-
-
Notifications
You must be signed in to change notification settings - Fork 848
/
Copy pathapp.py
119 lines (99 loc) · 5.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
from PIL import Image, ImageEnhance
import numpy as np
import cv2
import os
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import detect_mask_image
# Setting custom Page Title and Icon with changed layout and sidebar state
st.set_page_config(page_title='Face Mask Detector', page_icon='😷', layout='centered', initial_sidebar_state='expanded')
def local_css(file_name):
""" Method for reading styles.css and applying necessary changes to HTML"""
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
def mask_image():
global RGB_img
# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
weightsPath = os.path.sep.join(["face_detector",
"res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
model = load_model("mask_detector.model")
# load the input image from disk and grab the image spatial
# dimensions
image = cv2.imread("./images/out.jpg")
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = model.predict(face)[0]
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output
# frame
cv2.putText(image, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask_image()
def mask_detection():
local_css("css/styles.css")
st.markdown('<h1 align="center">😷 Face Mask Detection</h1>', unsafe_allow_html=True)
activities = ["Image", "Webcam"]
st.set_option('deprecation.showfileUploaderEncoding', False)
st.sidebar.markdown("# Mask Detection on?")
choice = st.sidebar.selectbox("Choose among the given options:", activities)
if choice == 'Image':
st.markdown('<h2 align="center">Detection on Image</h2>', unsafe_allow_html=True)
st.markdown("### Upload your image here ⬇")
image_file = st.file_uploader("", type=['jpg']) # upload image
if image_file is not None:
our_image = Image.open(image_file) # making compatible to PIL
im = our_image.save('./images/out.jpg')
saved_image = st.image(image_file, caption='', use_column_width=True)
st.markdown('<h3 align="center">Image uploaded successfully!</h3>', unsafe_allow_html=True)
if st.button('Process'):
st.image(RGB_img, use_column_width=True)
if choice == 'Webcam':
st.markdown('<h2 align="center">Detection on Webcam</h2>', unsafe_allow_html=True)
st.markdown('<h3 align="center">This feature will be available soon!</h3>', unsafe_allow_html=True)
mask_detection()