-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslurm-5240237.out
989 lines (777 loc) · 155 KB
/
slurm-5240237.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
New https://pypi.org/project/ultralytics/8.1.41 available 😃 Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.1.13 🚀 Python-3.8.18 torch-2.1.1+cu121 CUDA:0 (NVIDIA A100 80GB PCIe, 81050MiB)
[34m[1mengine/trainer: [0mtask=detect, mode=train, model=yolov8n.pt, data=custom.yaml, epochs=50, time=None, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train16, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.018953935738983678, lrf=0.4096725304452809, momentum=0.6176397242321043, weight_decay=0.0005182340726400939, warmup_epochs=2.9420822665958744, warmup_momentum=0.3232610925012841, warmup_bias_lr=0.1, box=0.0622585591760355, cls=0.2716838602042877, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.08354414073797155, hsv_s=0.6179490216626592, hsv_v=0.10248863557199779, degrees=6.719607470704272, translate=0.4361043512236223, scale=0.1484627423134257, shear=9.034542586929785, perspective=0.0002091200850452316, flipud=0.37737999612193485, fliplr=0.9700621320176886, mosaic=0.573269512773059, mixup=0.4792659269817423, copy_paste=0.9517025165510148, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train16
Overriding model.yaml nc=80 with nc=1
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs
Transferred 319/355 items from pretrained weights
wandb: Currently logged in as: fin-jason20. Use `wandb login --relogin` to force relogin
wandb: wandb version 0.16.5 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.16.3
wandb: Run data is saved locally in /scratch/gilbreth/jpfinley/ultralytics/wandb/run-20240402_010943-csybzh1x
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run train16
wandb: ⭐️ View project at https://wandb.ai/fin-jason20/YOLOv8
wandb: 🚀 View run at https://wandb.ai/fin-jason20/YOLOv8/runs/csybzh1x
Freezing layer 'model.22.dfl.conv.weight'
[34m[1mAMP: [0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...
[34m[1mAMP: [0mchecks passed ✅
[34m[1mtrain: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/train/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s][34m[1mtrain: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/train/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s]
[34m[1mval: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/valid/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s][34m[1mval: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/valid/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s]
Plotting labels to runs/detect/train16/labels.jpg...
[34m[1moptimizer:[0m 'optimizer=auto' found, ignoring 'lr0=0.018953935738983678' and 'momentum=0.6176397242321043' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
[34m[1moptimizer:[0m AdamW(lr=0.002, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005182340726400939), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to [1mruns/detect/train16[0m
Starting training for 50 epochs...
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 1/50 2.25G 0.02598 1.93 2.876 157 640: 0%| | 0/1 [00:04<?, ?it/s] 1/50 2.25G 0.02598 1.93 2.876 157 640: 100%|██████████| 1/1 [00:04<00:00, 4.76s/it] 1/50 2.25G 0.02598 1.93 2.876 157 640: 100%|██████████| 1/1 [00:04<00:00, 4.76s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 6.75it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 6.74it/s] all 15 182 0.00556 0.137 0.00317 0.000922
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 2/50 2.25G 0.02505 1.896 2.867 184 640: 0%| | 0/1 [00:00<?, ?it/s] 2/50 2.25G 0.02505 1.896 2.867 184 640: 100%|██████████| 1/1 [00:00<00:00, 10.97it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 20.36it/s] all 15 182 0.00533 0.132 0.00303 0.0009
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 3/50 2.26G 0.02546 1.938 2.853 200 640: 0%| | 0/1 [00:00<?, ?it/s] 3/50 2.26G 0.02546 1.938 2.853 200 640: 100%|██████████| 1/1 [00:00<00:00, 7.00it/s] 3/50 2.26G 0.02546 1.938 2.853 200 640: 100%|██████████| 1/1 [00:00<00:00, 6.99it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.11it/s] all 15 182 0.00533 0.132 0.00302 0.000987
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 4/50 2.28G 0.02563 1.966 2.928 155 640: 0%| | 0/1 [00:00<?, ?it/s] 4/50 2.28G 0.02563 1.966 2.928 155 640: 100%|██████████| 1/1 [00:00<00:00, 11.44it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 24.07it/s] all 15 182 0.00489 0.121 0.00275 0.000869
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 5/50 2.28G 0.02455 1.932 2.841 156 640: 0%| | 0/1 [00:00<?, ?it/s] 5/50 2.28G 0.02455 1.932 2.841 156 640: 100%|██████████| 1/1 [00:00<00:00, 13.05it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 24.35it/s] all 15 182 0.00467 0.115 0.00263 0.00071
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 6/50 2.29G 0.02525 1.92 2.896 231 640: 0%| | 0/1 [00:00<?, ?it/s] 6/50 2.29G 0.02525 1.92 2.896 231 640: 100%|██████████| 1/1 [00:00<00:00, 10.61it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 18.39it/s] all 15 182 0.00489 0.121 0.0028 0.000859
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 7/50 2.23G 0.02456 1.952 2.746 134 640: 0%| | 0/1 [00:00<?, ?it/s] 7/50 2.23G 0.02456 1.952 2.746 134 640: 100%|██████████| 1/1 [00:00<00:00, 10.80it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.23it/s] all 15 182 0.00422 0.104 0.00243 0.000743
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 8/50 2.29G 0.0223 1.863 2.636 170 640: 0%| | 0/1 [00:00<?, ?it/s] 8/50 2.29G 0.0223 1.863 2.636 170 640: 100%|██████████| 1/1 [00:00<00:00, 10.49it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.58it/s] all 15 182 0.006 0.148 0.00376 0.00113
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 9/50 2.3G 0.02101 1.864 2.594 170 640: 0%| | 0/1 [00:00<?, ?it/s] 9/50 2.3G 0.02101 1.864 2.594 170 640: 100%|██████████| 1/1 [00:00<00:00, 9.80it/s] 9/50 2.3G 0.02101 1.864 2.594 170 640: 100%|██████████| 1/1 [00:00<00:00, 9.77it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.48it/s] all 15 182 0.00578 0.143 0.00364 0.00115
