-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_mean_std.py
36 lines (26 loc) · 983 Bytes
/
calculate_mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from utils_rssrai import load_image
import numpy as np
train_ids = ['GF2_PMS1__20150212_L1A0000647768-MSS1',
'GF2_PMS1__20150902_L1A0001015649-MSS1',
'GF2_PMS1__20151203_L1A0001217916-MSS1',
'GF2_PMS1__20160327_L1A0001491417-MSS1',
'GF2_PMS1__20160816_L1A0001765570-MSS1',
'GF2_PMS1__20160827_L1A0001793003-MSS1',
'GF2_PMS2__20160225_L1A0001433318-MSS2',
'GF2_PMS2__20160510_L1A0001573999-MSS2'
]
valid_ids = ['GF2_PMS1__20160421_L1A0001537716-MSS1',
'GF2_PMS2__20150217_L1A0000658637-MSS2']
train_val = train_ids+valid_ids
g_mean = []
g_std = []
for im_id in train_val:
im_data = load_image(im_id)
mean = np.mean(im_data, axis=(0,1))
std = np.std(im_data, axis=(0,1))
g_mean.append(mean)
g_std.append(std)
g_m = np.array(g_mean).mean(axis=0)
g_s = np.array(g_std).mean(axis=0)
print(g_m)
print(g_s)