-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBFGS.m
165 lines (83 loc) · 2.57 KB
/
BFGS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
function Return = BFGS(functname,dvar0,niter,tol,lowbound,intvl,ntrials)
% Optimization Theory
% BFGS
% 27/12/2020
clc
clf
warning off
e1 = 1.0e-04; % convergence
e2 = 1.0e-08;
e3 = 1.0e-04;
nvar = length(dvar0); % number of variables
%% Plotting
if (nvar == 2)
delx1 = 6;
delx2 = 5;
x1 = (dvar0(1)-delx1):0.1:(dvar0(1)+delx1);
x2 = (dvar0(2)-delx2):0.1:(dvar0(2)+delx2);
x1len = length(x1);
x2len = length(x2);
for i = 1:x1len
for j = 1:x2len
x1x2 =[x1(i) x2(j)];
fun(j,i) = feval(functname,x1x2);
end
end
c1 = contour(x1,x2,fun,[3.1 3.25 3.5 4 6 10 15 20 25],'k');
grid
xlabel('x_1');
ylabel('x_2');
funname = strrep(functname,'_','-');
title(strcat('BFGS:',funname));
end
xs(1,:) = dvar0;
x = dvar0;
Lc = 'r';
fs(1) = feval(functname,x); % Initial Value of Function
as(1)=0;
grad = (gradfunction(functname,x));
H = eye(nvar); % initial Q
convg(1)=grad*grad';
for i = 1:niter-1
fprintf('iteration number: '),disp(i)
d = (-inv(H)*grad')'; % Search Direction
output = GoldSection(functname,tol,x,d,lowbound,intvl,ntrials); % Finding Alpha
as(i+1) = output(1);
fs(i+1) = output(2);
for k = 1:nvar
xs(i+1,k)=output(2+k);
x(k)=output(2+k);
end
grad= (gradfunction(functname,x));
convg(i+1)=grad*grad';
fprintf('objective function value: '),disp(fs(i+1));
%% Plotting (drawing lines)
if (nvar == 2)
line([xs(i,1) xs(i+1,1)],[xs(i,2) xs(i+1,2)],'LineWidth',2,'Color',Lc)
itr = int2str(i);
x1loc = 0.5*(xs(i,1)+xs(i+1,1));
x2loc = 0.5*(xs(i,2)+xs(i+1,2));
if strcmp(Lc,'r')
Lc = 'b';
else
Lc = 'r';
end
pause(0.5)
end
%% METHOD
if(convg(i+1)<= e3) % convergence criteria
break;
end
delx = (x - xs(i,:))'; % update the metric here
gradold = gradfunction(functname,xs(i,:));
Y = (grad -gradold)';
B = (Y*Y')/(Y'*delx);
C = gradold'*gradold/(gradold*d');
H = H + B + C;
end
len=length(as);
designvar=xs(length(as),:);
fprintf('\n Iterations: '),disp(len-1)
fprintf('\n x(1) x(2) F(x)\n')
disp([xs fs']);
Return = [designvar fs(len)];