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 10/50 2.29G 0.02088 1.802 2.525 230 640: 0%| | 0/1 [00:00<?, ?it/s] 10/50 2.29G 0.02088 1.802 2.525 230 640: 100%|██████████| 1/1 [00:00<00:00, 9.79it/s] 10/50 2.29G 0.02088 1.802 2.525 230 640: 100%|██████████| 1/1 [00:00<00:00, 9.77it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 21.72it/s] all 15 182 0.00822 0.203 0.00556 0.00168
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 11/50 2.3G 0.01891 1.809 2.387 166 640: 0%| | 0/1 [00:00<?, ?it/s] 11/50 2.3G 0.01891 1.809 2.387 166 640: 100%|██████████| 1/1 [00:00<00:00, 10.26it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 20.90it/s] all 15 182 0.00911 0.225 0.00739 0.00215
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 12/50 2.29G 0.01876 1.736 2.331 164 640: 0%| | 0/1 [00:00<?, ?it/s] 12/50 2.29G 0.01876 1.736 2.331 164 640: 100%|██████████| 1/1 [00:00<00:00, 10.16it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 17.19it/s] all 15 182 0.0156 0.385 0.016 0.00422
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 13/50 2.29G 0.01844 1.668 2.312 225 640: 0%| | 0/1 [00:00<?, ?it/s] 13/50 2.29G 0.01844 1.668 2.312 225 640: 100%|██████████| 1/1 [00:00<00:00, 10.16it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 13.79it/s] all 15 182 0.0176 0.434 0.0204 0.00642
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 14/50 2.29G 0.01803 1.594 2.165 196 640: 0%| | 0/1 [00:00<?, ?it/s] 14/50 2.29G 0.01803 1.594 2.165 196 640: 100%|██████████| 1/1 [00:00<00:00, 10.08it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 14.75it/s] all 15 182 0.02 0.495 0.0221 0.00612
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 15/50 2.29G 0.01717 1.549 2.056 171 640: 0%| | 0/1 [00:00<?, ?it/s] 15/50 2.29G 0.01717 1.549 2.056 171 640: 100%|██████████| 1/1 [00:00<00:00, 10.17it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 12.67it/s] all 15 182 0.0222 0.549 0.0308 0.00795
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 16/50 2.28G 0.0171 1.484 1.991 147 640: 0%| | 0/1 [00:00<?, ?it/s] 16/50 2.28G 0.0171 1.484 1.991 147 640: 100%|██████████| 1/1 [00:00<00:00, 10.03it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 12.06it/s] all 15 182 0.0222 0.549 0.0526 0.0156
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 17/50 2.3G 0.0168 1.4 1.934 210 640: 0%| | 0/1 [00:00<?, ?it/s] 17/50 2.3G 0.0168 1.4 1.934 210 640: 100%|██████████| 1/1 [00:00<00:00, 10.64it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.50it/s] all 15 182 0.0224 0.555 0.116 0.0389
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 18/50 2.29G 0.01704 1.328 1.93 171 640: 0%| | 0/1 [00:00<?, ?it/s] 18/50 2.29G 0.01704 1.328 1.93 171 640: 100%|██████████| 1/1 [00:00<00:00, 12.45it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 15.47it/s] all 15 182 0.0224 0.555 0.116 0.0389
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 19/50 2.32G 0.01628 1.291 1.87 213 640: 0%| | 0/1 [00:00<?, ?it/s] 19/50 2.32G 0.01628 1.291 1.87 213 640: 100%|██████████| 1/1 [00:00<00:00, 10.83it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.79it/s] all 15 182 0.0256 0.632 0.243 0.0667
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 20/50 2.29G 0.01531 1.203 1.771 182 640: 0%| | 0/1 [00:00<?, ?it/s] 20/50 2.29G 0.01531 1.203 1.771 182 640: 100%|██████████| 1/1 [00:00<00:00, 12.83it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 17.02it/s] all 15 182 0.0256 0.632 0.243 0.0667
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 21/50 2.29G 0.01634 1.227 1.85 158 640: 0%| | 0/1 [00:00<?, ?it/s] 21/50 2.29G 0.01634 1.227 1.85 158 640: 100%|██████████| 1/1 [00:00<00:00, 10.97it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 17.36it/s] all 15 182 0.0302 0.747 0.303 0.0885
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 22/50 2.3G 0.01646 1.187 1.86 234 640: 0%| | 0/1 [00:00<?, ?it/s] 22/50 2.3G 0.01646 1.187 1.86 234 640: 100%|██████████| 1/1 [00:00<00:00, 12.54it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 17.88it/s] all 15 182 0.0302 0.747 0.303 0.0885
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 23/50 2.3G 0.01664 1.27 1.911 197 640: 0%| | 0/1 [00:00<?, ?it/s] 23/50 2.3G 0.01664 1.27 1.911 197 640: 100%|██████████| 1/1 [00:00<00:00, 10.99it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 17.74it/s] all 15 182 0.0417 0.703 0.342 0.0944
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 24/50 2.29G 0.01631 1.169 1.834 195 640: 0%| | 0/1 [00:00<?, ?it/s] 24/50 2.29G 0.01631 1.169 1.834 195 640: 100%|██████████| 1/1 [00:00<00:00, 12.69it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 18.06it/s] all 15 182 0.0417 0.703 0.342 0.0944
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 25/50 2.38G 0.0163 1.118 1.855 255 640: 0%| | 0/1 [00:00<?, ?it/s] 25/50 2.38G 0.0163 1.118 1.855 255 640: 100%|██████████| 1/1 [00:00<00:00, 10.57it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 18.29it/s] all 15 182 0.468 0.357 0.358 0.0904
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 26/50 2.28G 0.01623 1.193 1.799 158 640: 0%| | 0/1 [00:00<?, ?it/s] 26/50 2.28G 0.01623 1.193 1.799 158 640: 100%|██████████| 1/1 [00:00<00:00, 12.86it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 18.80it/s] all 15 182 0.468 0.357 0.358 0.0904
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 27/50 2.3G 0.01573 1.089 1.794 288 640: 0%| | 0/1 [00:00<?, ?it/s] 27/50 2.3G 0.01573 1.089 1.794 288 640: 100%|██████████| 1/1 [00:00<00:00, 11.06it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.94it/s] all 15 182 0.424 0.357 0.352 0.0893
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 28/50 2.23G 0.01584 1.255 1.793 131 640: 0%| | 0/1 [00:00<?, ?it/s] 28/50 2.23G 0.01584 1.255 1.793 131 640: 100%|██████████| 1/1 [00:00<00:00, 12.64it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.23it/s] all 15 182 0.424 0.357 0.352 0.0893
