forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleIsing.qs
160 lines (134 loc) · 6.54 KB
/
SimpleIsing.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.SimpleIsing {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Convert;
//////////////////////////////////////////////////////////////////////////
// Introduction //////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// In this example, we will show how to simulate the time evolution of
// an Ising model under a transverse field,
//
// H(s) ≔ s [- J Σ'ᵢⱼ Zᵢ Zⱼ - hz Σᵢ Zᵢ] - (1 - s) hx Σᵢ Xᵢ
//
// where the primed summation Σ' is taken only over nearest-neighbors,
// and where s is a parameter in the interval [0, 1] that controls the
// sweep to the final Hamiltonian.
// We do so by first defining an operation which will rotate a pair of
// qubits (q₁, q₂) by an angle φ around ZZ,
//
// U(φ) = e^{i φ Z₁ Z₂}.
//
// In terms of the intrinsic gates defined by Q#, we can write
// this by conjugating an Rz rotation by CNOTs. Later, we will see
// how this can be written more compactly using operations and functions
// from the canon, and how to use other intrinsic operations to
// exponentiate arbitrary Pauli operators.
/// # Summary
/// Given two qubits and a rotation angle, rotates the given
/// qubits about ZZ.
///
/// # Input
/// ## phi
/// Angle by which to rotate the given qubits.
operation ApplyZZ(phi : Double, q1 : Qubit, q2 : Qubit) : Unit is Adj + Ctl {
ApplyWithCA(CNOT(q1, _), Rz(-2.0 * phi, _), q2);
}
// With this operation in place, we can now decompose evolution
// under the full Hamiltonian H given above using the Trotter–Suzuki
// decomposition. For simplicity, we'll use the first-order Trotter–Suzuki
// decomposition; higher orders can be written easily using the flow control
// and generator representation operations provided with the canon.
/// # Summary
/// Sweeps from an transverse field to an Ising model using a linear
/// schedule.
///
/// # Input
/// ## nSites
/// Number of spins in the Ising model under consideration.
/// ## time
/// Overall evolution time to simulate.
/// ## dt
/// The length of time for each timestep in the simulation.
///
/// # Output
/// The results of Z measurements on each qubit.
///
/// # Remarks
/// This operation allocates qubits internally to use in simulation,
/// such that it is straightforward to call this operation from
/// conventional .NET code.
operation Ising (nSites : Int, time : Double, dt : Double) : Result[] {
// We start by allocating an array to hold measurement results,
// so that we can return them when we are done.
mutable result = new Result[nSites];
// Next, we use the using keyword to declare that the following
// block needs freshly initialized qubits.
using (qs = Qubit[nSites]) {
// Each new qubit starts off in the |0〉 state, so we
// apply the Hadamard gate, represented by the
// Microsoft.Quantum.Intrinsic.H operation, in order to
// prepare an initial state |+〉 for each qubit.
// That is, we align all of the initial states with the
// X operator.
for (idxQubit in 0 .. Length(qs) - 1) {
H(qs[idxQubit]);
}
// Next, we find the number of steps that we need to perform
// the requested decomposition.
let nSteps = Floor(time / dt);
// We now define the terms in the Hamiltonian above
// and provide specific values for each.
// Transverse field:
let hx = 1.0;
// Longitudinal field:
let hz = 0.5;
// Ising coupling:
let J = 1.0;
// Having defined everything that we need, we can now proceed
// to perform the actual Trotter–Suzuki decomposition and evolve
// according to the Ising model Hamiltonian.
// We do so by iterating over the number of time steps, and
// applying each Hamiltonian term within each step and at each
// site.
for (idxIter in 0 .. nSteps - 1) {
// Find where we are in the sweep from the transverse
// field to the final Ising model.
let sweepParameter = IntAsDouble(idxIter) / IntAsDouble(nSteps);
// In order to improve the locality of qubit references,
// we apply all terms locally before proceeding to the next
// site.
for (idxSite in 0 .. nSites - 1) {
// Evolve under the transverse field for φx ≔ (1 - s) hx dt.
Rx(((-2.0 * (1.0 - sweepParameter)) * hx) * dt, qs[idxSite]);
// Evolve under the longitudinal field for φz ≔ s hz dt.
Rz(((-2.0 * sweepParameter) * hz) * dt, qs[idxSite]);
// If we aren't the last qubit, evolve under the Ising
// coupling for φJ ≔ s J dt.
if (idxSite < nSites - 2) {
ApplyZZ((sweepParameter * J) * dt, qs[idxSite], qs[idxSite + 1]);
}
}
}
// Having thus approximated the evolution under the Ising
// model Hamiltonian, we now measure each qubit in the Z basis and
// return the results.
for (idxQubit in 0 .. Length(qs) - 1) {
set result w/= idxQubit <- M(qs[idxQubit]);
// If we observed that we were in the |1〉 state, the
// -1 eigenstate of Z, then we need to flip it back to
// a |0〉 state before releasing.
if (result[idxQubit] == One) {
X(qs[idxQubit]);
}
}
}
// Once the `using` block above ends, all of the qubits that
// we allocated are automatically made available again, such that
// we can now finish up by returning the measurement results
// that we collected.
return result;
}
}