-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathse_dataset.py
85 lines (63 loc) · 2.48 KB
/
se_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
from tqdm import tqdm
import librosa
import os, csv
import torch
from torch.utils import data
# Reference
# DATA LOADING - LOAD FILE LISTS
def load_data_list(folder='./dataset', setname='train'):
assert(setname in ['train', 'val'])
dataset = {}
foldername = folder + '/' + setname + 'set'
print("Loading files...")
dataset['innames'] = []
dataset['outnames'] = []
dataset['shortnames'] = []
filelist = os.listdir("%s_noisy"%(foldername))
filelist = [f for f in filelist if f.endswith(".wav")]
for i in tqdm(filelist):
dataset['innames'].append("%s_noisy/%s"%(foldername,i))
dataset['outnames'].append("%s_clean/%s"%(foldername,i))
dataset['shortnames'].append("%s"%(i))
return dataset
# DATA LOADING - LOAD FILE DATA
def load_data(dataset):
dataset['inaudio'] = [None]*len(dataset['innames'])
dataset['outaudio'] = [None]*len(dataset['outnames'])
for id in tqdm(range(len(dataset['innames']))):
if dataset['inaudio'][id] is None:
inputData, sr = librosa.load(dataset['innames'][id], sr=None)
outputData, sr = librosa.load(dataset['outnames'][id], sr=None)
shape = np.shape(inputData)
dataset['inaudio'][id] = np.float32(inputData)
dataset['outaudio'][id] = np.float32(outputData)
return dataset
class AudioDataset(data.Dataset):
"""
Audio sample reader.
"""
def __init__(self, data_type):
dataset = load_data_list(setname=data_type)
self.dataset = load_data(dataset)
self.file_names = dataset['innames']
def __getitem__(self, idx):
mixed = torch.from_numpy(self.dataset['inaudio'][idx]).type(torch.FloatTensor)
clean = torch.from_numpy(self.dataset['outaudio'][idx]).type(torch.FloatTensor)
return mixed, clean
def __len__(self):
return len(self.file_names)
def zero_pad_concat(self, inputs):
max_t = max(inp.shape[0] for inp in inputs)
shape = (len(inputs), max_t)
input_mat = np.zeros(shape, dtype=np.float32)
for e, inp in enumerate(inputs):
input_mat[e, :inp.shape[0]] = inp
return input_mat
def collate(self, inputs):
mixeds, cleans = zip(*inputs)
seq_lens = torch.IntTensor([i.shape[0] for i in mixeds])
x = torch.FloatTensor(self.zero_pad_concat(mixeds))
y = torch.FloatTensor(self.zero_pad_concat(cleans))
batch = [x, y, seq_lens]
return batch