-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_happiness.py
56 lines (48 loc) · 1.87 KB
/
find_happiness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Use linear regression in order to measure overall happiness for over 150 countries
Author – Nisha Choudhary
Date – Sunday, December 6, 2020
"""
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# personal functions
from regression_linear import *
from knr import *
import process_arguments
import load_data
def main():
start, end, seed = process_arguments.parse_arguments()
dataframe = process_arguments.read_csv(start, end)
column_names = ["Country", "Year", "Region", "Happiness Score",
"Economy (GDP per Capita)", "Health (Life Expectancy)",
"Freedom", "Trust (Government Corruption)", "Generosity"]
labels, data = load_data.split_data(dataframe, column_names)
# use the MinMaxScaler to scale all features between 0 and 1
scaler = MinMaxScaler()
features_minmax = pd.DataFrame(data = data)
features_minmax = scaler.fit_transform(features_minmax)
data_train, data_test, labels_train, labels_test =\
load_data.split_train_test(features_minmax, labels, seed)
# LINEAR REGRESSION MODEL
print("LINEAR REGRESSION MODEL")
linear_regression =\
LinearRegressionModel(data_test, labels_test, data_train, labels_train,\
start, end)
linear_regression.train()
linear_regression.predict()
linear_regression.graph()
print("R^2 = " + str(linear_regression.r_squared()))
print("Weights = " + str(linear_regression.weights()))
# KNEIGHBORS REGRESSOR MODEL
print("\nKNEIGHBORS REGRESSOR MODEL")
knregressor =\
KNeighborsRegressorModel(data_test, labels_test, data_train, labels_train,\
start, end)
knregressor.train()
knregressor.predict()
knregressor.graph()
print("R^2 = " + str(knregressor.r_squared()))
if __name__ == "__main__":
main()