forked from hughhan1/artwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtflearn.py
374 lines (284 loc) · 13.6 KB
/
tflearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!usr/bin/env python
import matplotlib.pyplot as plt
import tensorflow as tf
import pandas as pd
import numpy as np
import sklearn
from sklearn.metrics import confusion_matrix
import sklearn.metrics
import time
from datetime import timedelta
import math
import dataset
import random
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Convolutional Layer 1.
filter_size1 = 3
num_filters1 = 32
# Convolutional Layer 2.
filter_size2 = 3
num_filters2 = 32
# Convolutional Layer 3.
filter_size3 = 3
num_filters3 = 64
# Fully-connected layer.
fc_size = 128 # Number of neurons in fully-connected layer.
# Number of color channels for the images: 1 channel for gray-scale.
num_channels = 3
# image dimensions (only squares for now)
img_size = 128
# Size of image when flattened to a single dimension
img_size_flat = img_size * img_size * num_channels
# Tuple with height and width of images used to reshape arrays.
img_shape = (img_size, img_size)
# class info
classes = ['Photograph', 'Installation', 'Sculpture',
'Illustrated Book', 'Design', 'Architecture',
'Periodical', 'Print', 'Video', 'Painting', 'Drawing', 'Film']
#classes = ['Russian', 'Spanish', 'Mexican', 'Canadian', 'German', 'Brazilian', 'Japanese', 'French', 'Czech',
# 'American', 'British', 'Dutch', 'Swiss', 'Austrian', 'Italian', 'Colombian', 'Argentine', 'Belgian']
#classes = ['1976', '2003', '1954', '1961', '1921', '1923', '1924', '1962', '1926', '1927', '1928', '1929',
# '1989', '1986', '1987', '1984', '1949', '1982', '1969', '1980', '1981', '1964', '1965', '1966', '1967',
# '1960', '1947', '1988', '1963', '2001', '1985', '2011', '2004', '1978', '2005', '1948', '1933', '1932',
# '1931', '1956', '1937', '1950', '1953', '1934', '1968', '1938', '1959', '1958', '1991', '1990', '1993',
# '1992', '1995', '1994', '1997', '1996', '1977', '1998', '1975', '1974', '1973', '1972', '1971', '1970',
# '2000', '1930', '2002', '1999', '2006', '2007', '1957', '1979', '1951', '2008', '2009', '1925', '1983']
#classes = ['1950-1960', '1990-2000', '1930-1930', '1970-1980', '1940-1950', '1950-1950' '1930-1940',
# '1980-1980', '1920-1930', '1960-1960', '1990-1990', '1970-1970', '2010-2020', '2000-2010',
# '2000-2000', '1960-1970', '1980-1990', '1930-1940', '1950-1950']
num_classes = len(classes)
# batch size
batch_size = 16
# validation split
validation_size = .2
# how long to wait after validation loss stops improving before terminating training
early_stopping = None # use None if you don't want to implement early stoping
#tf.train.ClusterSpec({"local":["localhost:2222", "localhost:2222", "localhost:2222", "localhost:2222"]})
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
def new_biases(length):
return tf.Variable(tf.constant(0.05, shape=[length]))
def new_conv_layer(
input, # The previous layer.
num_input_channels, # Num. channels in prev. layer.
filter_size, # Width and height of each filter.
num_filters, # Number of filters.
use_pooling=True # Use 2x2 max-pooling.
