-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsandbox.py
514 lines (384 loc) · 12.9 KB
/
sandbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import torch
import numpy as np
from mytorch.tensor import Tensor
from mytorch.autograd_engine import *
from mytorch.nn.functional import *
"""Use this file to help you develop operations/functions.
It actually works fairly similarly to the autograder.
We've provided many test functions.
For your own operations, implement tests for them here to easily
debug your code."""
def main():
"""Runs test methods in order shown below."""
# test four basic ops
test_add()
test_sub()
test_mul()
test_div()
# you probably want to verify
# any other ops you create...
# test autograd
test1()
test2()
test3()
test4()
test5()
test6()
test7()
test8()
# for when you might want it...
# testbroadcast()
def test_add():
"""Tests that mytorch addition matches torch's addition"""
# shape of tensor to test
shape = (1, 2, 3)
# get mytorch and torch tensor: 'a'
a = Tensor.randn(*shape)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
# get mytorch and torch tensor: 'b'
b = Tensor.randn(*shape)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
# run mytorch and torch forward: 'c = a + b'
ctx = ContextManager()
c = Add.forward(ctx, a, b)
c_torch = a_torch + b_torch
# run mytorch and torch addition backward
back = Add.backward(ctx, Tensor.ones(*shape))
c_torch.sum().backward()
# check that c matches
assert check_val_and_grad(c, c_torch)
# check that dc/da and dc/db respectively match
assert check_val_and_grad(back[0], a_torch.grad)
assert check_val_and_grad(back[1], b_torch.grad)
# ensure + is overridden
c_using_override = a + b
assert check_val(c_using_override, c_torch)
return True
def test_sub():
"""Tests that mytorch subtraction matches torch's subtraction"""
# shape of tensor to test
shape = (1, 2, 3)
# get mytorch and torch tensor: 'a'
a = Tensor.randn(*shape)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
# get mytorch and torch tensor: 'b'
b = Tensor.randn(*shape)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
# run mytorch and torch forward: 'c = a - b'
ctx = ContextManager()
c = Sub.forward(ctx, a, b)
c_torch = a_torch - b_torch
# run mytorch and torch subtraction backward
back = Sub.backward(ctx, Tensor.ones(*shape))
c_torch.sum().backward()
# check that c matches
assert check_val_and_grad(c, c_torch)
# check that dc/da and dc/db respectively match
assert check_val(back[0], a_torch.grad)
assert check_val(back[1], b_torch.grad)
# ensure - is overridden
c_using_override = a - b
assert check_val(c_using_override, c_torch)
return True
def test_mul():
"""Tests that mytorch's elementwise multiplication matches torch's"""
# shape of tensor to test
shape = (1, 2, 3)
# get mytorch and torch tensor: 'a'
a = Tensor.randn(*shape)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
# get mytorch and torch tensor: 'b'
b = Tensor.randn(*shape)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
# run mytorch and torch forward: 'c = a * b'
ctx = ContextManager()
c = Mul.forward(ctx, a, b)
c_torch = a_torch * b_torch
# run mytorch and torch multiplication backward
back = Mul.backward(ctx, Tensor.ones(*shape))
c_torch.sum().backward()
# check that c matches
assert check_val_and_grad(c, c_torch)
# check that dc/da and dc/db respectively match
assert check_val(back[0], a_torch.grad)
assert check_val(back[1], b_torch.grad)
# ensure * is overridden
c_using_override = a * b
assert check_val(c_using_override, c_torch)
return True
def test_div():
"""Tests that mytorch division matches torch's"""
# shape of tensor to test
shape = (1, 2, 3)
# get mytorch and torch tensor: 'a'
a = Tensor.randn(*shape)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