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 29/50 2.3G 0.01561 1.057 1.741 228 640: 0%| | 0/1 [00:00<?, ?it/s] 29/50 2.3G 0.01561 1.057 1.741 228 640: 100%|██████████| 1/1 [00:00<00:00, 10.11it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 20.00it/s] all 15 182 0.382 0.363 0.298 0.0729
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 30/50 2.29G 0.01606 1.072 1.856 217 640: 0%| | 0/1 [00:00<?, ?it/s] 30/50 2.29G 0.01606 1.072 1.856 217 640: 100%|██████████| 1/1 [00:00<00:00, 8.09it/s] 30/50 2.29G 0.01606 1.072 1.856 217 640: 100%|██████████| 1/1 [00:00<00:00, 8.07it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 12.57it/s] all 15 182 0.382 0.363 0.298 0.0729
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 31/50 2.29G 0.0153 1.06 1.818 243 640: 0%| | 0/1 [00:00<?, ?it/s] 31/50 2.29G 0.0153 1.06 1.818 243 640: 100%|██████████| 1/1 [00:00<00:00, 9.65it/s] 31/50 2.29G 0.0153 1.06 1.818 243 640: 100%|██████████| 1/1 [00:00<00:00, 9.63it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 13.84it/s] all 15 182 0.379 0.379 0.293 0.0741
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 32/50 2.28G 0.01654 1.092 1.886 182 640: 0%| | 0/1 [00:00<?, ?it/s] 32/50 2.28G 0.01654 1.092 1.886 182 640: 100%|██████████| 1/1 [00:00<00:00, 11.94it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.04it/s] all 15 182 0.379 0.379 0.293 0.0741
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 33/50 2.3G 0.01538 1.005 1.763 265 640: 0%| | 0/1 [00:00<?, ?it/s] 33/50 2.3G 0.01538 1.005 1.763 265 640: 100%|██████████| 1/1 [00:00<00:00, 10.12it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.57it/s] all 15 182 0.422 0.478 0.367 0.0925
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 34/50 2.3G 0.01539 1.011 1.765 245 640: 0%| | 0/1 [00:00<?, ?it/s] 34/50 2.3G 0.01539 1.011 1.765 245 640: 100%|██████████| 1/1 [00:00<00:00, 15.69it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.80it/s] all 15 182 0.422 0.478 0.367 0.0925
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 35/50 2.29G 0.01471 1.036 1.734 207 640: 0%| | 0/1 [00:00<?, ?it/s] 35/50 2.29G 0.01471 1.036 1.734 207 640: 100%|██████████| 1/1 [00:00<00:00, 10.72it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 21.30it/s] all 15 182 0.521 0.555 0.466 0.125
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 36/50 2.29G 0.01463 0.9811 1.706 222 640: 0%| | 0/1 [00:00<?, ?it/s] 36/50 2.29G 0.01463 0.9811 1.706 222 640: 100%|██████████| 1/1 [00:00<00:00, 12.09it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 21.25it/s] all 15 182 0.521 0.555 0.466 0.125
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 37/50 2.29G 0.0146 1.048 1.723 166 640: 0%| | 0/1 [00:00<?, ?it/s] 37/50 2.29G 0.0146 1.048 1.723 166 640: 100%|██████████| 1/1 [00:00<00:00, 10.15it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.05it/s] all 15 182 0.574 0.518 0.539 0.161
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 38/50 2.23G 0.01475 1.053 1.698 154 640: 0%| | 0/1 [00:00<?, ?it/s] 38/50 2.23G 0.01475 1.053 1.698 154 640: 100%|██████████| 1/1 [00:00<00:00, 12.57it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.34it/s] all 15 182 0.574 0.518 0.539 0.161
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 39/50 2.32G 0.01523 0.9585 1.717 213 640: 0%| | 0/1 [00:00<?, ?it/s] 39/50 2.32G 0.01523 0.9585 1.717 213 640: 100%|██████████| 1/1 [00:00<00:00, 10.82it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.89it/s] all 15 182 0.581 0.478 0.526 0.159
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 40/50 2.31G 0.01561 1.032 1.774 218 640: 0%| | 0/1 [00:00<?, ?it/s] 40/50 2.31G 0.01561 1.032 1.774 218 640: 100%|██████████| 1/1 [00:00<00:00, 12.16it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.48it/s] all 15 182 0.581 0.478 0.526 0.159
Closing dataloader mosaic
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 41/50 2.23G 0.01331 1.207 1.554 86 640: 0%| | 0/1 [00:01<?, ?it/s] 41/50 2.23G 0.01331 1.207 1.554 86 640: 100%|██████████| 1/1 [00:01<00:00, 1.51s/it] 41/50 2.23G 0.01331 1.207 1.554 86 640: 100%|██████████| 1/1 [00:01<00:00, 1.51s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 12.73it/s] all 15 182 0.633 0.385 0.521 0.171
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 42/50 2.23G 0.01346 1.123 1.559 103 640: 0%| | 0/1 [00:00<?, ?it/s] 42/50 2.23G 0.01346 1.123 1.559 103 640: 100%|██████████| 1/1 [00:00<00:00, 12.04it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.24it/s] all 15 182 0.633 0.385 0.521 0.171
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 43/50 2.23G 0.01529 1.133 1.656 103 640: 0%| | 0/1 [00:00<?, ?it/s] 43/50 2.23G 0.01529 1.133 1.656 103 640: 100%|██████████| 1/1 [00:00<00:00, 11.19it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 20.21it/s] all 15 182 0.595 0.314 0.464 0.147
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 44/50 2.23G 0.01363 1.052 1.551 108 640: 0%| | 0/1 [00:00<?, ?it/s] 44/50 2.23G 0.01363 1.052 1.551 108 640: 100%|██████████| 1/1 [00:00<00:00, 12.17it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.75it/s] all 15 182 0.595 0.314 0.464 0.147
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 45/50 2.23G 0.01279 1.045 1.47 100 640: 0%| | 0/1 [00:00<?, ?it/s] 45/50 2.23G 0.01279 1.045 1.47 100 640: 100%|██████████| 1/1 [00:00<00:00, 11.52it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.82it/s] all 15 182 0.617 0.269 0.424 0.131
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 46/50 2.23G 0.01312 1.04 1.48 96 640: 0%| | 0/1 [00:00<?, ?it/s] 46/50 2.23G 0.01312 1.04 1.48 96 640: 100%|██████████| 1/1 [00:00<00:00, 13.18it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.39it/s] all 15 182 0.617 0.269 0.424 0.131
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 47/50 2.24G 0.01344 1.026 1.48 100 640: 0%| | 0/1 [00:00<?, ?it/s] 47/50 2.24G 0.01344 1.026 1.48 100 640: 100%|██████████| 1/1 [00:00<00:00, 11.35it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.55it/s] all 15 182 0.653 0.258 0.422 0.126
