-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path读取自己的模型并生成选项.py
72 lines (70 loc) · 2.41 KB
/
读取自己的模型并生成选项.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import transformers
from transformers import PYTORCH_PRETRAINED_BERT_CACHE
import pandas as pd
import numpy as np
import torch
from transformers import BertModel,BertTokenizer
from transformers import *
from torch.utils.data import TensorDataset, random_split
import warnings
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch import optim
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertForSequenceClassification, AdamW
from torch.autograd import Variable
import time
from transformers import get_linear_schedule_with_warmup
warnings.filterwarnings("ignore")
sigmoid = nn.Sigmoid()
model=torch.load("216.pth")
tokenizer = BertTokenizer.from_pretrained(r"C:\Users\86189\Desktop\1\bert-law\vocab.txt")
df=pd.read_excel("test0.xlsx")
sentences=df.text.values
num=df.num.values
def predict(logits):
res = torch.argmax(logits, 1)
return res
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
m=['A','B','C','D']
while(True):
print("请选择回答的题目")
n=eval(input())
s=[]
for a in range(len(sentences)):
if num[a]==n:
s.append(sentences[a])
l=[]
a=[]
if len(s)!=0:
for i in s:
encoded_dict = tokenizer.encode_plus(
i, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
max_length = 256, # Pad & truncate all sentences.
pad_to_max_length = True,
return_attention_mask = True, # Construct attn. masks.
return_tensors = 'pt', # Return pytorch tensors.
)
l.append(encoded_dict['input_ids'])
a.append(encoded_dict['attention_mask'])
x=torch.cat(l, dim=0)
x=x.to(device)
y=torch.cat(a, dim=0)
y=y.to(device)
output=model(x,attention_mask=y)
logits = output.logits
p=predict(sigmoid(logits))
if 0 not in p:
p=[]
for i in range(4):
p.append(sigmoid(logits)[i][0])
i=p.index(max(p))
print(m[i])
else:
pr=[]
for i in range(4):
if p[i]==0:
pr.append(m[i])
print(pr)