-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
266 lines (216 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision
from torchvision import transforms
from torch.optim.lr_scheduler import ExponentialLR
import tensorboardX
from tensorboardX import SummaryWriter
from scipy.io import wavfile
import librosa
import soundfile as sf
from pystoi.stoi import stoi
from pypesq import pesq
from tqdm import tqdm
from models.layers.istft import ISTFT
import train_utils
from load_dataset import AudioDataset
from models.attention import AttentionModel
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='experiment/SE_model.json', help="Directory containing params.json")
parser.add_argument('--restore_file', default=None, help="Optional, name of the file in --model_dir containing weights to reload before training") # 'best' or 'train'
parser.add_argument('--batch_size', default=128, type=int, help='train batch size')
parser.add_argument('--num_epochs', default=100, type=int, help='train epochs number')
parser.add_argument('--dropout_p', default = 0, type=float, help='Attention model drop out rate')
parser.add_argument('--learning_rate', default = 5e-4, type=float, help = 'Learning rate')
parser.add_argument('--attn_use', default = False, type=bool)
parser.add_argument('--stacked_encoder', default = False, type = bool)
parser.add_argument('--attn_len', default = 0, type = int)
parser.add_argument('--hidden_size', default = 112, type = int)
parser.add_argument('--ck_name', default = 'SEckpt.pt')
args = parser.parse_args()
n_fft, hop_length = 512, 128
window = torch.hann_window(n_fft).cuda()
# STFT
stft = lambda x: torch.stft(x, n_fft, hop_length, window=window)
# ISTFT
istft = ISTFT(n_fft, hop_length, window='hanning').cuda()
def normalized(tensor):
output = [[] for i in range(len(tensor))]
for i in range(len(tensor)):
nummer = tensor[i] - torch.min(tensor[i])
denomi = torch.max(tensor[i]) - torch.min(tensor[i])
output[i] = (nummer / (denomi + 1e-5)).tolist()
return torch.tensor(output)
def main():
#summary = SummaryWriter()
#os.system('tensorboard --logdir=path_of_log_file')
#set Hyper parameter
json_path = os.path.join(args.model_dir)
params = train_utils.Params(json_path)
#data loader
train_dataset = AudioDataset(data_type='train')
train_data_loader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, collate_fn=train_dataset.collate, shuffle=True, num_workers=4)
test_dataset = AudioDataset(data_type='test')
test_data_loader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, collate_fn=test_dataset.collate, shuffle=False, num_workers=4)
#model select
print('Model initializing\n')
net = torch.nn.DataParallel(AttentionModel(257, hidden_size = args.hidden_size, dropout_p = args.dropout_p, use_attn = args.attn_use, stacked_encoder = args.stacked_encoder, attn_len = args.attn_len))
#net = AttentionModel(257, 112, dropout_p = args.dropout_p, use_attn = args.attn_use)
net = net.cuda()
print(net)
optimizer = optim.Adam(net.parameters(), lr=args.learning_rate)
scheduler = ExponentialLR(optimizer, 0.5)
#check point load
#Check point load
print('Trying Checkpoint Load\n')
ckpt_dir = 'ckpt_dir'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
best_PESQ = 0.
best_STOI = 0.
best_loss = 200000.
ckpt_path = os.path.join(ckpt_dir, args.ck_name)
if os.path.exists(ckpt_path):
ckpt = torch.load(ckpt_path)
try:
net.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
best_loss = ckpt['best_loss']
print('checkpoint is loaded !')
print('current best loss : %.4f' % best_loss)
except RuntimeError as e:
print('wrong checkpoint\n')
else:
print('checkpoint not exist!')
print('current best loss : %.4f' % best_loss)
print('Training Start!')