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 48/50 2.23G 0.01426 1.029 1.537 97 640: 0%| | 0/1 [00:00<?, ?it/s] 48/50 2.23G 0.01426 1.029 1.537 97 640: 100%|██████████| 1/1 [00:00<00:00, 13.11it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.90it/s] all 15 182 0.653 0.258 0.422 0.126
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 49/50 2.24G 0.01288 1.063 1.487 101 640: 0%| | 0/1 [00:00<?, ?it/s] 49/50 2.24G 0.01288 1.063 1.487 101 640: 100%|██████████| 1/1 [00:00<00:00, 11.33it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.84it/s] all 15 182 0.618 0.186 0.364 0.12
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
0%| | 0/1 [00:00<?, ?it/s] 50/50 2.23G 0.01314 0.964 1.463 103 640: 0%| | 0/1 [00:00<?, ?it/s] 50/50 2.23G 0.01314 0.964 1.463 103 640: 100%|██████████| 1/1 [00:00<00:00, 13.09it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 24.11it/s] all 15 182 0.618 0.186 0.364 0.12
50 epochs completed in 0.008 hours.
Optimizer stripped from runs/detect/train16/weights/last.pt, 6.3MB
Optimizer stripped from runs/detect/train16/weights/best.pt, 6.3MB
Validating runs/detect/train16/weights/best.pt...
Ultralytics YOLOv8.1.13 🚀 Python-3.8.18 torch-2.1.1+cu121 CUDA:0 (NVIDIA A100 80GB PCIe, 81050MiB)
Model summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 22.82it/s] all 15 182 0.635 0.385 0.522 0.171
Speed: 0.1ms preprocess, 0.5ms inference, 0.0ms loss, 0.6ms postprocess per image
Results saved to [1mruns/detect/train16[0m
wandb: - 11.776 MB of 11.776 MB uploadedwandb: \ 11.776 MB of 11.776 MB uploadedwandb: | 11.821 MB of 11.821 MB uploadedwandb:
wandb:
wandb: Run history:
wandb: lr/pg0 ▁▁▂▂▃▃▃▃▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇▇▇▇██████████████
wandb: lr/pg1 ▁▁▂▂▃▃▃▃▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇▇▇▇██████████████
wandb: lr/pg2 ▁▁▂▂▃▃▃▃▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇▇▇▇██████████████
wandb: metrics/mAP50(B) ▁▁▁▁▁▁▁▁▁▁▁▁▂▂▂▄▅▅▅▅▆▆▆▅▅▅▆▆▇█████▇▇▆▆▆█
wandb: metrics/mAP50-95(B) ▁▁▁▁▁▁▁▁▁▁▁▁▂▃▃▄▅▅▅▅▅▅▅▄▄▄▅▅▆█████▇▇▆▆▆█
wandb: metrics/precision(B) ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆▆▆▅▅▅▆▆▇▇▇▇██▇▇████
wandb: metrics/recall(B) ▁▁▁▁▁▁▁▁▂▄▅▅▆▆▆▇████▄▄▄▄▄▄▅▅▆▆▆▅▄▄▃▃▃▃▃▄
wandb: model/GFLOPs ▁
wandb: model/parameters ▁
wandb: model/speed_PyTorch(ms) ▁
wandb: train/box_loss █▇███▇▆▅▄▄▄▄▃▃▃▃▃▃▃▃▃▂▂▂▂▃▂▂▂▂▂▂▁▁▂▁▁▁▂▁
wandb: train/cls_loss ██████▇▇▇▆▆▅▅▄▄▃▃▃▃▂▃▂▃▂▂▂▁▁▁▂▂▁▃▂▂▂▂▁▁▁
wandb: train/dfl_loss █████▇▇▆▅▅▅▄▄▃▃▃▃▃▃▃▃▃▃▂▃▃▂▂▂▂▂▂▁▁▂▁▁▁▁▁
wandb: val/box_loss ██▇▇▆▄▄▄▆▆▆▅▄▄▄▃▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁
wandb: val/cls_loss ▇▇██████▇▇▇▆▆▅▅▄▄▄▃▃▃▃▃▃▂▂▂▂▁▁▁▁▁▁▂▂▂▂▂▃
wandb: val/dfl_loss ▆▆▆▆▆▆▅▆███▇▆▅▅▄▃▃▂▂▂▂▂▃▃▃▂▂▂▂▂▁▁▁▁▁▁▁▁▁
wandb:
wandb: Run summary:
wandb: lr/pg0 0.00041
wandb: lr/pg1 0.00041
wandb: lr/pg2 0.00041
wandb: metrics/mAP50(B) 0.52242
wandb: metrics/mAP50-95(B) 0.17067
wandb: metrics/precision(B) 0.63526
wandb: metrics/recall(B) 0.38462
wandb: model/GFLOPs 8.194
wandb: model/parameters 3011043
wandb: model/speed_PyTorch(ms) 7.439
wandb: train/box_loss 0.01314
wandb: train/cls_loss 0.96402
wandb: train/dfl_loss 1.46312
wandb: val/box_loss 0.01737
wandb: val/cls_loss 1.41372
wandb: val/dfl_loss 1.86064
wandb:
wandb: 🚀 View run train16 at: https://wandb.ai/fin-jason20/YOLOv8/runs/csybzh1x
wandb: ️⚡ View job at https://wandb.ai/fin-jason20/YOLOv8/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjE1NTE4Mjc3OQ==/version_details/v7
wandb: Synced 6 W&B file(s), 20 media file(s), 5 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240402_010943-csybzh1x/logs
Ultralytics YOLOv8.1.13 🚀 Python-3.8.18 torch-2.1.1+cu121 CUDA:0 (NVIDIA A100 80GB PCIe, 81050MiB)
Model summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
[34m[1mval: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/valid/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s][34m[1mval: [0mScanning /scratch/gilbreth/jpfinley/ultralytics/datasets/micro/valid/labels.cache... 12 images, 3 backgrounds, 0 corrupt: 100%|██████████| 15/15 [00:00<?, ?it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 0%| | 0/1 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 1.43it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 1.42it/s] all 15 182 0.636 0.39 0.523 0.171
Speed: 0.1ms preprocess, 6.2ms inference, 0.0ms loss, 0.7ms postprocess per image
Results saved to [1mruns/detect/train162[0m
ultralytics.utils.metrics.DetMetrics object with attributes:
ap_class_index: array([0])
box: ultralytics.utils.metrics.Metric object
confusion_matrix: <ultralytics.utils.metrics.ConfusionMatrix object at 0x2b1886a36850>
curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']
curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,
0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,
0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,
0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,
0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,
0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,
0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,
0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,
0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,
0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,
0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,
0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,
0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,
0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,
0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,
0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,
0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,
0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,
0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,
0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,
0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,
0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,
0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,
0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,
