-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
102 lines (82 loc) · 3.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from __future__ import print_function, division
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
import argparse
import time
import os
import cv2
from PIL import Image as pil_image
from tqdm import tqdm
from network.classifier import *
from network.transform import mesonet_data_transforms
from network.mobilenetv3 import *
import pandas as pd
import numpy as np
def train_model(model, criterion, optimizer, scheduler, num_epochs=50):
best_model_wts = model.state_dict()
best_acc = 0.0
bias_variance = {'train':[], 'val':[]}
all_epoch = [i for i in range(1, num_epochs+1)]
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
# and we want to draw a bias-variance trade-off schematic diagram
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0.0
for inputs, labels in dataloaders[phase]:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.data.item()
running_corrects += torch.sum(preds == labels.data).to(torch.float32)
epoch_loss = running_loss / datasets_sizes[phase]
epoch_acc = running_corrects / datasets_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
bias_variance[phase].append(1 - float(epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
plt.plot(all_epoch, np.array(bias_variance['train']), c='red')
plt.plot(all_epoch, np.array(bias_variance['val']), c='blue')
plt.show()
# key to csv column
dataframe = pd.DataFrame({'training_error':np.array(bias_variance['train']), 'validation_error':np.array(bias_variance['val'])})
dataframe.to_csv("train.csv",index=False,sep=',')
return model
if __name__ == '__main__':
data_dir = '.\\extended_database'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), mesonet_data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=100,
shuffle=True,
num_workers=4) for x in ['train', 'val']}
datasets_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
# model = MesoInception4()
model = mobilenetv3()
print(sum(param.numel() for param in model.parameters()))
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.001)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=5, gamma=0.5)
model = train_model(model=model, criterion=criterion, optimizer=optimizer_ft, scheduler=exp_lr_scheduler)
torch.save(model, ".\\output\\mobilenetv3_drop_3_layer.pkl")