# get mytorch and torch tensor: 'b'
b = Tensor.randn(*shape)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
# run mytorch and torch forward: 'c = a / b'
ctx = ContextManager()
c = Div.forward(ctx, a, b)
c_torch = a_torch / b_torch
# run mytorch and torch division backward
back = Div.backward(ctx, Tensor.ones(*shape))
c_torch.sum().backward()
# check that c matches
assert check_val_and_grad(c, c_torch)
# check that dc/da and dc/db respectively match
assert check_val(back[0], a_torch.grad)
assert check_val(back[1], b_torch.grad)
# ensure / is overridden
c_using_override = a / b
assert check_val(c_using_override, c_torch)
return True
def testbroadcast():
"""Tests addition WITH broadcasting matches torch's"""
# shape of tensor to test
# get mytorch and torch tensor: 'a'
a = Tensor.randn(3, 4)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
# get mytorch and torch tensor: 'b'
b = Tensor.randn(4)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
# run mytorch and torch forward: 'c = a + b'
c = a + b
c_torch = a_torch + b_torch
# run mytorch and torch addition backward
c.backward()
c_torch.sum().backward()
# check that c matches
assert check_val_and_grad(c, c_torch)
# check that dc/da and dc/db respectively match
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
# addition, requires grad
def test1():
a = Tensor.randn(1, 2, 3)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
b = Tensor.randn(1, 2, 3)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
c = a + b
c_torch = a_torch + b_torch
c_torch.sum().backward()
c.backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
# multiplication, requires grad
def test2():
a = Tensor.randn(1, 2, 3)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
b = Tensor.randn(1, 2, 3)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
c = a * b
c_torch = a_torch * b_torch
c_torch.sum().backward()
c.backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
# addition, one arg requires grad
def test3():
a = Tensor.randn(1, 2, 3)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
b = Tensor.randn(1, 2, 3)
b.requires_grad = False
b_torch = get_same_torch_tensor(b)
c = a + b
c_torch = a_torch + b_torch
c_torch.sum().backward()
c.backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
# the example from writeup
def test4():
a = Tensor(1, requires_grad=True)
a_torch = get_same_torch_tensor(a)
b = Tensor(2, requires_grad=True)
b_torch = get_same_torch_tensor(b)
c = Tensor(3, requires_grad=True)
c_torch = get_same_torch_tensor(c)
d = a + a * b
d_torch = a_torch + a_torch * b_torch
e = d + c + Tensor(3)
e_torch = d_torch + c_torch + torch.tensor(3)
e.backward()
e_torch.sum().backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
assert check_val_and_grad(d, d_torch)
assert check_val_and_grad(e, e_torch)
# the example from writeup, more strict
def test5():
a = Tensor(1, requires_grad=True)
a_torch = get_same_torch_tensor(a)
b = Tensor(2, requires_grad=True)
b_torch = get_same_torch_tensor(b)
c = Tensor(3, requires_grad=True)
c_torch = get_same_torch_tensor(c)
# d = a + a * b
z1 = a * b
z1_torch = a_torch * b_torch
d = a + z1
d_torch = a_torch + z1_torch
# e = (d + c) + 3
z2 = d + c
z2_torch = d_torch + c_torch
e = z2 + Tensor(3)
e_torch = z2_torch + 3
e.backward()
e_torch.sum().backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
assert check_val_and_grad(z1, z1_torch)
assert check_val_and_grad(d, d_torch)
assert check_val_and_grad(z2, z2_torch)
assert check_val_and_grad(e, e_torch)
# more complicated tests
def test6():
a = Tensor.randn(2, 3)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
