, 182, 170, 2, 206, 169, 2, 170, 167, 2, 202, 184, 2, 162, 188, 2, 232, 197, 2, 144, 220, 2, 222, 211, 2, 145, 245, 2, 198, 238, 2, 174, 243, 2, 218, 209, 2, 211, 261, 2, 217, 251, 2, 172, 258, 2], 'image_id': 267417, 'bbox': [133.71, 132.78, 105.67, 137.45], 'category_id': 1, 'id': 2154683}, {'segmentation': [[334.74, 146.64, 334.74, 144.83, 335.42, 141.89, 335.87, 140.08, 336.55, 136.01, 337.91, 134.88, 339.72, 133.52, 342.43, 131.94, 342.43, 128.99, 344.02, 125.38, 345.83, 123.34, 347.86, 123.57, 350.35, 126.05, 351.03, 127.64, 347.86, 132.16, 351.93, 134.65, 352.16, 140.3, 352.16, 142.79, 349.9, 148.22, 347.64, 150.48, 346.05, 153.42, 345.6, 156.59, 341.3, 155.23, 338.36, 150.03]], 'num_keypoints': 0, 'area': 354.4833, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [334.74, 123.34, 17.42, 33.25], 'category_id': 1, 'id': 2161890}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000267417.jpg'
ERROR:root:Error processing image {'id': 267417, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000267417.jpg', 'width': 640, 'height': 360, 'annotations': [{'segmentation': [[273.63, 163.05, 280.09, 129.15, 304.3, 117.04, 322.87, 134.8, 343.05, 155.78, 358.39, 213.09, 393.9, 221.97, 387.44, 250.22, 374.53, 232.47, 343.86, 240.54, 330.13, 255.07, 309.96, 259.91, 240.54, 253.45, 238.92, 234.89, 274.44, 223.59]], 'num_keypoints': 16, 'area': 10970.8016, 'iscrowd': 0, 'keypoints': [289, 164, 2, 297, 159, 2, 284, 157, 2, 314, 155, 2, 0, 0, 0, 326, 166, 2, 281, 175, 2, 350, 210, 2, 279, 216, 2, 315, 226, 2, 284, 229, 2, 330, 227, 2, 295, 229, 2, 383, 230, 2, 248, 240, 2, 314, 250, 2, 316, 255, 2], 'image_id': 267417, 'bbox': [238.92, 117.04, 154.98, 142.87], 'category_id': 1, 'id': 481757}, {'segmentation': [[366.51, 124.45, 370.47, 124.68, 372.33, 127.25, 373.26, 133.76, 373.26, 137.02, 373.26, 140.52, 372.57, 148.2, 368.14, 150.76, 363.25, 151.69, 360.92, 151, 359.06, 149.37, 358.59, 149.37, 357.66, 151.46, 351.84, 160.54, 347.42, 165.2, 345.79, 162.4, 346.02, 155.19, 349.05, 150.06, 352.31, 142.85, 353.24, 140.05, 356.73, 139.35, 359.76, 139.35, 361.39, 139.12, 364.42, 134.23, 364.65, 133.53, 363.02, 130.27, 364.18, 126.08]], 'num_keypoints': 0, 'area': 474.04425, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [345.79, 124.45, 27.47, 40.75], 'category_id': 1, 'id': 492854}, {'segmentation': [[199.17, 268.36, 174.86, 260.88, 158.96, 253.4, 146.81, 257.14, 135.58, 257.14, 140.26, 246.86, 133.71, 221.61, 163.64, 174.86, 165.51, 155.22, 167.38, 144, 184.21, 132.78, 206.65, 137.45, 212.26, 157.09, 213.19, 172.05, 216.94, 177.66, 234.7, 189.82, 239.38, 196.36, 228.16, 216.94, 234.7, 233.77, 225.35, 237.51, 227.22, 251.53, 227.22, 256.21, 220.68, 260.88, 215.06, 270.23, 198.23, 270.23]], 'num_keypoints': 17, 'area': 9249.96205, 'iscrowd': 0, 'keypoints': [188, 177, 2, 195, 172, 2, 182, 170, 2, 206, 169, 2, 170, 167, 2, 202, 184, 2, 162, 188, 2, 232, 197, 2, 144, 220, 2, 222, 211, 2, 145, 245, 2, 198, 238, 2, 174, 243, 2, 218, 209, 2, 211, 261, 2, 217, 251, 2, 172, 258, 2], 'image_id': 267417, 'bbox': [133.71, 132.78, 105.67, 137.45], 'category_id': 1, 'id': 2154683}, {'segmentation': [[334.74, 146.64, 334.74, 144.83, 335.42, 141.89, 335.87, 140.08, 336.55, 136.01, 337.91, 134.88, 339.72, 133.52, 342.43, 131.94, 342.43, 128.99, 344.02, 125.38, 345.83, 123.34, 347.86, 123.57, 350.35, 126.05, 351.03, 127.64, 347.86, 132.16, 351.93, 134.65, 352.16, 140.3, 352.16, 142.79, 349.9, 148.22, 347.64, 150.48, 346.05, 153.42, 345.6, 156.59, 341.3, 155.23, 338.36, 150.03]], 'num_keypoints': 0, 'area': 354.4833, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [334.74, 123.34, 17.42, 33.25], 'category_id': 1, 'id': 2161890}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000267417.jpg'
ERROR:root:Error processing image {'id': 574497, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000574497.jpg', 'width': 640, 'height': 418, 'annotations': [{'segmentation': [[238.82, 264.66, 239.33, 242.01, 243.35, 240.5, 242.85, 226.41, 250.4, 211.31, 260.97, 201.24, 257.95, 184.63, 266.51, 174.06, 277.08, 175.06, 282.62, 178.08, 284.63, 187.65, 296.21, 194.19, 299.73, 203.25, 311.31, 211.31, 314.33, 227.92, 314.33, 241.51, 309.8, 247.55, 304.76, 261.64, 275.57, 265.17, 251.91, 265.17]], 'num_keypoints': 9, 'area': 4889.02015, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 263, 190, 2, 281, 189, 2, 262, 209, 2, 297, 207, 2, 248, 233, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 275, 260, 2, 300, 260, 2, 245, 248, 2, 0, 0, 0, 246, 281, 1, 0, 0, 0], 'image_id': 574497, 'bbox': [238.82, 174.06, 75.51, 91.11], 'category_id': 1, 'id': 1724355}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000574497.jpg'
ERROR:root:Error processing image {'id': 574497, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000574497.jpg', 'width': 640, 'height': 418, 'annotations': [{'segmentation': [[238.82, 264.66, 239.33, 242.01, 243.35, 240.5, 242.85, 226.41, 250.4, 211.31, 260.97, 201.24, 257.95, 184.63, 266.51, 174.06, 277.08, 175.06, 282.62, 178.08, 284.63, 187.65, 296.21, 194.19, 299.73, 203.25, 311.31, 211.31, 314.33, 227.92, 314.33, 241.51, 309.8, 247.55, 304.76, 261.64, 275.57, 265.17, 251.91, 265.17]], 'num_keypoints': 9, 'area': 4889.02015, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 263, 190, 2, 281, 189, 2, 262, 209, 2, 297, 207, 2, 248, 233, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 275, 260, 2, 300, 260, 2, 245, 248, 2, 0, 0, 0, 246, 281, 1, 0, 0, 0], 'image_id': 574497, 'bbox': [238.82, 174.06, 75.51, 91.11], 'category_id': 1, 'id': 1724355}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000574497.jpg'
The text was updated successfully, but these errors were encountered: