forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRepeatUntilSuccessCircuits.qs
240 lines (191 loc) · 10.5 KB
/
RepeatUntilSuccessCircuits.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.UnitTesting {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
///////////////////////////////////////////////////////////////////////////////////////////////
// Circuits for exp(±i⋅ArcTan(2)⋅Z) implemented using Repeat-Until-Success (RUS) protocols
// in term of Clifford and T gates
///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////
// Introduction
///////////////////////////////////////////////////////////////////////////////////////////////
// In general, any Repeat-Until-Success (RUS) protocol uses a circuit with measurements
// to implement a unitary operation on a target qubit(s). Upon success, indicated by
// certain measurement outcomes, a circuit used in the protocol implements desired unitary.
// Upon failure, e.g. the other measurement outcomes, the protocol implements a unitary
// that is easy to undo ( for example, Identity operation ). The circuit is repeated
// over an over again until the desired unitary is implemented.
///////////////////////////////////////////////////////////////////////////////////////////////
/// # Summary
/// Example of a Repeat-Until-Success circuit implementing exp(i⋅ArcTan(2)⋅Z)
/// by Nielsen & Chuang. Gate exp(i⋅ArcTan(2)⋅Z) is also know as V gate.
///
/// # References
/// - [ *Michael A. Nielsen , Isaac L. Chuang*,
/// Quantum Computation and Quantum Information ](http://doi.org/10.1017/CBO9780511976667)
///
/// # See Also
/// - For the discussion and circuit diagram see Section 1.3.6 of Nielsen & Chuang.
/// - For the circuit diagram see Figure 1 (a) on Page 5
/// of the [arXiv:1311.1074v2](https://arxiv.org/pdf/1311.1074.pdf#page=5)
operation ExpIZArcTan2NC (target : Qubit) : Unit {
body (...) {
using ((aux0, aux1) = (Qubit(), Qubit())) {
// Set both ancilla to |+⟩ state
ApplyToEach(H, [aux0, aux1]);
repeat {
// This is just a log message, so we can see how many times we tried before
// succeeding.
Message("Trying ...");
// we expect to start with both ancillas being in |+⟩ state
AssertProb([PauliX], [aux0], Zero, 1.0, "", 1E-10);
AssertProb([PauliX], [aux1], Zero, 1.0, "", 1E-10);
// use CCNOT with 4 T gates
CCNOT3(aux0, aux1, target);
S(target);
// use CCNOT with 4 T gates
CCNOT3(aux0, aux1, target);
Z(target);
// Before the measurements probability of measuring |+⟩ state on both
// ancillas is 3/4
AssertProb([PauliX], [aux0], Zero, 0.75, "Error: the probability to measure |+⟩ in the first ancilla must be 3/4", 1E-10);
AssertProb([PauliX], [aux1], Zero, 0.75, "Error: the probability to measure |+⟩ in the second ancilla must be 3/4", 1E-10);
let outcome0 = Measure([PauliX], [aux0]);
// After the first auxillary qubit has been measured the probability is conditional
// upon measurement outcome.
// If we measured Zero on the first auxillary qubit, the probability of
// measuring |+⟩ on the second auxillary qubit is 5/6
// If we measured One on the first auxillary qubit, the probability of
// measuring |+⟩ on the second ancilla is 1/2
let prob = outcome0 == One ? 0.5 | 5.0 / 6.0;
AssertProb([PauliX], [aux1], Zero, prob, $"Error:the probability to measure |+⟩ in the first ancilla must be {prob}", 1E-10);
let outcome1 = Measure([PauliX], [aux1]);
}
until (outcome0 == Zero and outcome1 == Zero)
fixup {
// Upon failure the identity gate has been applied to the target qubit
// Now let us record the failure to log.
let msg1 = "We failed. Outcomes of measuring first and second ancilla ";
let msg2 = $"were {(outcome0, outcome1)}. Applying fix-up and trying again";
Message(msg1 + msg2);
// Make sure that both ancilla are back to |+⟩ state
if (outcome0 == One) {
Z(aux0);
}
if (outcome1 == One) {
Z(aux1);
}
}
// If both outcomes are Zero we successfully applied exp(i⋅ArcTan(2)⋅Z)
Message("Success!");
// Return ancillas back to |0⟩ state
ApplyToEach(H, [aux0, aux1]);
}
}
adjoint (...) {
// We can use the following equation to implement the Adjoint:
// X exp(i⋅ArcTan(2)⋅Z) X = exp(i⋅ArcTan(2)⋅XZX) = exp(- i⋅ArcTan(2)⋅Z)
X(target);
ExpIZArcTan2NC(target);
X(target);
}
}
/// # Summary
/// Example of a Repeat-Until-Success circuit implementing exp(i⋅ArcTan(2)⋅Z)
/// by Paetznick & Svore. Gate exp(i⋅ArcTan(2)⋅Z) is also know as V gate.