):
# Shape of the filter-weights for the convolution.
# This format is determined by the TensorFlow API.
shape = [filter_size, filter_size, num_input_channels, num_filters]
# Create new weights aka. filters with the given shape.
weights = new_weights(shape=shape)
# Create new biases, one for each filter.
biases = new_biases(length=num_filters)
# Create the TensorFlow operation for convolution.
# Note the strides are set to 1 in all dimensions.
# The first and last stride must always be 1,
# because the first is for the image-number and
# the last is for the input-channel.
# But e.g. strides=[1, 2, 2, 1] would mean that the filter
# is moved 2 pixels across the x- and y-axis of the image.
# The padding is set to 'SAME' which means the input image
# is padded with zeroes so the size of the output is the same.
layer = tf.nn.conv2d(
input=input,
filter=weights,
strides=[1, 1, 1, 1],
padding='SAME'
)
# Add the biases to the results of the convolution.
# A bias-value is added to each filter-channel.
layer += biases
# Use pooling to down-sample the image resolution?
if use_pooling:
# This is 2x2 max-pooling, which means that we
# consider 2x2 windows and select the largest value
# in each window. Then we move 2 pixels to the next window.
layer = tf.nn.max_pool(
value=layer,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME'
)
# Rectified Linear Unit (ReLU).
# It calculates max(x, 0) for each input pixel x.
# This adds some non-linearity to the formula and allows us
# to learn more complicated functions.
layer = tf.nn.relu(layer)
# Note that ReLU is normally executed before the pooling,
# but since relu(max_pool(x)) == max_pool(relu(x)) we can
# save 75% of the relu-operations by max-pooling first.
# We return both the resulting layer and the filter-weights
# because we will plot the weights later.
return layer, weights
def flatten_layer(layer):
# Get the shape of the input layer.
layer_shape = layer.get_shape()
# The shape of the input layer is assumed to be:
# layer_shape == [num_images, img_height, img_width, num_channels]
# The number of features is: img_height * img_width * num_channels
# We can use a function from TensorFlow to calculate this.
num_features = layer_shape[1:4].num_elements()
# Reshape the layer to [num_images, num_features].
# Note that we just set the size of the second dimension
# to num_features and the size of the first dimension to -1
# which means the size in that dimension is calculated
# so the total size of the tensor is unchanged from the reshaping.
layer_flat = tf.reshape(layer, [-1, num_features])
# The shape of the flattened layer is now:
# [num_images, img_height * img_width * num_channels]
# Return both the flattened layer and the number of features.
return layer_flat, num_features
def new_fc_layer(
input, # The previous layer.
num_inputs, # Num. inputs from prev. layer.
num_outputs, # Num. outputs.
use_relu=True # Use Rectified Linear Unit (ReLU)?
):
# Create new weights and biases.
weights = new_weights(shape=[num_inputs, num_outputs])
biases = new_biases(length=num_outputs)
# Calculate the layer as the matrix multiplication of
# the input and weights, and then add the bias-values.
layer = tf.matmul(input, weights) + biases
# Use ReLU?
if use_relu:
layer = tf.nn.relu(layer)
return layer
def get_confusion_matrix(feed_dict_train, feed_dict_validate):
predictions = session.run(y_pred_cls, feed_dict=feed_dict_validate)
true = session.run(y_true_cls, feed_dict=feed_dict_validate)
# print("predicted: {0}".format(predictions))
# print("true: {0}".format(true))
return sklearn.metrics.confusion_matrix(
y_true=true,
y_pred=predictions,
labels=list(range(len(classes)))
)
def print_progress(epoch, feed_dict_train, feed_dict_validate, val_loss):
# First, calculate the accuracy on the training set and the validation set.
acc = session.run(accuracy, feed_dict=feed_dict_train)
val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
# Print the training and validation accuracy.
print(
"Epoch {0} --- Training Accuracy: {1:>6.1%}, "
"Validation Accuracy: {2:>6.1%}, "
"Validation Loss: {3:.3f}"
.format(epoch + 1, acc, val_acc, val_loss)
)
print(get_confusion_matrix(feed_dict_train, feed_dict_validate))
end_time = time.time()
print("Time elapsed: %d" % (end_time - start_time))
def optimize(num_iterations):
# Ensure we update the global variable rather than a local copy.
global total_iterations
best_val_loss = float("inf")
# First, initialize a confusion matrix of 0s.
# confusion_matrix = np.zeros((num_classes, num_classes))
for i in range(total_iterations, total_iterations + num_iterations):