0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,
0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,
0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,
0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,
0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,
0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,
0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,
0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,
0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,
0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,
0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,
0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,
0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,
0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,
0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,
0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,
0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,
0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875,
0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333,
0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8,
0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.78788, 0.78788, 0.78788, 0.78788,
0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788,
0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78788,
0.78788, 0.78788, 0.78788, 0.78788, 0.78788, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571,
0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.78571, 0.77273, 0.77273,
0.77273, 0.77273, 0.77273, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.77083, 0.76, 0.76, 0.76,
0.76, 0.76, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.74545, 0.73913, 0.73913, 0.73913, 0.73913,
0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913,
0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913, 0.73913,
0.73913, 0.73913, 0.73913, 0.73913, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418,
0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.73418, 0.71084, 0.71084, 0.71084,
0.71084, 0.71084, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.7093, 0.70455, 0.70455, 0.70455, 0.70455, 0.70455, 0.70455, 0.7, 0.7, 0.7, 0.7,
0.7, 0.67368, 0.67368, 0.67368, 0.67368, 0.67368, 0.67368, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741,
0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.65741, 0.61789,
0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789, 0.61789,
0.61789, 0.61789, 0.61789, 0.61789, 0.6063, 0.6063, 0.6063, 0.6063, 0.6063, 0.57778, 0.57778, 0.57778, 0.57778, 0.57778, 0.57778, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447,
0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57447, 0.57343, 0.57343, 0.57343, 0.57343, 0.57343, 0.57343, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667,
0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667,
0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667,
0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667,
0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667,
0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56667, 0.56593, 0.56593, 0.56593, 0.56593, 0.56593, 0.56593, 0.56216, 0.56216, 0.56216, 0.56216, 0.56216, 0.55556, 0.55556, 0.55556, 0.55556,
0.55556, 0.55556, 0.54082, 0.54082, 0.54082, 0.54082, 0.54082, 0.53769, 0.53769, 0.53769, 0.53769, 0.53769, 0.53769, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695, 0.53695,
0.53695, 0.51887, 0.51887, 0.51887, 0.51887, 0.51887, 0.51152, 0.51152, 0.51152, 0.51152, 0.51152, 0.51152, 0.50679, 0.50679, 0.50679, 0.50679, 0.50679, 0.5022, 0.5022, 0.5022, 0.5022, 0.5022, 0.5022,
0.5022, 0.5022, 0.5022, 0.5022, 0.5022, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48536, 0.48347, 0.48347, 0.48347, 0.48347, 0.48347, 0.48347, 0.47773,
0.47773, 0.47773, 0.47773, 0.47773, 0.4741, 0.4741, 0.4741, 0.4741, 0.4741, 0.4741, 0.46693, 0.46693, 0.46693, 0.46693, 0.46693, 0.45833, 0.45833, 0.45833, 0.45833, 0.45833, 0.45833, 0.45693, 0.45693,
0.45693, 0.45693, 0.45693, 0.45055, 0.45055, 0.45055, 0.45055, 0.45055, 0.45055, 0.44604, 0.44604, 0.44604, 0.44604, 0.44604, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493,
0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.43493, 0.41558, 0.41558, 0.41558, 0.41558, 0.41558, 0.40566, 0.40566, 0.40566, 0.40566, 0.40566, 0.40566, 0.40491, 0.40491, 0.40491, 0.40491,
0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.40491, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067, 0.39067,
0.38028, 0.38028, 0.38028, 0.38028, 0.38028, 0.38028, 0.37778, 0.37778, 0.37778, 0.37778, 0.37778, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687, 0.3687,
0.3687, 0.3687, 0.3687, 0.3687, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.36434, 0.34975, 0.34975, 0.34975, 0.34975, 0.34975, 0.34975, 0.34963, 0.34963,
0.34963, 0.34963, 0.34963, 0.33028, 0.33028, 0.33028, 0.33028, 0.33028, 0.33028, 0.3072, 0.3072, 0.3072, 0.3072, 0.3072, 0.30103, 0.30103, 0.30103, 0.30103, 0.30103, 0.30103, 0.29423, 0.29423, 0.29423,
0.29423, 0.29423, 0.29423, 0.29423, 0.29423, 0.29423, 0.29423, 0.29423, 0.28273, 0.28273, 0.28273, 0.28273, 0.28273, 0.28037, 0.28037, 0.28037, 0.28037, 0.28037, 0.28037, 0.17416, 0.17416, 0.17416, 0.17416,
0.17416, 0.16397, 0.16397, 0.16397, 0.16397, 0.16397, 0.16397, 0.16105, 0.16105, 0.16105, 0.16105, 0.16105, 0.16058, 0.16058, 0.16058, 0.16058, 0.16058, 0.16058, 0.13596, 0.13596, 0.13596, 0.13596, 0.13596,
0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.12641, 0.10844, 0.10844, 0.10844, 0.10844, 0.10844, 0.10844, 0.095841, 0.095841, 0.095841, 0.095841, 0.095841, 0.062622,
0.062622, 0.062622, 0.062622, 0.062622, 0.062622, 0.06003, 0.06003, 0.06003, 0.06003, 0.06003, 0.057549, 0.057549, 0.057549, 0.057549, 0.057549, 0.057549, 0.057073, 0.057073, 0.057073, 0.057073, 0.057073, 0.054886, 0.054886,
0.054886, 0.054886, 0.054886, 0.054886, 0.052265, 0.052265, 0.052265, 0.052265, 0.052265, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.050806, 0.04822, 0.04822, 0.04822,
