-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscogan_test.py
186 lines (149 loc) · 6.71 KB
/
discogan_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import os
import random
import numpy as np
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms
from torchvision import datasets
from PIL import Image
from network import Generator
parser = argparse.ArgumentParser(description='DiscoGAN in One Code')
# Task
parser.add_argument('--task', required=True, help='task or root name')
# Hyper-parameters
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--batchSize', type=int, default=4, help='input batch size')
# misc
parser.add_argument('--model_path', type=str, default='./models') # Model Tmp Save
parser.add_argument('--sample_path', type=str, default='./test_results') # Results
##### Helper Functions for Data Loading & Pre-processing
class ImageFolder(data.Dataset):
def __init__(self, opt):
self.task = opt.task
self.transformP = transforms.Compose([transforms.Scale((128, 64)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])
self.transformS = transforms.Compose([transforms.Scale((64, 64)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])
self.image_len = None
self.dir_base = './datasets'
if self.task.startswith('edges2'):
self.root = os.path.join(self.dir_base, self.task)
self.dir_AB = os.path.join(self.root, 'val') # ./maps/train
self.image_paths = list(map(lambda x: os.path.join(self.dir_AB, x), os.listdir(self.dir_AB)))
self.image_len = len(self.image_paths)
elif self.task == 'handbags2shoes': # handbags2shoes
self.rootA = os.path.join(self.dir_base, 'edges2handbags')
self.rootB = os.path.join(self.dir_base, 'edges2shoes')
self.dir_A = os.path.join(self.rootA, 'val')
self.dir_B = os.path.join(self.rootB, 'val')
self.image_paths_A = list(map(lambda x: os.path.join(self.dir_A, x), os.listdir(self.dir_A)))
self.image_paths_B = list(map(lambda x: os.path.join(self.dir_B, x), os.listdir(self.dir_B)))
self.image_len = min(len(self.image_paths_A), len(self.image_paths_B))
else: # facescrubs
self.root = os.path.join(self.dir_base, 'facescrub')
self.rootA = os.path.join(self.root, 'actors')
self.rootB = os.path.join(self.root, 'actresses')
self.dir_A = os.path.join(self.rootA, 'val') # You Should make your OWN Validation Set
self.dir_B = os.path.join(self.rootB, 'val')
self.image_paths_A = list(map(lambda x: os.path.join(self.dir_A, x), os.listdir(self.dir_A)))
self.image_paths_B = list(map(lambda x: os.path.join(self.dir_B, x), os.listdir(self.dir_B)))
self.image_len = min(len(self.image_paths_A), len(self.image_paths_B))
def __getitem__(self, index):
if self.task.startswith('edges2'):
AB_path = self.image_paths[index]
AB = Image.open(AB_path).convert('RGB')
AB = self.transformP(AB)
w_total = AB.size(2)
w = int(w_total / 2)
A = AB[:, :64, :64]
B = AB[:, :64, w:w + 64]
elif self.task == 'handbags2shoes': # handbags2shoes
A_path = self.image_paths_A[index]
B_path = self.image_paths_B[index]
A = Image.open(A_path).convert('RGB')
B = Image.open(B_path).convert('RGB')
A = self.transformP(A)
B = self.transformP(B)
w_total = A.size(2)
w = int(w_total / 2)
A = A[:, :64, w:w+64]
B = B[:, :64, w:w+64]
else: # Facescrubs
A_path = self.image_paths_A[index]
B_path = self.image_paths_B[index]
A = Image.open(A_path).convert('RGB')
B = Image.open(B_path).convert('RGB')
A = self.transformS(A)
B = self.transformS(B)
return {'A': A, 'B': B}
def __len__(self):
return self.image_len
##### Helper Function for GPU Training
def to_variable(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
##### Helper Function for Math
def denorm(x):
out = (x + 1) / 2
return out.clamp(0, 1)
######################### Main Function
def main():
# Pre-settings
cudnn.benchmark = True
global args
args = parser.parse_args()
print(args)
dataset = ImageFolder(args)
data_loader = data.DataLoader(dataset=dataset,
batch_size=args.batchSize,
shuffle=True,
num_workers=2)
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
if not os.path.exists(args.sample_path):
os.makedirs(args.sample_path)
# Networks
g_pathAtoB = os.path.join(args.model_path, 'generatorAtoB-%d.pkl' % (args.num_epochs))
g_pathBtoA = os.path.join(args.model_path, 'generatorBtoA-%d.pkl' % (args.num_epochs))
generator_AtoB = Generator()
generator_BtoA = Generator()
generator_AtoB.load_state_dict(torch.load(g_pathAtoB))
generator_AtoB.eval()
generator_BtoA.load_state_dict(torch.load(g_pathBtoA))
generator_BtoA.eval()
if torch.cuda.is_available():
generator_AtoB = generator_AtoB.cuda()
generator_BtoA = generator_BtoA.cuda()
"""Train generator and discriminator."""
total_step = len(data_loader) # For Print Log
iter = 0
for i, sample in enumerate(data_loader):
input_A = sample['A']
input_B = sample['B']
A = to_variable(input_A)
B = to_variable(input_B)
# ===================== Forward =====================#
A_to_B = generator_AtoB(A)
B_to_A = generator_BtoA(B)
A_to_B_to_A = generator_BtoA(A_to_B)
B_to_A_to_B = generator_AtoB(B_to_A)
# print the log info
print('Validation [%d/%d]' % (i + 1, total_step))
# save the sampled images
res1 = torch.cat((torch.cat((A, A_to_B), dim=3), A_to_B_to_A), dim=3)
res2 = torch.cat((torch.cat((B, B_to_A), dim=3), B_to_A_to_B), dim=3)
res = torch.cat((res1, res2), dim=2)
torchvision.utils.save_image(denorm(res.data), os.path.join(args.sample_path, 'Generated-%d.png' % (i + 1)))
if __name__ == "__main__":
main()