-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShuffler.py
472 lines (402 loc) · 14.3 KB
/
Shuffler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#usr/bin/env/python
"""
C. Battista Psychometric Experiment Module - Built in the Peters Lab
Copyright (C) 2007 Christian Joseph Battista
email - [email protected]
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program, 'LICENSE.TXT'; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
import os, pickle, random, glob, copy
"""
Condition Class
Condition objects are used to carry lists of items for an IV, as well as the name of that IV and the max allowable
repetitions that will be tolerated during the creation of pseudorandom lists. Here is where you would be specifying
the random rules.
Args are your IV item list, the IV name and allowable repeats
"""
class Condition:
def __init__(self, items, name="", repeats=2):
self.items = items
self.name = name
self.repeats = repeats
self.num = len(items)
#leave this slot blank as it will be filled in by the MultiShuffler
self.instances = 0
def __str__(self):
string = "Condition %s: %s items, %s repeats, items: %s\n" % (self.name, self.num, str(self.repeats), str(self.items))
return string
"""
Stimulus Macro Class
This class is a macro that creates a stimulus object from scratch. Because the stimulus could theoretically have
many conditions and randomization rules, it is easier to just write the stimClass.py to suit the Condition objects
we are using.
Args are a list of condition objects
"""
class StimulusMacro:
def __init__(self, conditions):
self.conditions = conditions
"""Create the Custom Stimulus Object According to our Conditions"""
def createObject(self):
#__init__ string
self.slotString = "\tdef __init__(self"
#__str__ string
self.returnString = "\t\tstring = \""
s1 = ""
s2 = " % ("
#__eq__ string
self.eqString = ""
#run through our conditions to build the __init__, __str__ and __eq__ methods
for c in self.conditions:
#for __init__
self.slotString = self.slotString + (", %s=0" % c.name)
#for __str__
s1 = s1 + c.name + ":%s" + " | "
s2 = s2 + "str(self." + c.name + "),"
#for __eq__
self.eqString = self.eqString + ("\t\tif self.%s == other.%s:\n" % (c.name, c.name))
self.eqString = self.eqString + "\t\t\tl.append(1)\n\t\telse:\n\t\t\tl.append(0)\n"
self.slotString = self.slotString + ",number=0):\n"
s1 = s1.rstrip('| ')
s2 = s2.rstrip(',')
self.returnString = self.returnString + s1 + "\"" + s2 +")\n"
#open and write the stimClass
f = open("stimClass.py", 'w')
f.write("class Stimulus:\n")
f.write(self.slotString)
for c in self.conditions:
f.write("\t\tself.%s = %s\n" % (c.name, c.name))
f.write("\t\tself.number = number")
f.write("\n")
f.write("\n")
f.write("\tdef __str__(self):\n")
f.write(self.returnString)
f.write("\t\treturn string\n")
f.write("\n")
f.write("\tdef __eq__(self, other):\n")
f.write("\t\tl=[]\n")
f.write(self.eqString)
f.write("\t\treturn l")
f.close()
"""
Write the Function that will create a list of Stimulus Objects for shuffling
Arg is how many times to iteratate the first list so we get the correct # of stimuli
"""
def writeListFunction(self, x):
l = []
#get list of condition items
for c in self.conditions:
l.append(c.items)
#create string to make up the for loop
forString = "\tstimList = []\n"
#start counting tab stops for nested loops
tabStop = "\t"
#start counting list #s for variable declaration
listInt = 1
#the first list variable
listString = "list1"
#now put it all together
forString = forString + tabStop + ("for list%s in (%s * %s):\n" % (str(listInt), str(l[0]), str(x)))
for list in l[1:len(l)]:
tabStop = tabStop + "\t"
listInt = listInt + 1
forString = forString + tabStop + ("for list%s in %s:\n" % (str(listInt), str(list)))
listString = listString + (",list%s" % listInt)
forString = forString + tabStop + ("\tstimList.append(Stimulus(%s))\n" % listString)
#write it out
f = open("listMaker.py", "w")
f.write("def listMaker(s):\n")
f.write("\tStimulus = s\n")
f.write(forString)
f.write("\treturn stimList")
f.close()
"""
MultiShuffler Class. Used to shuffle a list according to multiple conditions and random rules.
Args are your list of conditions and how many trials you want to create.
Note: Random Rules are specified in the Condition objects, not here.