0.04822, 0.04822, 0.04822, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.046987, 0.041679, 0.041038, 0.040397, 0.039756, 0.039114, 0.038473, 0.037832, 0.037191, 0.03655,
0.035908, 0.035267, 0.034626, 0.033985, 0.033343, 0.032702, 0.032061, 0.03142, 0.030779, 0.030137, 0.029496, 0.028855, 0.028214, 0.027573, 0.026931, 0.02629, 0.025649, 0.025008, 0.024366, 0.023725, 0.023084, 0.022443, 0.021802,
0.02116, 0.020519, 0.019878, 0.019237, 0.018595, 0.017954, 0.017313, 0.016672, 0.016031, 0.015389, 0.014748, 0.014107, 0.013466, 0.012824, 0.012183, 0.011542, 0.010901, 0.01026, 0.0096183, 0.0089771, 0.0083359, 0.0076947, 0.0070534,
0.0064122, 0.005771, 0.0051298, 0.0044885, 0.0038473, 0.0032061, 0.0025649, 0.0019237, 0.0012824, 0.00064122, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,
0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,
0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,
0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,
0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,
0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,
0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,
0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,
0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,
0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,
0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,
0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,
0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,
0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,
0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,
0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,
0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,
0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,
0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,
0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,
0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,
0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,
0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,
0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,
0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,
0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,
0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,
0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,
0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,
0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,
0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,
0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,
0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,
0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,
0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,
0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,
0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,
0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,
0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,
0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,
0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,
0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.080818, 0.080819, 0.084483, 0.090572, 0.098259, 0.10297, 0.10723, 0.10818, 0.11267, 0.12614, 0.16329, 0.23978, 0.30333, 0.36563, 0.39263, 0.42289, 0.44354, 0.4688, 0.48249, 0.49379, 0.49118, 0.50083, 0.50718,
0.51228, 0.51456, 0.52227, 0.52859, 0.52994, 0.53755, 0.54248, 0.54792, 0.5501, 0.54591, 0.55041, 0.55611, 0.55191, 0.55282, 0.55621, 0.55981, 0.56237, 0.5583, 0.56311, 0.56647, 0.56537, 0.54342, 0.53519,
0.53256, 0.52475, 0.52291, 0.51179, 0.50199, 0.50313, 0.50058, 0.49192, 0.49045, 0.49744, 0.49647, 0.48663, 0.48064, 0.48135, 0.47692, 0.4817, 0.48358, 0.48747, 0.47793, 0.47068, 0.46914, 0.46585, 0.46243,
0.45813, 0.46137, 0.45654, 0.45732, 0.45809, 0.46216, 0.45742, 0.45474, 0.45438, 0.44961, 0.44489, 0.43954, 0.44296, 0.43221, 0.43025, 0.42828, 0.42629, 0.42371, 0.42113, 0.41563, 0.41001, 0.4063, 0.38024,
0.37531, 0.36061, 0.35779, 0.3562, 0.35047, 0.34993, 0.34522, 0.33246, 0.32649, 0.3253, 0.32273, 0.32041, 0.32135, 0.31355, 0.30017, 0.29557, 0.29275, 0.28836, 0.27917, 0.26858, 0.26434, 0.26457, 0.26163,
0.25734, 0.2454, 0.24079, 0.24123, 0.24166, 0.23498, 0.22477, 0.22116, 0.21753, 0.21436, 0.21125, 0.20827, 0.2062, 0.20412, 0.20204, 0.20003, 0.19325, 0.18243, 0.17962, 0.17682, 0.17424, 0.17232, 0.17039,
0.16846, 0.16652, 0.16601, 0.16624, 0.16646, 0.1663, 0.1613, 0.15769, 0.15789, 0.15809, 0.15828, 0.1574, 0.15399, 0.15056, 0.14744, 0.14451, 0.14157, 0.13906, 0.13705, 0.13503, 0.13301, 0.13099, 0.12882,
0.12661, 0.1244, 0.12219, 0.11809, 0.11248, 0.10993, 0.10789, 0.10585, 0.10381, 0.10219, 0.10261, 0.10268, 0.10274, 0.10281, 0.10288, 0.10294, 0.103, 0.10306, 0.10275, 0.10209, 0.10142, 0.10076, 0.1001,
0.099432, 0.098767, 0.098103, 0.097437, 0.096772, 0.096106, 0.095439, 0.094773, 0.094106, 0.093438, 0.091475, 0.08905, 0.086621, 0.084187, 0.081781, 0.079387, 0.076988, 0.074585, 0.073311, 0.073338, 0.073365, 0.073391, 0.073417,
0.073443, 0.073468, 0.073493, 0.073518, 0.073542, 0.073565, 0.073589, 0.073612, 0.073635, 0.073657, 0.07368, 0.073139, 0.072451, 0.071763, 0.071074, 0.070385, 0.069696, 0.069006, 0.068315, 0.067624, 0.066933, 0.066241, 0.065549,
0.064856, 0.064163, 0.063108, 0.052697, 0.049949, 0.047195, 0.044434, 0.041656, 0.038856, 0.036049, 0.033237, 0.03226, 0.032262, 0.032264, 0.032266, 0.032269, 0.032271, 0.032273, 0.032275, 0.032278, 0.03228, 0.032282, 0.032284,
0.032286, 0.032288, 0.03229, 0.032293, 0.032295, 0.032297, 0.032299, 0.032301, 0.032303, 0.032305, 0.032307, 0.032309, 0.032311, 0.032313, 0.032315, 0.032317, 0.032319, 0.032321, 0.032323, 0.032325, 0.032326, 0.032328, 0.03233,
0.032332, 0.032334, 0.032336, 0.032338, 0.032339, 0.032341, 0.032343, 0.032345, 0.032347, 0.032348, 0.03235, 0.032352, 0.032354, 0.032355, 0.032357, 0.032359, 0.03236, 0.032362, 0.032364, 0.032365, 0.032367, 0.032369, 0.03237,
