-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdasplot.py
56 lines (45 loc) · 1.66 KB
/
dasplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 05 10:40:42 2012
This program should create a simple qt plot which data cna be pushed to
@author: keyan
"""
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import matplot
import sys, os, random, time
import Queue
from livedatafeed import LiveDataFeed
class graph(matplot.Ui_MainWindow,QMainWindow):
def __init__(self,parent=None):
super(graph, self).__init__(parent)
self.setupUi(self)
# Initialize some variables
self.monitor_active = False
self.x = [0]
self.y = [0]
self.livedata = LiveDataFeed()
self.data_q = Queue.Queue
# Set up the Axes
self.axes = self.mplwidget.figure.add_subplot(111)
self.axes.hold(False)
# GUI update timer
timer = QTimer(self)
QObject.connect(timer, SIGNAL("timeout()"), self.update_figure)
timer.start(1000)
def update_figure(self):
""" Updates the state of the window with new
data. The livefeed is used to find out whether new
data was received since the last update. If not,
nothing is updated.
"""
if self.livefeed.has_new_data:
data = self.livefeed.read_data()
self.x.append((data['gate']))
self.y.append((data['voltage']))
# I think this enables the 'scrolling' type data view
# if len(self.temperature_samples) > 100:
# self.temperature_samples.pop(0)
self.axes.plot(self.x,self.y)
self.mplwidget.draw()
self.show()