-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinuous_agent_code.py
184 lines (153 loc) · 6.5 KB
/
continuous_agent_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
from datetime import datetime
import cv2
import numpy as np
import torch
from tqdm import tqdm
import continuous_agent
import continuous_dqns.dqn
import continuous_dqns.double_dqn
import continuous_dqns.dqn_with_target_network
import environments.random_environment
import helpers
import tensorboard_writer
import tools.episode_rollout_tool
from replay_buffers import fast_prioritised_rb
if __name__ == '__main__':
random_state = 816673
np.random.seed(random_state)
torch.manual_seed(random_state)
max_capacity = 10000
batch_size = 128
max_steps = 750 # was 750
max_episodes = 300 # was 250
epsilon = 1.
delta = 0.000071
minimum_epsilon = 0.5
sampling_eps = 1e-7
tau = 100 # target network episode update rate
hps = helpers.Hyperparameters(gamma=.9, lr=1e-4)
evaluate_reached_goal_count = 0
if torch.cuda.is_available():
print('Using GPU')
device = torch.device('cuda')
else:
print('Using CPU')
device = torch.device('cpu')
display_game = False
display_tools = False
environment = environments.random_environment.RandomEnvironment(
display=display_game, magnification=500
)
environment.draw(environment.init_state)
# dqn = continuous_dqns.double_dqn.ContinuousDoubleDQN(hps, device)
dqn = continuous_dqns.dqn.ContinuousDQN(hps, device)
agent = continuous_agent.ContinuousAgent(environment, dqn, stride=0.02)
rb = fast_prioritised_rb.FastPrioritisedExperienceReplayBuffer(max_capacity, batch_size,
sampling_eps, agent, environment.init_state.shape)
rollout_tool = tools.episode_rollout_tool.EpisodeRolloutTool(environment.renderer.image)
hyperparameters = {
'gamma': hps.gamma,
'lr': hps.lr,
'max_capacity': max_capacity,
'batch_size': batch_size,
'max_steps': max_steps,
'max_episodes': max_episodes,
'initial_epsilon': epsilon,
'epsilon_decay': delta,
'minimum_epsilon': minimum_epsilon,
'random_state': random_state,
'discrete_actions': True,
'weighted_replay_buffer': True,
'sampling_eps': sampling_eps,
}
def metrics(rewards):
return {'metrics/mean_reward': np.mean(rewards),
'metrics/min_reward': np.min(rewards),
'metrics/max_reward': np.max(rewards),
'metrics/std_reward': np.std(rewards),
'metrics/median_reward': np.median(rewards)}
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = os.path.join('runs', 'continuous_actions_runs', current_time)
writer = tensorboard_writer.CustomSummaryWriter(log_dir=log_dir)
def log(main_tag, values, episode):
writer.add_scalar(f'{main_tag}/mean', np.mean(values), episode)
writer.add_scalar(f'{main_tag}/min', np.min(values), episode)
writer.add_scalar(f'{main_tag}/max', np.max(values), episode)
writer.add_scalar(f'{main_tag}/std', np.std(values), episode)
writer.add_scalar(f'{main_tag}/median', np.median(values), episode)
def log_greedy_policy(draw=True):
if draw:
rollout_tool.draw()
policy_img = cv2.cvtColor(rollout_tool.image, cv2.COLOR_BGR2RGB)
policy_img = torch.from_numpy(policy_img)
writer.add_image('greedy_policy', policy_img, episode_id,
dataformats='HWC')
model_path = os.path.join('models', 'continuous_models')
if not os.path.isdir(model_path):
os.makedirs(model_path)
step_id = 0
episodes_iter = tqdm(range(max_episodes))
for episode_id in episodes_iter:
has_reached_goal = False
episode_loss_list = []
episode_reward_list = []
agent.reset()
agent.dqn.train()
for step_num in range(max_steps):
transition, distance_to_goal = agent.step(epsilon)
state, action, reward, next_state = transition
rb.store(state, action, reward, next_state)
episode_reward_list.append(reward)
if len(rb) > rb.batch_size:
transitions = rb.batch_sample().to(device)
losses = dqn.train_q_network(transitions)
rb.update_batch_weights(losses)
episode_loss_list.append(losses.sum())
if epsilon > minimum_epsilon:
epsilon -= delta
epsilon = max(epsilon, minimum_epsilon)
episodes_iter.set_description(f'Epsilon: {epsilon:.3f} ')
if dqn.has_target_network and (step_id % tau == 0):
dqn.update_target_network()
step_id += 1
agent.dqn.eval()
agent.reset()
states = [agent.state]
for step_num in range(max_steps):
transition, distance_to_goal = agent.step(0.)
state, action, reward, next_state = transition
states.append(agent.state)
rb.store(state, action, reward, next_state)
if distance_to_goal < 0.03:
evaluate_reached_goal_count += 1
has_reached_goal = True
break
rewards = np.array(episode_reward_list)
log('reward', rewards, episode_id)
writer.add_histogram('reward_dist', rewards, episode_id)
step_losses = np.array(episode_loss_list)
log('loss', step_losses, episode_id)
writer.add_hparams(hyperparameters, metrics(rewards))
writer.add_scalar('reached_goal', has_reached_goal, episode_id)
writer.add_scalar("reached_goal_count", evaluate_reached_goal_count, episode_id)
writer.add_scalar('epsilon', epsilon, episode_id)
rollout_tool.set_states(np.asarray(states))
if display_tools:
rollout_tool.draw()
log_greedy_policy(draw=False)
rollout_tool.show()
else:
log_greedy_policy()
torch.save(dqn.q_network.state_dict(),
os.path.join(model_path, f'q_networks_state_dict-{episode_id}.pt'))
if dqn.has_target_network:
torch.save(dqn.target_network.state_dict(),
os.path.join(model_path, f'target_networks_state_dict-{episode_id}.pt'))
rollout_tool.draw()
rollout_tool.save_image('greedy_policy_reward.png')
torch.save(dqn.q_network.state_dict(),
os.path.join(model_path, 'q_networks_state_dict.pt'))
if dqn.has_target_network:
torch.save(dqn.target_network.state_dict(),
os.path.join(model_path, 'target_networks_state_dict.pt'))