b = Tensor.randn(2, 3)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
c = a / b
c_torch = a_torch / b_torch
d = a - b
d_torch = a_torch - b_torch
e = c + d
e_torch = c_torch + d_torch
e.backward()
e_torch.sum().backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
assert check_val_and_grad(d, d_torch)
assert check_val_and_grad(e, e_torch)
# another fun test
def test7():
# a = 3
a = Tensor(3.0, requires_grad=False)
a_torch = get_same_torch_tensor(a)
# b = 4
b = Tensor(4.0, requires_grad=False)
b_torch = get_same_torch_tensor(b)
# c = 5
c = Tensor(5.0, requires_grad=True)
c_torch = get_same_torch_tensor(c)
# out = a * b + 3 * c
z1 = a * b
z1_torch = a_torch * b_torch
z2 = Tensor(3) * c
z2_torch = 3 * c_torch
out = z1 + z2
out_torch = z1_torch + z2_torch
out_torch.sum().backward()
out.backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
assert check_val_and_grad(z1, z1_torch)
assert check_val_and_grad(z2, z2_torch)
assert check_val_and_grad(out, out_torch)
# non-tensor arguments
def test8():
a = Tensor.randn(1, 2, 3)
a.requires_grad = True
a_torch = get_same_torch_tensor(a)
b = Tensor.randn(1, 2, 3)
b.requires_grad = True
b_torch = get_same_torch_tensor(b)
c = a + b
c_torch = a_torch + b_torch
d = c.reshape(-1)
d_torch = c_torch.reshape(-1)
d_torch.sum().backward()
d.backward()
assert check_val_and_grad(a, a_torch)
assert check_val_and_grad(b, b_torch)
assert check_val_and_grad(c, c_torch)
assert check_val_and_grad(d, d_torch)
"""General-use helper functions"""
def get_same_torch_tensor(mytorch_tensor):
"""Returns a torch tensor with the same data/params as some mytorch tensor"""
res = torch.tensor(mytorch_tensor.data).double()
res.requires_grad = mytorch_tensor.requires_grad
return res
def check_val_and_grad(mytorch_tensor, pytorch_tensor):
"""Compares values and params of mytorch and torch tensors.
Returns:
boolean: False if not similar, True if similar"""
return check_val(mytorch_tensor, pytorch_tensor) and check_grad(
mytorch_tensor, pytorch_tensor
)
def check_val(mytorch_tensor, pytorch_tensor, eps=1e-10):
"""Compares the data values of mytorch/torch tensors."""
if not isinstance(pytorch_tensor, torch.DoubleTensor):
print(
"Warning: torch tensor is not a DoubleTensor. It is instead {}".format(
pytorch_tensor.type()
)
)
print(
"It is highly recommended that similarity testing is done with DoubleTensors as numpy arrays have 64-bit precision (like DoubleTensors)"
)
if tuple(mytorch_tensor.shape) != tuple(pytorch_tensor.shape):
print(
"mytorch tensor and pytorch tensor has different shapes: {}, {}".format(
mytorch_tensor.shape, pytorch_tensor.shape
)
)
return False
data_diff = np.abs(mytorch_tensor.data - pytorch_tensor.data.numpy())
max_diff = data_diff.max()
if max_diff < eps:
return True
else:
print("Data element differs by {}:".format(max_diff))
print("mytorch tensor:")
print(mytorch_tensor)
print("pytorch tensor:")
print(pytorch_tensor)
return False
def check_grad(mytorch_tensor, pytorch_tensor, eps=1e-10):
"""Compares the gradient of mytorch and torch tensors"""
if mytorch_tensor.grad is None or pytorch_tensor_nograd(pytorch_tensor):
if mytorch_tensor.grad is None and pytorch_tensor_nograd(pytorch_tensor):
return True
elif mytorch_tensor.grad is None:
print("Mytorch grad is None, but pytorch is not")
return False
else:
print("Pytorch grad is None, but mytorch is not")
return False
grad_diff = np.abs(mytorch_tensor.grad.data - pytorch_tensor.grad.data.numpy())
max_diff = grad_diff.max()
if max_diff < eps:
return True
else:
print("Grad differs by {}".format(grad_diff))
return False
def pytorch_tensor_nograd(pytorch_tensor):
return not pytorch_tensor.requires_grad or not pytorch_tensor.is_leaf
if __name__ == "__main__":
main()