/// # References
/// - [ *Adam Paetznick, Krysta M. Svore*,
/// Quantum Information & Computation 14(15 & 16): 1277-1301 (2014)
/// ](https://arxiv.org/abs/1311.1074)
/// # See Also
/// - For the circuit diagram see Figure 1 (c) on Page
/// of the [arXiv:1311.1074v2](https://arxiv.org/pdf/1311.1074.pdf#page=5)
operation ExpIZArcTan2PS (target : Qubit) : Unit {
body (...) {
using (auxillaryQubit = Qubit()) {
// Set ancilla to |+⟩ state
H(auxillaryQubit);
// Note that because T and Z on the target commutes through the control,
// we can just count the number of T's we need to apply over the course of
// the protocol and apply one or zero of T's in the end.
mutable TGatesToApplyInTheEnd = 0;
repeat {
// This is just a log message, so we can see how many times we tried before
// succeeding.
Message("Trying ...");
// we expect to start with auxillaryQubit being in |+⟩ state
AssertProb([PauliX], [auxillaryQubit], Zero, 1.0, "auxillaryQubit must be in |+⟩ state", 1E-10);
RepeatUntilSuccessStatePreparation(auxillaryQubit);
CNOT(target, auxillaryQubit);
T(auxillaryQubit);
// This is instead of Z(target), T(target)
set TGatesToApplyInTheEnd += 5;
// The probability to measure |+⟩ on auxillaryQubit is 5/6
AssertProb([PauliX], [auxillaryQubit], Zero, 5.0 / 6.0, "The probability to measure |+⟩ on auxillaryQubit must be 5/6", 1E-10);
let outcome = Measure([PauliX], [auxillaryQubit]);
}
until (outcome == Zero)
fixup {
// Upon failure the identity gate has been applied to the target qubit
// Now let us record the failure to log.
Message("We failed. Applying fix-up");
// This is instead of Z(target)
set TGatesToApplyInTheEnd += 4;
// Make sure that auxillaryQubit is back to |+⟩ state
Z(auxillaryQubit);
}
// If outcome is Zero we successfully applied exp(i⋅ArcTan(2)⋅Z)
Message("Success!");
// Now apply the required T,S and Z gates.
// If TGatesToApplyInTheEnd is odd one more T gates is applied, and if
// TGatesToApplyInTheEnd is even there are no T gates to apply
// In other words apply exp( i⋅π⋅k/2² |1⟩⟨1| ), where k = TGatesToApplyInTheEnd
R1Frac(TGatesToApplyInTheEnd, 2, target);
// Now return the auxillary qubit to the |0⟩ state
H(auxillaryQubit);
}
}
adjoint (...) {
// We can use the following equation to implement the Adjoint:
// X exp(i⋅ArcTan(2)⋅Z) X = exp(i⋅ArcTan(2)⋅XZX) = exp(- i⋅ArcTan(2)⋅Z)
X(target);
ExpIZArcTan2PS(target);
X(target);
}
}
/// # Summary
/// Prepares state (√2/√3,1/√3) starting from a |+⟩ state
/// using Repeat-Until-Success protocol.
/// # Sea also
/// - Used in @"Microsoft.Quantum.Samples.UnitTesting.ExpIZArcTan2PS"
operation RepeatUntilSuccessStatePreparation (target : Qubit) : Unit {
using (auxillaryQubit = Qubit()) {
H(auxillaryQubit);
repeat {
// we expect the target and auxillary qubits to each be in the |+⟩ state.
AssertProb([PauliX], [target], Zero, 1.0, "target qubit should be in |+⟩ state", 1E-10);
AssertProb([PauliX], [auxillaryQubit], Zero, 1.0, "auxillaryQubit qubit should be in |+⟩ state", 1E-10);
Adjoint T(auxillaryQubit);
CNOT(target, auxillaryQubit);
T(auxillaryQubit);
// Probability of measuring |+⟩ state on auxillaryQubit is 3/4
AssertProb([PauliX], [auxillaryQubit], Zero, 3.0 / 4.0, "Error: the probability to measure |+⟩ in the first auxillaryQubit must be 3/4", 1E-10);
// if measurement outcome zero we prepared required state
let outcome = Measure([PauliX], [auxillaryQubit]);
}
until (outcome == Zero)
fixup {
// Bring auxillaryQubit and target back to |+⟩ state
if (outcome == One) {
Z(auxillaryQubit);
X(target);
H(target);
}
}
// Return auxillaryQubit back to Zero state
H(auxillaryQubit);
}
}
}