0.032372, 0.032374, 0.032375, 0.032377, 0.032379, 0.03238, 0.032382, 0.032383, 0.032385, 0.032386, 0.032388, 0.032389, 0.032391, 0.032393, 0.032394, 0.032396, 0.032397, 0.032399, 0.0324, 0.032402, 0.032403, 0.032404, 0.032406,
0.032407, 0.032409, 0.03241, 0.032412, 0.032413, 0.032414, 0.032416, 0.032417, 0.032419, 0.03242, 0.032421, 0.032423, 0.032424, 0.032426, 0.032427, 0.032428, 0.03243, 0.032431, 0.032432, 0.032195, 0.031907, 0.031618, 0.03133,
0.031041, 0.030752, 0.030463, 0.030174, 0.029885, 0.029596, 0.029307, 0.029017, 0.028728, 0.028438, 0.028149, 0.027859, 0.027569, 0.02728, 0.02699, 0.0267, 0.026409, 0.026119, 0.025829, 0.025539, 0.025248, 0.024958, 0.024667,
0.024376, 0.024086, 0.023795, 0.023504, 0.023213, 0.022922, 0.02263, 0.022339, 0.022048, 0.021756, 0.019831, 0.0178, 0.015765, 0.013726, 0.011682, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,
0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,
0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,
0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,
0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,
0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,
0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,
0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,
0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,
0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,
0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,
0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,
0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,
0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,
0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,
0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,
0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,
0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,
0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,
0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,
0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,
0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,
0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,
0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,
0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,
0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,
0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,
0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,
0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,
0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,
0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,
0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,
0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,
0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,
0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,
0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,
0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,
0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,
0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,
0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,
0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,
0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.042236, 0.042237, 0.044242, 0.047622, 0.051945, 0.054622, 0.05703, 0.057611, 0.060193, 0.067979, 0.090059, 0.13968, 0.18587, 0.23493, 0.2577, 0.28575, 0.30814, 0.33406, 0.34923, 0.36484, 0.36582, 0.37663, 0.38861,
0.39599, 0.40388, 0.41547, 0.42543, 0.43121, 0.44868, 0.46081, 0.47443, 0.48074, 0.48376, 0.49088, 0.50002, 0.49874, 0.50552, 0.51514, 0.5255, 0.53457, 0.53924, 0.54995, 0.5616, 0.56481, 0.55652, 0.5553,
0.55903, 0.5615, 0.5629, 0.55837, 0.55823, 0.56961, 0.57193, 0.57765, 0.58334, 0.60352, 0.61668, 0.61446, 0.61226, 0.61522, 0.61343, 0.6295, 0.63594, 0.64957, 0.65016, 0.6456, 0.64983, 0.64773, 0.65574,
0.65711, 0.6706, 0.67029, 0.67364, 0.677, 0.69513, 0.70345, 0.70187, 0.7088, 0.70599, 0.70885, 0.70809, 0.72616, 0.72714, 0.72598, 0.72482, 0.72364, 0.72209, 0.72054, 0.72599, 0.73175, 0.73909, 0.72286,
0.72864, 0.72026, 0.71832, 0.72837, 0.72445, 0.7358, 0.73836, 0.74122, 0.74531, 0.75845, 0.75671, 0.75586, 0.7664, 0.76537, 0.76336, 0.76901, 0.78442, 0.78142, 0.77492, 0.76697, 0.7637, 0.77904, 0.78135,
0.77812, 0.76856, 0.76567, 0.77469, 0.78372, 0.78232, 0.77367, 0.77041, 0.76716, 0.76416, 0.76121, 0.75836, 0.75626, 0.75416, 0.75206, 0.75082, 0.77016, 0.75869, 0.75551, 0.75233, 0.74937, 0.74701, 0.74466,
0.7423, 0.73994, 0.74528, 0.75466, 0.76404, 0.77228, 0.76629, 0.76449, 0.77408, 0.78367, 0.79326, 0.79883, 0.7949, 0.79097, 0.78718, 0.78346, 0.77975, 0.77645, 0.77363, 0.77081, 0.76799, 0.76517, 0.76184,
0.7584, 0.75496, 0.75152, 0.74453, 0.73474, 0.72988, 0.72584, 0.72181, 0.71777, 0.72875, 0.77413, 0.78205, 0.78996, 0.79788, 0.80579, 0.81371, 0.82162, 0.82954, 0.8328, 0.83177, 0.83075, 0.82972, 0.8287,
0.82767, 0.82665, 0.82562, 0.8246, 0.82357, 0.82255, 0.82152, 0.8205, 0.81947, 0.81845, 0.81489, 0.81045, 0.806, 0.80156, 0.79655, 0.79124, 0.78593, 0.78062, 0.78066, 0.78687, 0.79307, 0.79927, 0.80548,
0.81168, 0.81788, 0.82409, 0.83029, 0.83649, 0.8427, 0.8489, 0.8551, 0.86131, 0.86751, 0.87371, 0.87404, 0.87283, 0.87162, 0.87041, 0.8692, 0.86799, 0.86678, 0.86557, 0.86436, 0.86315, 0.86194, 0.86073,
0.85952, 0.85831, 0.85625, 0.83174, 0.82292, 0.8141, 0.80527, 0.79463, 0.7813, 0.76797, 0.75463, 0.75163, 0.75414, 0.75664, 0.75915, 0.76165, 0.76416, 0.76666, 0.76916, 0.77167, 0.77417, 0.77668, 0.77918,
0.78169, 0.78419, 0.78669, 0.7892, 0.7917, 0.79421, 0.79671, 0.79921, 0.80172, 0.80422, 0.80673, 0.80923, 0.81174, 0.81424, 0.81674, 0.81925, 0.82175, 0.82426, 0.82676, 0.82927, 0.83177, 0.83427, 0.83678,
0.83928, 0.84179, 0.84429, 0.8468, 0.8493, 0.8518, 0.85431, 0.85681, 0.85932, 0.86182, 0.86433, 0.86683, 0.86933, 0.87184, 0.87434, 0.87685, 0.87935, 0.88185, 0.88436, 0.88686, 0.88937, 0.89187, 0.89438,
0.89688, 0.89938, 0.90189, 0.90439, 0.9069, 0.9094, 0.91191, 0.91441, 0.91691, 0.91942, 0.92192, 0.92443, 0.92693, 0.92944, 0.93194, 0.93444, 0.93695, 0.93945, 0.94196, 0.94446, 0.94697, 0.94947, 0.95197,
