diff --git a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index 8a9ee348..dd07c6de 100644 Binary files a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip index 422ef9f9..378d6937 100644 Binary files a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip and b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip differ diff --git a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip index 935c624b..9340e547 100644 Binary files a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip and b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip differ diff --git a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip index 46030376..a85352e5 100644 Binary files a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip and b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip differ diff --git a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip index 98d14527..a69820fb 100644 Binary files a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip and b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip differ diff --git a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip index ed59581a..52addc7c 100644 Binary files a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip and b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip differ diff --git a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip index a9589e89..a575cd5d 100644 Binary files a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip and b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip differ diff --git a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip index f93c05e2..860a728b 100644 Binary files a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip and b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip differ diff --git a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip index 72f70360..0362e9ba 100644 Binary files a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip and b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip differ diff --git a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip index 36e63705..2047da7a 100644 Binary files a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip and b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip differ diff --git a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip index 12402347..9e8b0774 100644 Binary files a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip and b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip differ diff --git a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index f97ab2bf..d1d7a069 100644 Binary files a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip index 82d9c9a2..93e5571e 100644 Binary files a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip and b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip differ diff --git a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip index 65c11aee..58efe5eb 100644 Binary files a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip and b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip differ diff --git a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip index eeee10ab..982825b2 100644 Binary files a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip and b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip differ diff --git a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip index 1cde75d1..5c146b25 100644 Binary files a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip and b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip differ diff --git a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip index c14868da..2bc029b2 100644 Binary files a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip and b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip differ diff --git a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip index 59b2faf9..c39865fa 100644 Binary files a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip and b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip differ diff --git a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip index c2462a02..4f29cf6c 100644 Binary files a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip and b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip differ diff --git a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip index fa770ce7..c4264f22 100644 Binary files a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip and b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip differ diff --git a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip index 6f3e31f4..9dcd72f5 100644 Binary files a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip and b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip differ diff --git a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip index 3e3fd985..3790664f 100644 Binary files a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip and b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip differ diff --git a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip index 0609278d..d071b583 100644 Binary files a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip and b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip differ diff --git a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip index bfd32be3..cb938bdb 100644 Binary files a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip and b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip differ diff --git a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip index a0bbd921..e2920a31 100644 Binary files a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip and b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip differ diff --git a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip index 9b94cca3..e2a288b9 100644 Binary files a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip and b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png index e400b69b..e4b1eef3 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png index 289e6d31..7777289c 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png differ diff --git a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html index edcd3ddf..065b82ae 100644 --- a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html +++ b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html @@ -605,7 +605,7 @@

Preprocessingpreprocess(test_set, [Preprocessor("crop", tmin=0, tmax=24)], n_jobs=-1) -
<braindecode.datasets.base.BaseConcatDataset object at 0x7fb2bdc553f0>
+
<braindecode.datasets.base.BaseConcatDataset object at 0x7fc6b5af56c0>
 

In time series targets setup, targets variables are stored in mne.Raw object as channels @@ -838,14 +838,14 @@