"""
class MultiShuffler:
def __init__(self, conditions, trials):
print "i'm alive"
self.conditions = conditions
self.trials = trials
y = 1
self.cList = []
for c in self.conditions:
#set how many instances of each item should be present
self.cList.append(c.items)
c.instances = trials / c.num
#how many items we'd have if we made a list using nested for loops
y = y * c.num
#al-jebr to figure out how many loops through the first condition list we need to get desired # of trials
x = self.trials / y
#create stimulus macro
sm = StimulusMacro(self.conditions)
#write stimClass.py with stimulus objects
sm.createObject()
sm.writeListFunction(x)
#import the stimulus object
from stimClass import Stimulus
#create list of stimuli
from listMaker import listMaker
self.stimList = listMaker(Stimulus)
#Okay so the idea was to go through the list of stimuli and look at them with the
def shuffle(self):
count = 0
while count < self.trials:
random.shuffle(self.stimList)
repeats = []
repeatTally = [0] * len(self.conditions)
for c in self.conditions:
repeats.append(c.repeats)
#go through list and check for repeats
badshuffle = 0
count = 1
while not badshuffle:
if count == self.trials:
break
comp = self.stimList[count-1] == self.stimList[count]
for i in range(0, len(comp)):
if comp[i] == 0:
repeatTally[i] = 0
else:
repeatTally[i] = repeatTally[i] + comp[i]
for i, j in zip(repeatTally, repeats):
if i < j:
pass
else:
print count
badshuffle = 1
print "bad shuffle"
count = count + 1
return self.stimList
#BEHOLD THE MIGHTY SHUFFLER CLASS - needs cleanup but is damn useful
class Shuffler:
"""args are list of items, number of trials, allowable repeats and ratio of items (an n-tuple with index corresponding to item)"""
def __init__(self, items, trials, repeats=2, ratio=[]):
self.items = items
self.trials = trials
self.itemList = []
self.ratio = ratio
#check to see if we've specified a ratio
if not self.ratio:
self.instances = trials / len(self.items)
tolerance = abs((self.instances * len(self.items)) - self.trials)
self.tolerance = range(-tolerance, tolerance+1)
#make sure repeats is positive non-zero value
if repeats <= 1:
self.repeats = 1
else:
self.repeats = repeats
else:
self.tolerance = [0]
#now we have to calculate allowable repeats for this ratio
if len(self.items) == 2:
allowableRepeats = self.trials / min(ratio)
if repeats > allowableRepeats:
self.repeats = repeats
else:
self.repeats = allowableRepeats
else:
self.repeats = repeats
def shuffleIt(self):
if not self.ratio:
listgood = 0
while listgood != 1:
#if there are more elements in the list than we have trials
if len(self.items) > self.trials:
self.itemList = random.sample(self.items, self.trials)
return self.itemList
listgood = 1
#if there are equal amounts of elements and trials
if len(self.items) == self.trials:
list = self.items
random.shuffle(self.items)
self.itemList = list
return self.itemList
listgood = 1
#otherwise...
while len(self.itemList) < self.trials:
#assign random item from list of items
myChoice = random.choice(self.items)
#for first trials no pattern can exist, so add values w/o a check
if len(self.itemList) < self.repeats:
self.itemList.append(myChoice)
#after that we must check for repeats
else:
#begin counting number of repeats, starting at last item in list
repeats = 0
for j in range(1, self.repeats+1):
if myChoice == self.itemList[len(self.itemList)-1]:
repeats = repeats + 1
if repeats >= self.repeats:
pass
#if 2 preceding are not same as current, add it to itemList and go to next trial
else:
self.itemList.append(myChoice)
#we still have a problem, and that is that we need a set amount of instances of each
#so we get the distinct elements from the list
#so let's check through, adding one to variable 'check' when we are satisfied
check = 0
#they should be even if we haven't set a ratio
for item in self.items:
for t in self.tolerance:
if self.itemList.count(item) == (self.instances + t):
check = check + 1
break
if check == len(self.items):
return(self.itemList)
listgood = 1
else:
self.itemList = []
else:
#if we are using a ratio system the logic is a bit different than the brute force method above
#first we create our complete list of elements in the desired amounts
for i in range(0, len(self.items)):
for j in range(1, self.ratio[i]+1):
self.itemList.append(self.items[i])
