-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinaryTree.py
461 lines (413 loc) · 12.1 KB
/
binaryTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import queue
class BinaryTreeNode:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def printTree(root):
if root is None:
return
print(root.data, end=": ")
if root.left is not None and root.right is not None:
print("L", root.left.data, end=", ")
elif root.left is not None:
print("L", root.left.data, end="")
if root.right is not None:
print("R", root.right.data, end="")
print()
printTree(root.left)
printTree(root.right)
def treeInput():
rootData = int(input())
if rootData == -1:
return
root = BinaryTreeNode(rootData)
leftTree = treeInput()
rightTree = treeInput()
root.left = leftTree
root.right = rightTree
return root
def numNodes(root):
if root is None:
return 0
leftCount = numNodes(root.left)
rightCount = numNodes(root.right)
return leftCount + rightCount + 1
def sumOfNodes(root):
if root is None:
return 0
leftSum = sumOfNodes(root.left)
rightSum = sumOfNodes(root.right)
return root.data + leftSum + rightSum
def printPreOrder(root):
if root is None:
return
print(root.data, end=" ")
printPreOrder(root.left)
printPreOrder(root.right)
def printPostOrder(root):
if root is None:
return
printPostOrder(root.left)
printPostOrder(root.right)
print(root.data, end=" ")
def printInOrder(root):
if root is None:
return
printInOrder(root.left)
print(root.data, end=" ")
printInOrder(root.right)
def largestData(root):
if root is None:
return -1
data = root.data
leftData = largestData(root.left)
rightData = largestData(root.right)
return max(data, leftData, rightData)
def nodesGreaterThanX(root, x):
if root is None:
return 0
count = 0
if root.data > x:
count += 1
leftCount = nodesGreaterThanX(root.left, x)
rightCount = nodesGreaterThanX(root.right, x)
return count + leftCount + rightCount
def heightOfTree(root):
if root is None:
return 0
leftHeight = heightOfTree(root.left)
rightHeight = heightOfTree(root.right)
return 1 + max(leftHeight, rightHeight)
def numLeafNodes(root):
if root is None:
return 0
if root.left is None and root.right is None:
return 1
numLeafLeft = numLeafNodes(root.left)
numLeafRight = numLeafNodes(root.right)
return numLeafLeft + numLeafRight
def printNodesAtDepthK(root, k):
if root is None:
return
if k == 0:
print(root.data, end=" ")
return
printNodesAtDepthK(root.left, k-1)
printNodesAtDepthK(root.right, k-1)
def printNodesAtDepthK2(root, k, d = 0):
if root is None:
return
if k == d:
print(root.data, end=" ")
printNodesAtDepthK2(root.left, k, d+1)
printNodesAtDepthK2(root.right, k, d+1)
def replaceNodeWithDepth(root, d = 0):
if root is None:
return
root.data = d
replaceNodeWithDepth(root.left, d+1)
replaceNodeWithDepth(root.right, d+1)
def isNodePresent(root, X):
if root is None:
return False
if root.data == X:
return True
ans = isNodePresent(root.left, X)
if ans:
return ans
return isNodePresent(root.right, X)
def nodesWithoutSibling(root):
if root is None:
return
if root.left is not None and root.right is None:
print(root.left.data, end=" ")
if root.left is None and root.right is not None:
print(root.right.data, end=" ")
nodesWithoutSibling(root.left)
nodesWithoutSibling(root.right)
def removeLeafNodes(root):
if root is None:
return None
if root.left is None and root.right is None:
return None
root.left = removeLeafNodes(root.left)
root.right = removeLeafNodes(root.right)
return root
def mirrorBinaryTree(root):
if root is None:
return None
mirrorBinaryTree(root.left)
mirrorBinaryTree(root.right)
