forked from glycerine/gostat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamma.go
176 lines (159 loc) · 3.65 KB
/
gamma.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Gamma distribution
// k > 0 shape parameter
// θ (Theta) > 0 scale parameter
package gostat
import (
"fmt"
"math"
. "github.com/glycerine/gostat/fn"
)
/* did not pass test, so commented out
// Probability density function
func Gamma_PDF(α float64, λ float64) func(x float64) float64 {
expPart := Exp_PDF(λ)
return func(x float64) float64 {
if x < 0 {
return 0
}
return expPart(x) * pow(λ*x, α-1) / Γ(α)
}
}
*/
// Probability density function
func Gamma_PDF(k float64, θ float64) func(x float64) float64 {
return func(x float64) float64 {
if x < 0 {
return 0
}
return pow(x, k-1) * exp(-x/θ) / (Γ(k) * pow(θ, k))
}
}
// Natural logarithm of the probability density function
func Gamma_LnPDF(α float64, λ float64) func(x float64) float64 {
expPart := Exp_LnPDF(λ)
return func(x float64) float64 {
if x < 0 {
return negInf
}
return expPart(x) + (α-1)*log(λ*x) - LnGamma(α)
}
}
// Random value drawn from the distribution
func NextGamma(α float64, λ float64) float64 {
//if α is a small integer, this way is faster on my laptop
if α == float64(int64(α)) && α <= 15 {
x := NextExp(λ)
for i := 1; i < int(α); i++ {
x += NextExp(λ)
}
return x
}
if α < 0.75 {
return RejectionSample(Gamma_PDF(α, λ), Exp_PDF(λ), Exp(λ), 1)
}
//Tadikamalla ACM '73
a := α - 1
b := 0.5 + 0.5*sqrt(4*α-3)
c := a * (1 + b) / b
d := (b - 1) / (a * b)
s := a / b
p := 1.0 / (2 - exp(-s))
var x, y float64
for i := 1; ; i++ {
u := NextUniform()
if u > p {
var e float64
for e = -log((1 - u) / (1 - p)); e > s; e = e - a/b {
}
x = a - b*e
y = a - x
} else {
x = a - b*log(u/p)
y = x - a
}
u2 := NextUniform()
if log(u2) <= a*log(d*x)-x+y/b+c {
break
}
}
return x / λ
}
func Gamma(α float64, λ float64) func() float64 {
return func() float64 { return NextGamma(α, λ) }
}
// Cumulative distribution function, analytic solution, did not pass some tests!
func Gamma_CDF(k float64, θ float64) func(x float64) float64 {
return func(x float64) float64 {
if k < 0 || θ < 0 {
panic(fmt.Sprintf("k < 0 || θ < 0"))
}
if x < 0 {
return 0
}
return Iγ(k, x/θ) / Γ(k)
}
}
// Cumulative distribution function, for integer k only
func Gamma_CDFint(k int64, θ float64) func(x float64) float64 {
return func(x float64) float64 {
if k < 0 || θ < 0 {
panic(fmt.Sprintf("k < 0 || θ < 0"))
}
if x < 0 {
return 0
}
return Iγint(k, x/θ) / Γ(float64(k))
}
}
/*
// Cumulative distribution function, using gamma incomplete integral DOES NOT WORK !!!
func Gamma_CDF(k float64, θ float64) func(x float64) float64 {
return func(x float64) float64 {
if k < 0 || θ < 0 {
panic(fmt.Sprintf("k < 0 || θ < 0"))
}
if x < 0 {
return 0
}
return IGam(θ, k*x)
}
}
*/
// Value of the probability density function at x
func Gamma_PDF_At(k, θ, x float64) float64 {
pdf := Gamma_PDF(k, θ)
return pdf(x)
}
// Value of the cumulative distribution function at x
func Gamma_CDF_At(k, θ, x float64) float64 {
cdf := Gamma_CDF(k, θ)
return cdf(x)
}
// Inverse CDF (Quantile) function
func Gamma_InvCDF(k float64, θ float64) func(x float64) float64 {
return func(x float64) float64 {
var eps, y_new, h float64
eps = 1e-4
y := k * θ
y_old := y
L:
for i := 0; i < 100; i++ {
h = (Gamma_CDF_At(k, θ, y_old) - x) / Gamma_PDF_At(k, θ, y_old)
y_new = y_old - h
if y_new <= eps {
y_new = y_old / 10
h = y_old - y_new
}
if math.Abs(h) < eps {
break L
}
y_old = y_new
}
return y_new
}
}
// Value of the inverse CDF for probability p
func Gamma_InvCDF_For(k, θ, p float64) float64 {
cdf := Gamma_InvCDF(k, θ)
return cdf(p)
}