0.95448, 0.95698, 0.95949, 0.96199, 0.96449, 0.967, 0.9695, 0.97201, 0.97451, 0.97702, 0.97952, 0.98202, 0.98453, 0.98703, 0.98954, 0.99204, 0.99455, 0.99705, 0.99955, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,
0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,
0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,
0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,
0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,
0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,
0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,
0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,
0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,
0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,
0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,
0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,
0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,
0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,
0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,
0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,
0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,
0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,
0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,
0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,
0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,
0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,
0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,
0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,
0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,
0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,
0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,
0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,
0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,
0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,
0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,
0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,
0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,
0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,
0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,
0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,
0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,
0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,
0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,
0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,
0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,
0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.93407, 0.93407, 0.93407, 0.92308, 0.90659, 0.8956, 0.8956, 0.88462, 0.87912, 0.87363, 0.87363, 0.84615, 0.82418, 0.82418, 0.82418, 0.81319, 0.79121, 0.78571, 0.78022, 0.76374, 0.74725, 0.74725, 0.7299,
0.72527, 0.70879, 0.70298, 0.6978, 0.6873, 0.67033, 0.65934, 0.64835, 0.64286, 0.62637, 0.62637, 0.62637, 0.61776, 0.60989, 0.6044, 0.5989, 0.59321, 0.57875, 0.57692, 0.57143, 0.56593, 0.53093, 0.51648,
0.50848, 0.49251, 0.48823, 0.47238, 0.45604, 0.45055, 0.44505, 0.42835, 0.42308, 0.42308, 0.41547, 0.40283, 0.3956, 0.39533, 0.39011, 0.39011, 0.39011, 0.39011, 0.37783, 0.37035, 0.36708, 0.36372, 0.35714,
0.35165, 0.35165, 0.34615, 0.34615, 0.34615, 0.34615, 0.33889, 0.33633, 0.33436, 0.32984, 0.32418, 0.31868, 0.31868, 0.30749, 0.30571, 0.30393, 0.30214, 0.29982, 0.2975, 0.29116, 0.28479, 0.28016, 0.25797,
0.25275, 0.24051, 0.23822, 0.23574, 0.23114, 0.22955, 0.22527, 0.21429, 0.20902, 0.20705, 0.2051, 0.2033, 0.2033, 0.19716, 0.18681, 0.18294, 0.17996, 0.1768, 0.17025, 0.16279, 0.15983, 0.15934, 0.15712,
0.15416, 0.14601, 0.14286, 0.14286, 0.14286, 0.13825, 0.13148, 0.12911, 0.12673, 0.12466, 0.12264, 0.12071, 0.11937, 0.11804, 0.1167, 0.11538, 0.11049, 0.10368, 0.10193, 0.10018, 0.098582, 0.097391, 0.0962,
0.095008, 0.093817, 0.093407, 0.093407, 0.093407, 0.093182, 0.090136, 0.087912, 0.087912, 0.087912, 0.087912, 0.087303, 0.085251, 0.0832, 0.081338, 0.079594, 0.077849, 0.076367, 0.075182, 0.073996, 0.07281, 0.071625, 0.070356,
0.069071, 0.067786, 0.066501, 0.064131, 0.060903, 0.059443, 0.058279, 0.057115, 0.055951, 0.054945, 0.054945, 0.054945, 0.054945, 0.054945, 0.054945, 0.054945, 0.054945, 0.054945, 0.054752, 0.05438, 0.054008, 0.053636, 0.053265,
0.052893, 0.052521, 0.05215, 0.051778, 0.051406, 0.051034, 0.050663, 0.050291, 0.049919, 0.049547, 0.048457, 0.047114, 0.04577, 0.044427, 0.043103, 0.04179, 0.040477, 0.039164, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462,
0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038462, 0.038167, 0.037794, 0.037422, 0.03705, 0.036678, 0.036305, 0.035933, 0.035561, 0.035189, 0.034816, 0.034444, 0.034072,
0.0337, 0.033327, 0.032761, 0.027211, 0.025756, 0.024302, 0.022847, 0.021388, 0.019923, 0.018458, 0.016993, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484,
0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484,
0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484,
0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484,
0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016484, 0.016361, 0.016212, 0.016063, 0.015914,
0.015765, 0.015616, 0.015467, 0.015318, 0.015169, 0.01502, 0.014871, 0.014722, 0.014573, 0.014424, 0.014275, 0.014126, 0.013977, 0.013828, 0.013679, 0.01353, 0.013381, 0.013232, 0.013083, 0.012934, 0.012786, 0.012637, 0.012488,
0.012339, 0.01219, 0.012041, 0.011892, 0.011743, 0.011594, 0.011445, 0.011296, 0.011147, 0.010998, 0.010015, 0.0089799, 0.007945, 0.0069102, 0.0058753, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'Confidence', 'Recall']]
fitness: 0.20649945811085935
keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
maps: array([ 0.17135])
names: {0: 'microglia'}
plot: True
results_dict: {'metrics/precision(B)': 0.6359415970119378, 'metrics/recall(B)': 0.3901098901098901, 'metrics/mAP50(B)': 0.5228395427684258, 'metrics/mAP50-95(B)': 0.17135055981557418, 'fitness': 0.20649945811085935}
save_dir: PosixPath('runs/detect/train162')
speed: {'preprocess': 0.0838915506998698, 'inference': 6.200249989827474, 'loss': 0.0005086263020833334, 'postprocess': 0.6571292877197266}
task: 'detect'