root.left, root.right = root.right, root.left
def isBalanced(root):
if root is None:
return True
lh = heightOfTree(root.left)
rh = heightOfTree(root.right)
if lh-rh > 1 or rh-lh > 1:
return False
isLeftBalanced = isBalanced(root.left)
isRightBalanced = isBalanced(root.right)
if isLeftBalanced and isRightBalanced:
return True
return False
def isBalancedOpti(root):
if root is None:
return 0, True
lh, isLeftBalanced = isBalancedOpti(root.left)
rh, isRightBalanced = isBalancedOpti(root.right)
h = 1 + max(lh, rh)
if lh-rh > 1 or rh-lh > 1:
return h, False
if isLeftBalanced and isRightBalanced:
return h, True
return h, False
# agar main fn se bas balanced waala part return karna h to
def isBalanced2(root):
h, ans = isBalancedOpti(root)
return ans
def diameter(root):
if root is None:
return 0
lh = heightOfTree(root.left)
rh = heightOfTree(root.right)
ld = diameter(root.left)
rd = diameter(root.right)
return max((lh+rh), ld, rd)
def diameterOpti(root):
if root is None:
return 0, 0
lh, ld = diameterOpti(root.left)
rh, rd = diameterOpti(root.right)
h = 1+max(lh, rh)
return h, max(lh+rh, ld, rd)
def levelWiseInput():
q = queue.Queue()
rootData = int(input("Enter Root node: "))
if rootData == -1:
return None
root = BinaryTreeNode(rootData)
q.put(root)
while not q.empty():
currentNode = q.get()
leftChild = int(input(f"Enter left child of {currentNode.data}: "))
if leftChild != -1:
leftNode = BinaryTreeNode(leftChild)
currentNode.left = leftNode
q.put(leftNode)
rightChild = int(input(f"Enter right child of {currentNode.data}: "))
if rightChild != -1:
rightNode = BinaryTreeNode(rightChild)
currentNode.right = rightNode
q.put(rightNode)
return root
def printLevelWise(root):
if root is None:
return
q = queue.Queue()
q.put(root)
while not q.empty():
currNode = q.get()
print(currNode.data, end=" ")
if currNode.left is not None:
q.put(currNode.left)
if currNode.right is not None:
q.put(currNode.right)
def printLevelWiseDetailed(root):
if root is None:
return
q = queue.Queue()
q.put(root)
while not q.empty():
currNode = q.get()
print(currNode.data, end=": ")
if currNode.left is not None:
if currNode.right is not None:
print("L", currNode.left.data, end=", ")
else:
print("L", currNode.left.data, end="")
q.put(currNode.left)
if currNode.right is not None:
print("R", currNode.right.data, end="")
q.put(currNode.right)
print()
def treeFromPreIn(preorder, inorder):
if len(preorder) == 0:
return None
root = BinaryTreeNode(preorder[0])
for i in range(0, len(inorder)):
if inorder[i] == preorder[0]:
rootIdxInorder = i
break
leftInorder = inorder[:rootIdxInorder]
rightInorder = inorder[rootIdxInorder+1:]
leftSize = len(leftInorder)
leftPreorder = preorder[1:leftSize+1]
rightPreorder = preorder[leftSize+1:]
root.left = treeFromPreIn(leftPreorder, leftInorder)
root.right = treeFromPreIn(rightPreorder, rightInorder)
return root
def treeFromPostIn(postOrder, inOrder):
if len(postOrder) == 0:
return None
root = BinaryTreeNode(postOrder[-1])
for i in range(0, len(inOrder)):
if inOrder[i] == postOrder[-1]:
rootIdxInorder = i
break
leftInorder = inOrder[0:rootIdxInorder]
rightInOrder = inOrder[rootIdxInorder+1:]
leftSize = len(leftInorder)
leftPostOrder = postOrder[0:leftSize]
rightPostOrder = postOrder[leftSize:-1]
root.left = treeFromPostIn(leftPostOrder, leftInorder)
root.right = treeFromPostIn(rightPostOrder, rightInOrder)
return root
def createInsertDupNode(root):
if root is None:
return None
createInsertDupNode(root.left)
createInsertDupNode(root.right)
newNode = BinaryTreeNode(root.data)
newNode.left = root.left