Training

  epoch    r2_train    r2_valid    train_loss    valid_loss      lr     dur
 -------  ----------  ----------  ------------  ------------  ------  ------
-      1    -23.7826     -4.6087        1.8225       11.7419  0.0006  0.5451
-      2     -1.1990     -0.1716        1.5134        2.6475  0.0006  0.4571
-      3     -0.3654     -0.4985        1.2625        3.4645  0.0005  0.4480
-      4     -0.4383     -0.2731        1.2058        2.9438  0.0004  0.4596
-      5     -0.5982     -0.1512        1.1027        2.6529  0.0002  0.4500
-      6     -0.6090     -0.1255        1.1121        2.5886  0.0001  0.4628
-      7     -0.4455     -0.1445        0.9618        2.6339  0.0000  0.4471
-      8     -0.2790     -0.1755        1.0927        2.7063  0.0000  0.4606
+      1    -23.7826     -4.6087        1.8225       11.7419  0.0006  0.5330
+      2     -1.1990     -0.1716        1.5134        2.6475  0.0006  0.4530
+      3     -0.3654     -0.4985        1.2625        3.4645  0.0005  0.4640
+      4     -0.4383     -0.2731        1.2058        2.9438  0.0004  0.4465
+      5     -0.5982     -0.1512        1.1027        2.6529  0.0002  0.4629
+      6     -0.6090     -0.1255        1.1121        2.5886  0.0001  0.4475
+      7     -0.4455     -0.1445        0.9618        2.6339  0.0000  0.4510
+      8     -0.2790     -0.1755        1.0927        2.7063  0.0000  0.4463
 

Obtaining predictions and targets for the test, train, and validation dataset

@@ -966,8 +966,8 @@

Plot Resultsplt.tight_layout()

-plot bcic iv 4 ecog cropped

Total running time of the script: (2 minutes 22.781 seconds)

-

Estimated memory usage: 1513 MB

+plot bcic iv 4 ecog cropped

Total running time of the script: (2 minutes 23.506 seconds)

+

Estimated memory usage: 1294 MB

  epoch    train_accuracy    train_loss    valid_acc    valid_accuracy    valid_loss      lr     dur
 -------  ----------------  ------------  -----------  ----------------  ------------  ------  ------
-      1            0.2639        1.4655       0.2639            0.2639        1.5266  0.0006  1.7600
-      2            0.3299        1.3119       0.3194            0.3194        1.3948  0.0005  1.5833
-      3            0.4757        1.1941       0.2986            0.2986        1.3259  0.0002  1.5917
-      4            0.5625        1.1671       0.3333            0.3333        1.3025  0.0000  1.6079
+      1            0.2639        1.4655       0.2639            0.2639        1.5266  0.0006  1.7509
+      2            0.3299        1.3119       0.3194            0.3194        1.3948  0.0005  1.5873
+      3            0.4757        1.1941       0.2986            0.2986        1.3259  0.0002  1.6130
+      4            0.5625        1.1671       0.3333            0.3333        1.3025  0.0000  1.6090
 
 <class 'braindecode.classifier.EEGClassifier'>[initialized](
   module_=============================================================================================================================================
@@ -846,8 +846,8 @@ 

Setting the data aug -

Total running time of the script: (0 minutes 17.849 seconds)

-

Estimated memory usage: 1139 MB

+

Total running time of the script: (0 minutes 17.694 seconds)

+

Estimated memory usage: 995 MB

-
/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fb2bddf87c0>] to the mne.io.Raw of an EEGWindowsDataset.
+
/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc6b5713df0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fb2bddf87c0>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc6b5713df0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fb2bddf87c0>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc6b5713df0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
 
-<braindecode.datasets.base.BaseConcatDataset object at 0x7fb2bd7727d0>
+<braindecode.datasets.base.BaseConcatDataset object at 0x7fc77a01f400>
 
