- Requirements
- Editing files
- Compile lib
- Understanding and editing deepstream_app_config
- Understanding and editing config_infer_primary
- Testing model
- DeepStream-Yolo
- Pre-treined YOLO model in Darknet or PyTorch
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo
NOTE: It's important to keep the YOLO model reference (yolov4_, yolov5_, yolor_, etc) in you cfg and weights/wts file to generate the engine correctly.
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
To understand and edit deepstream_app_config.txt file, read the DeepStream Reference Application - Configuration Groups
[tiled-display]
enable=1
# If you have 1 stream use 1/1 (rows/columns), if you have 4 streams use 2/2 or 4/1 or 1/4 (rows/columns)
rows=1
columns=1
# Resolution of tiled display
width=1280
height=720
gpu-id=0
nvbuf-memory-type=0
- Example for 1 source:
[source0]
enable=1
# 1=Camera (V4L2), 2=URI, 3=MultiURI, 4=RTSP, 5=Camera (CSI; Jetson only)
type=3
# Stream URL
uri=rtsp://192.168.1.2/Streaming/Channels/101/httppreview
# Number of sources copy (if > 1, edit rows/columns in tiled-display section; use type=3 for more than 1 source)
num-sources=1
gpu-id=0
cudadec-memtype=0
- Example for 1 duplcated source:
[source0]
enable=1
type=3
uri=rtsp://192.168.1.2/Streaming/Channels/101/
num-sources=2
gpu-id=0
cudadec-memtype=0
- Example for 2 sources:
[source0]
enable=1
type=3
uri=rtsp://192.168.1.2/Streaming/Channels/101/
num-sources=1
gpu-id=0
cudadec-memtype=0
[source1]
enable=1
type=3
uri=rtsp://192.168.1.3/Streaming/Channels/101/
num-sources=1
gpu-id=0
cudadec-memtype=0
[sink0]
enable=1
# 1=Fakesink, 2=EGL (nveglglessink), 3=Filesink, 4=RTSP, 5=Overlay (Jetson only)
type=2
# Indicates how fast the stream is to be rendered (0=As fast as possible, 1=Synchronously)
sync=0
gpu-id=0
nvbuf-memory-type=0
[streammux]
gpu-id=0
# Boolean property to inform muxer that sources are live
live-source=1
batch-size=1
batched-push-timeout=40000
# Resolution of streammux
width=1920
height=1080
enable-padding=0
nvbuf-memory-type=0
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary.txt
NOTE: Choose the correct config_infer_primary based on your YOLO model.
To understand and edit config_infer_primary.txt file, read the DeepStream Plugin Guide - Gst-nvinfer File Configuration Specifications
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
NOTE: Set it accoding to number of channels in yolo.cfg file (1=GRAYSCALE, 3=RGB)
- Example for custom YOLOv4 model
custom-network-config=yolov4_custom.cfg
- Example for custom YOLOv4 model
model-file=yolov4_custom.weights
- Example for batch-size=1 and network-mode=2
model-engine-file=model_b1_gpu0_fp16.engine
- Example for batch-size=1 and network-mode=1
model-engine-file=model_b1_gpu0_int8.engine
- Example for batch-size=1 and network-mode=0
model-engine-file=model_b1_gpu0_fp32.engine
- Example for batch-size=2 and network-mode=0
model-engine-file=model_b2_gpu0_fp32.engine
batch-size=1
# 0=FP32, 1=INT8, 2=FP16
network-mode=0
num-detected-classes=80
NOTE: Set it according to number of classes in yolo.cfg file
# Number of consecutive batches to be skipped
interval=0
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25
deepstream-app -c deepstream_app_config.txt