root.left = newNode
def minMaxOfTree(root):
if root is None:
return (9999, -1)
minL, maxL = minMaxOfTree(root.left)
minR, maxR = minMaxOfTree(root.right)
minm = minL if minL < minR else minR
maxm = maxL if maxL > maxR else maxR
if root.data < minm:
minm = root.data
if root.data > maxm:
maxm = root.data
return (minm, maxm)
def levelOrderTraversal(root):
if root is None:
return None
q = queue.Queue()
q.put(root)
q.put(None)
while not q.empty():
currNode = q.get()
if currNode is None:
if not q.empty():
print()
q.put(None)
else:
print(currNode.data, end=" ")
if currNode.left != None:
q.put(currNode.left)
if currNode.right is not None:
q.put(currNode.right)
def pathSumRootToLeaf(root, k, s=""):
if root is None:
return
s += f"{root.data} "
if k == root.data and root.left is None and root.right is None:
print(s)
pathSumRootToLeaf(root.left, k-root.data, s)
pathSumRootToLeaf(root.right, k-root.data, s)
def printNodesAtDistKFromNode(root, targetNode, k, path = []):
if root is None:
return
if root.data == targetNode:
printNodesAtDepthK(root, k)
path.reverse()
for i in range(len(path)):
if path[i][1] == 'L':
printNodesAtDepthK(path[i][0].right, k-i-2)
else:
printNodesAtDepthK(path[i][0].left, k-i-2)
return
path.append((root, 'L'))
printNodesAtDistKFromNode(root.left, targetNode, k, path)
path.pop()
path.append((root, 'R'))
printNodesAtDistKFromNode(root.right, targetNode, k, path)
path.pop()
def nodeToRootPath(root, k, path = []):
if root is None:
return
if root.data == k:
path.append(root.data)
path.reverse()
print(path)
path.append(root.data)
nodeToRootPath(root.left, k, path)
nodeToRootPath(root.right, k, path)
path.pop()
def rootToNodePath2(root, k):
if root is None:
return None
if root.data == k:
li = []
li.append(root.data)
return li
leftOutput = rootToNodePath2(root.left, k)
if leftOutput != None:
leftOutput.append(root.data)
return leftOutput
rightOutput = rootToNodePath2(root.right, k)
if rightOutput is not None:
rightOutput.append(root.data)
return rightOutput
return None
# btn1 = BinaryTreeNode(1)
# btn2 = BinaryTreeNode(4)
# btn3 = BinaryTreeNode(5)
# btn4 = BinaryTreeNode(12)
# btn5 = BinaryTreeNode(15)
# btn1.left = btn2
# btn1.right = btn3
# btn2.left = btn4
# btn3.left = btn5
# printTree(btn1)
# printTree(None)
root = treeInput()
# root = levelWiseInput()
printLevelWiseDetailed(root)
# printTree(root)
# print(numNodes(root))
# print(sumOfNodes(root))
# printPreOrder(root)
# printPostOrder(root)
# printInOrder(root)
# print(largestData(root))
# x = int(input())
# print(nodesGreaterThanX(root, x))
# print(heightOfTree(root))
# print(numLeafNodes(root))
# printNodesAtDepthK(root, 2)
# printNodesAtDepthK2(root, 2)
# replaceNodeWithDepth(root)
# printTree(root)
# print(isNodePresent(root, x))
# nodesWithoutSibling(root)
# root = removeLeafNodes(root)
# mirrorBinaryTree(root)
# printTree(root)
# print(isBalanced(root))
# print(isBalancedOpti(root))
# print(isBalanced2(root))
# print(diameter(root))
# print(diameterOpti(root))
# printLevelWise(root)
# preOrder = [int(x) for x in input().split()]
# postOrder = [int(x) for x in input().split()]
# inOrder = [int(x) for x in input().split()]
# root = treeFromPreIn(preOrder, inOrder)
# root = treeFromPostIn(postOrder, inOrder)
# createInsertDupNode(root)
# printLevelWiseDetailed(root)
# print(minMaxOfTree(root))
# levelOrderTraversal(root)
# pathSumRootToLeaf(root, k)
# targetNode = int(input())
k = int(input())
# printNodesAtDistKFromNode(root, targetNode, k)
nodeToRootPath(root, k)
print()
print(rootToNodePath2(root, k))