@@ -892,31 +892,31 @@

Training
  epoch    train_acc    train_loss    valid_acc    valid_loss    cp     dur
 -------  -----------  ------------  -----------  ------------  ----  ------
-      1       0.5234        0.7013       0.6680        0.6320     +  1.0454
-      2       0.5938        0.7149       0.4880        0.8358        0.8264
-      3       0.4922        1.0040       0.6440        0.6172     +  0.8113
-      4       0.5234        0.7031       0.6120        0.5990     +  0.8027
-      5       0.5391        0.6751       0.5920        0.6213        0.8052
-      6       0.6719        0.6227       0.5920        0.6263        0.8149
-      7       0.6562        0.6309       0.6240        0.6117        0.8124
-      8       0.6641        0.6272       0.6480        0.5950     +  0.8031
-      9       0.6328        0.6238       0.6680        0.5797     +  0.8050
-     10       0.6406        0.6177       0.6800        0.5746     +  0.7929
-     11       0.6250        0.6323       0.7040        0.5787        0.8330
-     12       0.6094        0.6281       0.6760        0.5772        0.7975
-     13       0.6328        0.6422       0.6880        0.5790        0.7951
-     14       0.6406        0.5920       0.6840        0.5765        0.7926
-     15       0.6562        0.6170       0.6920        0.5730     +  0.7991
-     16       0.7578        0.5608       0.6960        0.5676     +  0.8024
-     17       0.6875        0.5936       0.7120        0.5612     +  0.8024
-     18       0.7734        0.5472       0.7080        0.5500     +  0.7878
-     19       0.7656        0.5245       0.7120        0.5400     +  0.7977
-     20       0.6641        0.5641       0.7160        0.5333     +  0.8044
-     21       0.7422        0.5307       0.7200        0.5272     +  0.7979
-     22       0.7109        0.5499       0.7360        0.5211     +  0.7950
-     23       0.6250        0.6259       0.7400        0.5164     +  0.7956
-     24       0.7031        0.5712       0.7400        0.5120     +  0.8086
-     25       0.7109        0.5030       0.7280        0.5120        0.8139
+      1       0.5234        0.7013       0.6680        0.6320     +  1.0960
+      2       0.5938        0.7149       0.4880        0.8358        0.8065
+      3       0.4922        1.0040       0.6440        0.6172     +  0.8059
+      4       0.5234        0.7031       0.6120        0.5990     +  0.8140
+      5       0.5391        0.6751       0.5920        0.6213        0.8104
+      6       0.6719        0.6227       0.5920        0.6263        0.8044
+      7       0.6562        0.6309       0.6240        0.6117        0.7978
+      8       0.6641        0.6272       0.6480        0.5950     +  0.7990
+      9       0.6328        0.6238       0.6680        0.5797     +  0.8059
+     10       0.6406        0.6177       0.6800        0.5746     +  0.7922
+     11       0.6250        0.6323       0.7040        0.5787        0.7898
+     12       0.6094        0.6281       0.6760        0.5772        0.7900
+     13       0.6328        0.6422       0.6880        0.5790        0.8247
+     14       0.6406        0.5920       0.6840        0.5765        0.8032
+     15       0.6562        0.6170       0.6920        0.5730     +  0.7959
+     16       0.7578        0.5608       0.6960        0.5676     +  0.7900
+     17       0.6875        0.5936       0.7120        0.5612     +  0.8016
+     18       0.7734        0.5472       0.7080        0.5500     +  0.7867
+     19       0.7656        0.5245       0.7120        0.5400     +  0.7900
+     20       0.6641        0.5641       0.7160        0.5333     +  0.7964
+     21       0.7422        0.5307       0.7200        0.5272     +  0.7945
+     22       0.7109        0.5499       0.7360        0.5211     +  0.8014
+     23       0.6250        0.6259       0.7400        0.5164     +  0.8036
+     24       0.7031        0.5712       0.7400        0.5120     +  0.7995
+     25       0.7109        0.5030       0.7280        0.5120        0.8178
 /home/runner/.local/lib/python3.10/site-packages/skorch/net.py:2626: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
   return torch.load(f_name, map_location=map_location)
 
@@ -1102,7 +1102,7 @@

Using the learned re ax.legend()

-plot relative positioning
<matplotlib.legend.Legend object at 0x7fb2bd7702e0>
+plot relative positioning
<matplotlib.legend.Legend object at 0x7fc6a299f7f0>
 

We see that there is sleep stage-related structure in the embedding. A @@ -1159,8 +1159,8 @@

References -

Total running time of the script: (1 minutes 54.626 seconds)

-

Estimated memory usage: 814 MB

+

Total running time of the script: (2 minutes 4.919 seconds)

+

Estimated memory usage: 738 MB