multi = self.trials / len(self.itemList)
self.itemList = self.itemList * multi
#now we will shuffle them and see if this satisfies our repeat condition in a similar fashion to above
listgood = 0
while not listgood:
random.shuffle(self.itemList)
repeats = 0
badList = 0
for i in range(1, len(self.itemList)):
if self.itemList[i] == self.itemList[i-1]:
repeats = repeats + 1
if repeats >= self.repeats:
badList = 1
else:
repeats = 0
if not badList:
return self.itemList
listgood = 1
else:
pass
#shuffle a list with some parameters
#use this function when you have 2 lists to shuffle, for instance x = [0,1] and y = [1,2,3,4,5] where each item
#of y should be assigned each item of x once
#first you would use shuffleIt to make a long list of 'parameters', that is, enough x items to fill up the desired
#number of trials. then use shuffleIt2 to assign items in y to the parameter list
#returns list of [item y, item x], one for each trial
def shuffleIt2(self, params):
i = 1
itemList = []
myList = []
while i <= self.instances:
for item in self.items:
myList.append(item)
random.shuffle(myList)
itemList.append(myList)
myList = []
i = i + 1
for par in params:
self.itemList.append([itemList[par][0], par])
itemList[par].pop(0)
return self.itemList
def shuffleItwithParams(self, params):
#now we have some parameters - params holds whether we are going to use same faces or diff faces
#let's make a separate list that we can shuffle - we need 4 instances of each face to spread the 19
#over 84 trials
trialCounter = 1
matchList = []
nomatchList = []
while trialCounter <= self.trials:
#print trialCounter
#make sure our lists are non-empty
if matchList == [] and nomatchList == []:
matchList = self.items[6:13]
random.shuffle(matchList)
nomatchList = self.items[0:6]
random.shuffle(nomatchList)
elif matchList == []:
matchList = self.items[6:13]
random.shuffle(matchList)
elif nomatchList == []:
nomatchList = self.items[0:6]
random.shuffle(nomatchList)
#if this is a matching pair add first item from shuffled list and remove
if params[trialCounter-1] == 1:
self.itemList.append(matchList[0])
matchList.pop(0)
trialCounter = trialCounter + 1
#otherwise do the same with the nomatch list
else:
self.itemList.append(nomatchList[0])
nomatchList.pop(0)
trialCounter = trialCounter + 1
return self.itemList
def shuffleItwithinTrials(self, lastItems):
#now we've got to add the angles to each pair
#for each pair (e.g. 1,2 or 19,19 or whatever), each item in angles must be represented once
#we can make 12 distinct random angle lists (1 for each pair) and then add them
#as we step through the face pair list
#let's make the 12 shuffled angle lists
trialCounter = 1
while trialCounter < self.trials:
myList = []
blocks = 1
while blocks <= 12:
weeList = self.items[:]
random.shuffle(weeList)
#before we can be sure the shuffled list is OK, we must make sure no angles are repeated next
#to each other
if blocks < 2:
myList.append(weeList)
blocks = blocks + 1
else:
if myList[blocks-2][-1] == weeList[0]:
pass
else:
myList.append(weeList)
blocks = blocks + 1
#now we have to add all the angles
#we musn't repeat two angles in a row, so let's store the previous x value
#initialize to an angle we're not using, in this case 1
newList = myList[:]
lastx = 1
#print myList
#print newList
for items in lastItems:
myIndex = faces.index(items)
x = newList[myIndex][0]
#for the first entry we don't need to check anything
if len(self.itemList) < 2:
self.itemList.append([items[0], items[1], x])
newList[myIndex].pop(0)
lastx = x
trialCounter = trialCounter + 1
#for the rest
else:
#check if the last angle we put in is the same as the current one
#by this method we can run into problems if there is a single item list
#with a wrong value - there won't be [1] to put in
#so if that happens we have to restart the loop and try again
if x == lastx and len(newList[myIndex]) > 1:
#it is the same we will put in the next angle in the list instead
x = newList[myIndex][1]
self.itemList.append([items[0], items[1], x])
newList[myIndex].pop(1)
lastx = x
trialCounter = trialCounter + 1
elif x == lastx and len(newList[myIndex]) == 1:
self.itemList = []
trialCounter = 1
break
else:
#otherwise continue as usual
self.itemList.append([items[0], items[1], x])
newList[myIndex].pop(0)
lastx = x
trialCounter = trialCounter + 1
return self.itemList