# Get a batch of training examples.
# x_batch now holds a batch of images and
# y_true_batch are the true labels for those images.
x_batch, y_true_batch, _, cls_batch = data.train.next_batch(train_batch_size)
x_valid_batch, y_valid_batch, _, valid_cls_batch = data.valid.next_batch(train_batch_size)
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, flattened image shape]
x_batch = x_batch.reshape(train_batch_size, img_size_flat)
x_valid_batch = x_valid_batch.reshape(train_batch_size, img_size_flat)
# Put the batch into a dict with the proper names
# for placeholder variables in the TensorFlow graph.
feed_dict_train = {x: x_batch,
y_true: y_true_batch}
feed_dict_validate = {x: x_valid_batch,
y_true: y_valid_batch}
print(feed_dict_validate[x].shape)
# Run the optimizer using this batch of training data.
# TensorFlow assigns the variables in feed_dict_train
# to the placeholder variables and then runs the optimizer.
session.run(optimizer, feed_dict=feed_dict_train)
# Get the confusion matrix for the current batch, and add it to the total.
confusion_matrix = get_confusion_matrix(feed_dict_train, feed_dict_validate)
# Print the confusion matrix for the current batch.
# print(confusion_matrix)
# Print status at end of each epoch (defined as full pass through training dataset).
if i % int(data.train.num_examples/batch_size) == 0:
val_loss = session.run(cost, feed_dict=feed_dict_validate)
epoch = int(i / int(data.train.num_examples/batch_size))
print_progress(epoch, feed_dict_train, feed_dict_validate, val_loss)
# Update the total number of iterations performed.
total_iterations += num_iterations
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.log_device_placement=True
config.intra_op_parallelism_threads = 16
session = tf.Session(config=config)
train_path='training_data'
test_path='testing_data'
dataset.partition_train_test('moma_class.csv', 0.75)
#dataset.partition_train_test('moma_nation.csv', 0.75)
#dataset.partition_train_test('moma_date.csv', 0.75)
#dataset.partition_train_test('moma_start_date.csv', 0.75)
print('=====Reading Training Sets=====')
data = dataset.read_train_sets(train_path, img_size, classes, validation_size=validation_size)
print('=====Reading Test Sets=====')
test_images, test_ids = dataset.read_test_set(test_path, img_size,classes)
print("Size of:")
print("- Training-set:\t\t{}".format(len(data.train.labels)))
print("- Test-set:\t\t{}".format(len(test_images)))
print("- Validation-set:\t{}".format(len(data.valid.labels)))
start_time = time.time()
#session = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, dimension=1)
layer_conv1, weights_conv1 = \
new_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=True)
#print("now layer2 input")
#print(layer_conv1.get_shape())
layer_conv2, weights_conv2 = \
new_conv_layer(input=layer_conv1,
num_input_channels=num_filters1,
filter_size=filter_size2,
num_filters=num_filters2,
use_pooling=True)
#print("now layer3 input")
#print(layer_conv2.get_shape())
layer_conv3, weights_conv3 = \
new_conv_layer(input=layer_conv2,
num_input_channels=num_filters2,
filter_size=filter_size3,
num_filters=num_filters3,
use_pooling=True)
#print("now layer flatten input")
#print(layer_conv3.get_shape())
layer_flat, num_features = flatten_layer(layer_conv3)
layer_fc1 = new_fc_layer(input=layer_flat,
num_inputs=num_features,
num_outputs=fc_size,
use_relu=True)
layer_fc2 = new_fc_layer(input=layer_fc1,
num_inputs=fc_size,
num_outputs=num_classes,
use_relu=False)
y_pred = tf.nn.softmax(layer_fc2)
y_pred_cls = tf.argmax(y_pred, dimension=1)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# confusion_matrix = tf.confusion_matrix
#session.run(tf.global_variables_initializer()) # for newer versions
session.run(tf.initialize_all_variables()) # for older versions
train_batch_size = batch_size
total_iterations = 0
optimize(num_iterations=3000)
#print_validation_accuracy()