#train
iteration = 0
train_losses = []
test_losses = []
for epoch in range(args.num_epochs):
train_bar = tqdm(train_data_loader)
# train_bar = train_data_loader
n = 0
avg_loss = 0
net.train()
for input in train_bar:
iteration += 1
#load data
train_mixed, train_clean, seq_len = map(lambda x: x.cuda(), input)
mixed = stft(train_mixed)
cleaned = stft(train_clean)
mixed = mixed.transpose(1,2)
cleaned = cleaned.transpose(1,2)
real, imag = mixed[..., 0], mixed[..., 1]
clean_real, clean_imag = cleaned[..., 0], cleaned[..., 1]
mag = torch.sqrt(real**2 + imag**2)
clean_mag = torch.sqrt(clean_real**2 + clean_imag**2)
phase = torch.atan2(imag, real)
#feed data
out_mag, attn_weight = net(mag)
out_real = out_mag * torch.cos(phase)
out_imag = out_mag * torch.sin(phase)
out_real, out_imag = torch.squeeze(out_real, 1), torch.squeeze(out_imag, 1)
out_real = out_real.transpose(1,2)
out_imag = out_imag.transpose(1,2)
out_audio = istft(out_real, out_imag, train_mixed.size(1))
out_audio = torch.squeeze(out_audio, dim=1)
for i, l in enumerate(seq_len):
out_audio[i, l:] = 0
loss = 0
PESQ = 0
STOI = 0
loss = F.mse_loss(out_mag, clean_mag, True)
if torch.any(torch.isnan(loss)):
torch.save({'clean_mag': clean_mag, 'out_mag': out_mag, 'mag': mag}, 'nan_mag')
raise('loss is NaN')
avg_loss += loss
n += 1
#gradient optimizer
optimizer.zero_grad()
#backpropagate LOSS
loss.backward()
#update weight
optimizer.step()
#for i in range(len(train_mixed)):
# PESQ += pesq(train_clean[i].cpu().data.numpy(), out_audio[i].cpu().data.numpy(), 16000)
# STOI += stoi(train_clean[i].cpu().data.numpy(), out_audio[i].cpu().data.numpy(), 16000, extended=False)
#PESQ /= len(train_mixed)
#STOI /= len(train_mixed)
#flot tensorboard
if iteration % 100 == 0 :
print('[epoch: {}, iteration: {}] train loss : {:.4f} PESQ : {:.4f} STOI : {:.4f}'.format(epoch, iteration, loss, PESQ, STOI))
avg_loss /= n
#summary.add_scalar('Train Loss', avg_loss.item(), iteration)
train_losses.append(avg_loss)
if (len(train_losses) > 2) and (train_losses[-2] < avg_loss):
print("Learning rate Decay")
scheduler.step()
#test phase
n = 0
avg_test_loss = 0
test_bar = tqdm(test_data_loader)
net.eval()
with torch.no_grad():
for input in test_bar:
test_mixed, test_clean, seq_len = map(lambda x: x.cuda(), input)
mixed = stft(test_mixed)
cleaned = stft(test_clean)
mixed = mixed.transpose(1,2)
cleaned = cleaned.transpose(1,2)
real, imag = mixed[..., 0], mixed[..., 1]
clean_real, clean_imag = cleaned[..., 0], cleaned[..., 1]
mag = torch.sqrt(real**2 + imag**2)
clean_mag = torch.sqrt(clean_real**2 + clean_imag**2)
phase = torch.atan2(imag, real)
logits_mag, logits_attn_weight = net(mag)
logits_real = logits_mag * torch.cos(phase)
logits_imag = logits_mag * torch.sin(phase)
logits_real, logits_imag = torch.squeeze(logits_real, 1), torch.squeeze(logits_imag, 1)
logits_real = logits_real.transpose(1,2)
logits_imag = logits_imag.transpose(1,2)
logits_audio = istft(logits_real, logits_imag, test_mixed.size(1))
logits_audio = torch.squeeze(logits_audio, dim=1)
for i, l in enumerate(seq_len):
logits_audio[i, l:] = 0
test_loss = 0
test_PESQ = 0
test_STOI = 0
test_loss = F.mse_loss(logits_mag, clean_mag, True)
#for i in range(len(test_mixed)):
#librosa.output.write_wav('test_out.wav', logits_audio[i].cpu().data.numpy()[:seq_len[i].cpu().data.numpy()], 16000)
# test_PESQ += pesq(test_clean[i].detach().cpu().numpy(), logits_audio[i].detach().cpu().numpy(), 16000)
# test_STOI += stoi(test_clean[i].detach().cpu().numpy(), logits_audio[i].detach().cpu().numpy(), 16000, extended=False)
#test_STOI /= len(test_mixed)
avg_test_loss += test_loss
n += 1
#test loss
#test_loss = wSDRLoss(test_mixed, test_clean, out_audio)
#test_loss = torch.nn.MSELoss(out_audio, test_clean)
#test accuracy
#test_pesq = pesq('test_clean.wav', 'test_out.wav', 16000)
#test_stoi = stoi('test_clean.wav', 'test_out.wav', 16000)
avg_test_loss /= n
test_losses.append(avg_test_loss)
#summary.add_scalar('Test Loss', avg_test_loss.item(), iteration)
print('[epoch: {}, iteration: {}] test loss : {:.4f} PESQ : {:.4f} STOI : {:.4f}'.format(epoch, iteration, avg_test_loss, test_PESQ, test_STOI))
if avg_test_loss < best_loss:
best_PESQ = test_PESQ
best_STOI = test_STOI
best_loss = avg_test_loss
# Note: optimizer also has states ! don't forget to save them as well.
ckpt = {'model':net.state_dict(),
'optimizer':optimizer.state_dict(),
'best_loss':best_loss}
torch.save(ckpt, ckpt_path)
print('checkpoint is saved !')
if __name__ == '__main__':
main()